Level-set based shape optimization for plane elastic structures using radial basis functions and Hilbertian descent direction
Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a solution of given partial differential equation. In such a framework it is convenient to work with the gradient-like method based on a concept of...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 67; no. 10; p. 174 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1615-147X 1615-1488 |
DOI | 10.1007/s00158-024-03868-x |
Cover
Abstract | Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a solution of given partial differential equation. In such a framework it is convenient to work with the gradient-like method based on a concept of a shape derivative and level set method. The key idea of level set method is to represent the structural boundary with zero level set of given function (level set function—LSF). Now, changing the shape of a structure under optimization is equivalent to transport the LSF in such a direction that ensures decreasing the value of the objective functional. To this end, we make use of coercive bilinear form taken from the weak formulation of elasticity problem to obtain descent direction at each iteration. This descent direction is a solution of an additional variational problem, involving the bilinear form mentioned above and the volumetric expression of the shape derivative plays the role of a linear form. In this paper, we combine level set method with radial basis functions (RBFs) used to approximate LSF. We focus on the so-called multiquadric RBFs, but other classes of RBFs are also briefly considered. This eventually leads to transformation of partial differential equation (linear transport equation governing the evolution of shapes) to a system of linear ordinary differential equations which admits analytical formula for the solution. We apply our method to compliance minimization of a cantilever problem as well as to total potential energy minimization of a structure with kinematic loading. To run all the numerical experiments, we wrote our own code in Wolfram Mathematica environment. |
---|---|
AbstractList | Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a solution of given partial differential equation. In such a framework it is convenient to work with the gradient-like method based on a concept of a shape derivative and level set method. The key idea of level set method is to represent the structural boundary with zero level set of given function (level set function—LSF). Now, changing the shape of a structure under optimization is equivalent to transport the LSF in such a direction that ensures decreasing the value of the objective functional. To this end, we make use of coercive bilinear form taken from the weak formulation of elasticity problem to obtain descent direction at each iteration. This descent direction is a solution of an additional variational problem, involving the bilinear form mentioned above and the volumetric expression of the shape derivative plays the role of a linear form. In this paper, we combine level set method with radial basis functions (RBFs) used to approximate LSF. We focus on the so-called multiquadric RBFs, but other classes of RBFs are also briefly considered. This eventually leads to transformation of partial differential equation (linear transport equation governing the evolution of shapes) to a system of linear ordinary differential equations which admits analytical formula for the solution. We apply our method to compliance minimization of a cantilever problem as well as to total potential energy minimization of a structure with kinematic loading. To run all the numerical experiments, we wrote our own code in Wolfram Mathematica environment. |
ArticleNumber | 174 |
Author | Sobczak, Przemysław Sokół, Tomasz |
Author_xml | – sequence: 1 givenname: Przemysław orcidid: 0000-0003-1633-0285 surname: Sobczak fullname: Sobczak, Przemysław organization: Doctoral School, Warsaw University of Technology – sequence: 2 givenname: Tomasz orcidid: 0000-0001-7777-6171 surname: Sokół fullname: Sokół, Tomasz email: tomasz.sokol@pw.edu.pl organization: Faculty of Civil Engineering, Warsaw University of Technology |
BookMark | eNp9kE1LxDAQhoMouH78AU8Bz9WkaZrsURa_YMGLgreQptM1SzetmVRWwf9u14rePM0c3ucd5jki-6ELQMgZZxecMXWJjHGpM5YXGRO61Nl2j8x4yWXGC633f3f1fEiOENeMMc2K-Yx8LuEN2gwh0coi1BRfbA-065Pf-A-bfBdo00XatzYAhdZi8o5iioNLQwSkA_qwotHW3ra7Co-0GYLbgUhtqOmdbyuIydtAa0AHIdHaR_hOnJCDxrYIpz_zmDzdXD8u7rLlw-394mqZOcGLlElhmVJl7Zrc5XOnxlcr3dhqnitWylxzUSnFdckrWQrmcmuFBK5VY3UlZaHFMTmfevvYvQ6Ayay7IYbxpBGcj8LyopBjKp9SLnaIERrTR7-x8d1wZnaazaTZjJrNt2azHSExQTiGwwriX_U_1BeJAoRm |
Cites_doi | 10.1016/0021-9991(88)90002-2 10.1093/oso/9780199205219.001.0001 10.1007/s00158-011-0674-3 10.1016/j.jcp.2003.09.032 10.1016/j.cma.2022.114991 10.1007/978-981-15-7618-8 10.1016/j.camwa.2014.09.015 10.1016/j.compstruct.2023.116784 10.1016/S1631-073X(02)02412-3 10.1137/050624108 10.1007/s00158-018-1950-2 10.1016/j.camwa.2006.04.007 10.1007/978-3-642-58106-9 10.1051/m2an/2015075 10.1142/6437 10.1007/3-540-07623-9_279 10.1017/CBO9780511543241 10.48550/arXiv.2308.06756 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00158-024-03868-x |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
ExternalDocumentID | 10_1007_s00158_024_03868_x |
GrantInformation_xml | – fundername: Narodowe Centrum Nauki grantid: 2019/33/B/ST8/00325 funderid: http://dx.doi.org/10.13039/501100004281 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ |
ID | FETCH-LOGICAL-c314t-53a0776dcf2c29c7158b8fab9270652813b771861b5630c2aa35e187fa8b55483 |
IEDL.DBID | C6C |
ISSN | 1615-147X |
IngestDate | Fri Jul 25 11:11:40 EDT 2025 Tue Jul 01 01:31:49 EDT 2025 Fri Feb 21 02:40:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Radial basis function Transport equation Hilbertian descent direction Shape derivative Level-set method Shape and topology optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-53a0776dcf2c29c7158b8fab9270652813b771861b5630c2aa35e187fa8b55483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7777-6171 0000-0003-1633-0285 |
OpenAccessLink | https://doi.org/10.1007/s00158-024-03868-x |
PQID | 3113862445 |
PQPubID | 2043658 |
ParticipantIDs | proquest_journals_3113862445 crossref_primary_10_1007_s00158_024_03868_x springer_journals_10_1007_s00158_024_03868_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241000 2024-10-00 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Hadamard (CR13) 1908 Hon, Schaback, Zhong (CR15) 2014; 68 Platte, Driscoll (CR23) 2006; 51 Azegami (CR5) 2020 Allaire, Jouve, Toader (CR4) 2004; 194 Hintermuller (CR14) 2005; 34 Klein, Nair, Yano (CR17) 2022; 395 Sokołowski, Zolésio (CR24) 1992 Delfour, Zolésio (CR10) 2011 Allaire, Jouve, Toader (CR3) 2002; 334 Evans (CR11) 2010 Abdalla, Boussaa, Sburlati, Casagrande (CR1) 2023; 311 Klarbring, Stromberg (CR16) 2012; 45 CR7 De Gournay (CR9) 2006; 45 Bołbotowski, Lewiński (CR6) 2022 CR26 CR25 Allaire (CR2) 2007 Dambrine, Kateb (CR8) 2010; 16 CR20 Osher, Sethian (CR21) 1988; 79 Paganini, Hiptmair, Bociu, Desideri, Habbal (CR22) 2016 Fasshauer (CR12) 2007 Laurin, Sturm (CR19) 2016; 50 Laurin (CR18) 2018; 58 A Klein (3868_CR17) 2022; 395 A Laurin (3868_CR19) 2016; 50 LC Evans (3868_CR11) 2010 3868_CR7 M Hintermuller (3868_CR14) 2005; 34 MC Delfour (3868_CR10) 2011 3868_CR25 3868_CR26 A Laurin (3868_CR18) 2018; 58 3868_CR20 HMA Abdalla (3868_CR1) 2023; 311 J Hadamard (3868_CR13) 1908 S Osher (3868_CR21) 1988; 79 A Paganini (3868_CR22) 2016 G Allaire (3868_CR3) 2002; 334 YC Hon (3868_CR15) 2014; 68 G Allaire (3868_CR4) 2004; 194 K Bołbotowski (3868_CR6) 2022 F De Gournay (3868_CR9) 2006; 45 G Allaire (3868_CR2) 2007 M Dambrine (3868_CR8) 2010; 16 H Azegami (3868_CR5) 2020 J Sokołowski (3868_CR24) 1992 A Klarbring (3868_CR16) 2012; 45 GE Fasshauer (3868_CR12) 2007 RB Platte (3868_CR23) 2006; 51 |
References_xml | – volume: 79 start-page: 12 issue: 1 year: 1988 end-page: 49 ident: CR21 article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton Jacobi formulations publication-title: J Comput Phys doi: 10.1016/0021-9991(88)90002-2 – year: 2022 ident: CR6 publication-title: Setting the free material design problem through the methods of optimal mass distribution, calculus of variations and partial differential equations – year: 2010 ident: CR11 publication-title: Partial differential equations – start-page: 399 year: 2016 end-page: 409 ident: CR22 article-title: Approximate Riesz representatives of shape gradients publication-title: System modeling and optimization: CSMO 2015: IFIP advances in information and communication technology – year: 2007 ident: CR2 publication-title: Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation doi: 10.1093/oso/9780199205219.001.0001 – volume: 45 start-page: 147 year: 2012 end-page: 149 ident: CR16 article-title: BRIEF NOTE A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements publication-title: Struct Multidisc Optim doi: 10.1007/s00158-011-0674-3 – volume: 194 start-page: 363 issue: 1 year: 2004 end-page: 393 ident: CR4 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.032 – ident: CR25 – volume: 16 start-page: 618 issue: 3 year: 2010 end-page: 634 ident: CR8 article-title: On the ersatz material approximation in level-set methods publication-title: ESAIM: Control, Optim Calculus Variations – volume: 395 start-page: 114991 year: 2022 ident: CR17 article-title: A priori error analysis of shape derivatives of linear functionals in structural topology optimization publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114991 – volume: 34 start-page: 305 issue: 1 year: 2005 end-page: 324 ident: CR14 article-title: Fast level set based algorithm using shape and topological sensitivity information publication-title: Control Cybern – year: 2020 ident: CR5 publication-title: Shape optimization problems, springer optimization and its applications doi: 10.1007/978-981-15-7618-8 – volume: 68 start-page: 2057 issue: 12 year: 2014 end-page: 2067 ident: CR15 article-title: The meshless Kernel-based method of lines for parabolic equations publication-title: Comput Math Appl doi: 10.1016/j.camwa.2014.09.015 – volume: 311 start-page: 116784 year: 2023 ident: CR1 article-title: On the best volume fraction distributions for functionally graded cylinders, spheres and disks—a pseudospectral approach publication-title: Compos Struct doi: 10.1016/j.compstruct.2023.116784 – volume: 334 start-page: 1125 year: 2002 end-page: 1130 ident: CR3 article-title: A level-set method for shape optimization publication-title: C R Acad Sci Paris Ser I doi: 10.1016/S1631-073X(02)02412-3 – volume: 45 start-page: 343 issue: 1 year: 2006 end-page: 367 ident: CR9 article-title: Velocity extension for the level-set method and multiple eigenvalues in shape optimization publication-title: SIAM J Control Optim doi: 10.1137/050624108 – year: 2011 ident: CR10 publication-title: Shapes and geometries metrics, analysis, differential calculus, and optimization – year: 2007 ident: CR12 publication-title: Meshfree approximation methods with Matlab: interdisciplinary mathematical sciences – volume: 58 start-page: 1311 issue: 3 year: 2018 end-page: 1334 ident: CR18 article-title: A level set-based structural optimization code using FEniCS publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-1950-2 – ident: CR7 – year: 1908 ident: CR13 publication-title: Mémoire sur le problème d’analyse relatif a l’équilibre des plaques élastiques encastrèes – volume: 51 start-page: 1251 year: 2006 end-page: 1268 ident: CR23 article-title: Eigenvalue stability of radial basis function discretizations for time-dependent problems publication-title: Comput Math Appl doi: 10.1016/j.camwa.2006.04.007 – year: 1992 ident: CR24 publication-title: Introduction to shape optimization: shape sensitivity analysis doi: 10.1007/978-3-642-58106-9 – ident: CR26 – volume: 50 start-page: 1241 issue: 4 year: 2016 end-page: 1267 ident: CR19 article-title: Distributed shape derivative via averaged adjoint method and applications publication-title: ESAIM: Math Model Numerical Anal doi: 10.1051/m2an/2015075 – ident: CR20 – volume: 68 start-page: 2057 issue: 12 year: 2014 ident: 3868_CR15 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2014.09.015 – volume-title: Setting the free material design problem through the methods of optimal mass distribution, calculus of variations and partial differential equations year: 2022 ident: 3868_CR6 – volume: 311 start-page: 116784 year: 2023 ident: 3868_CR1 publication-title: Compos Struct doi: 10.1016/j.compstruct.2023.116784 – volume-title: Shape optimization problems, springer optimization and its applications year: 2020 ident: 3868_CR5 doi: 10.1007/978-981-15-7618-8 – volume: 45 start-page: 343 issue: 1 year: 2006 ident: 3868_CR9 publication-title: SIAM J Control Optim doi: 10.1137/050624108 – volume-title: Mémoire sur le problème d’analyse relatif a l’équilibre des plaques élastiques encastrèes year: 1908 ident: 3868_CR13 – start-page: 399 volume-title: System modeling and optimization: CSMO 2015: IFIP advances in information and communication technology year: 2016 ident: 3868_CR22 – volume-title: Meshfree approximation methods with Matlab: interdisciplinary mathematical sciences year: 2007 ident: 3868_CR12 doi: 10.1142/6437 – volume: 50 start-page: 1241 issue: 4 year: 2016 ident: 3868_CR19 publication-title: ESAIM: Math Model Numerical Anal doi: 10.1051/m2an/2015075 – ident: 3868_CR25 – volume-title: Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation year: 2007 ident: 3868_CR2 doi: 10.1093/oso/9780199205219.001.0001 – volume-title: Partial differential equations year: 2010 ident: 3868_CR11 – volume: 16 start-page: 618 issue: 3 year: 2010 ident: 3868_CR8 publication-title: ESAIM: Control, Optim Calculus Variations – volume-title: Shapes and geometries metrics, analysis, differential calculus, and optimization year: 2011 ident: 3868_CR10 – volume: 34 start-page: 305 issue: 1 year: 2005 ident: 3868_CR14 publication-title: Control Cybern – ident: 3868_CR20 doi: 10.1007/3-540-07623-9_279 – volume: 79 start-page: 12 issue: 1 year: 1988 ident: 3868_CR21 publication-title: J Comput Phys doi: 10.1016/0021-9991(88)90002-2 – volume: 45 start-page: 147 year: 2012 ident: 3868_CR16 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-011-0674-3 – volume: 51 start-page: 1251 year: 2006 ident: 3868_CR23 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2006.04.007 – volume: 334 start-page: 1125 year: 2002 ident: 3868_CR3 publication-title: C R Acad Sci Paris Ser I doi: 10.1016/S1631-073X(02)02412-3 – ident: 3868_CR7 doi: 10.1017/CBO9780511543241 – ident: 3868_CR26 doi: 10.48550/arXiv.2308.06756 – volume: 58 start-page: 1311 issue: 3 year: 2018 ident: 3868_CR18 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-1950-2 – volume-title: Introduction to shape optimization: shape sensitivity analysis year: 1992 ident: 3868_CR24 doi: 10.1007/978-3-642-58106-9 – volume: 395 start-page: 114991 year: 2022 ident: 3868_CR17 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114991 – volume: 194 start-page: 363 issue: 1 year: 2004 ident: 3868_CR4 publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.032 |
SSID | ssj0008049 |
Score | 2.4188247 |
Snippet | Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 174 |
SubjectTerms | Computational Mathematics and Numerical Analysis Derivatives Differential geometry Engineering Engineering Design Functionals Kinematics Optimization Ordinary differential equations Partial differential equations Potential energy Radial basis function Research Paper Shape optimization Theoretical and Applied Mechanics Transport equations |
Title | Level-set based shape optimization for plane elastic structures using radial basis functions and Hilbertian descent direction |
URI | https://link.springer.com/article/10.1007/s00158-024-03868-x https://www.proquest.com/docview/3113862445 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQLDAgPkWhIA9sYKm2Y8cZS0Wp-OhEpTJFju0AEqQVKRIL_527JC0fgoElGWLd4Hf2e5Hvngk57ljlbSfKmMtFwiLPJQOVoVisktw4J7Wr7Bhuhnowii7HatzY5GAvzI_zezT75MowYBLWkUYbBnpxRcHGi9nc073FrmtqqYsChvEoHjcNMr_H-E5Cn8ryx2FoxTH9DbLeiEPardHcJEuh2CJrXywDt8n7NVb5sDLMKBKQp-WDnQY6gZX_3LRUUtChdIpFrDSANoZYtHaJfYVfa4qF7vf0BS0JnjDEY0mR26r0o7bwdPD4VBVb24L62uuJ1rwHI3bIqH9-2xuw5goF5iSPZkxJi349HpBwInExzENmcpslAo83heEyi4GdNM_QJ8wJa6UK3MS5NRkIDSN3yXIxKcIeoTq3kY8Ta4J0kRU-SeJce6_R0i-IYFrkZD6n6bR2ykgXnsgVAikgkFYIpG8t0p5Pe9qsmjKVnEtsWIlUi5zOofj8_He0_f8NPyCrArOhqslrk2XAIByCtphlR2Sl2z87G-L74u7q_KhKMniORPcDB_DLPQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDMCA-BSFAh7YwFIdJ44zoooqQNuplbpZju1ApZJWpEgs_Hd8TtpCBQNzrBvunfNedHcvCF23VGRUK8yIzoOEhIYy4lRGROIoyYXWjGtvx9Dr83QYPo6iUW2TA7swa_17MPukkSCOSUiLCS6I04tb0LkEn_w2by_fuqKSuiBgCA3jUb0g83uMnyS0UpZrzVDPMZ19tFeLQ3xXoXmANmxxiHa_WQYeoc8uTPmQ0s4xEJDB5YuaWTx1N_-1XqnETofiGQyxYuu0sYuFK5fYd_dpjWHQ_Rm_gSXBBEKMSwzc5ssPq8LgdDzxw9aqwKbyesIV77kTx2jYuR-0U1L_QoFoRsM5iZgCvx7jkNBBomOXh0zkKksCaG8GgrIsduzEaQY-YTpQikWWijhXInNCQ7ATtFlMC3uKMM9VaOJECct0qAKTJHHOjeFg6WcDKxroZpFTOaucMuTSE9kjIB0C0iMgPxqouUi7rG9NKRmlDBZWwqiBbhdQrB7_He3sf8ev0HY66HVl96H_dI52AqgMP5_XRJsOD3vhdMY8u_QF9gU98Moz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB1kBdGD3-L6mYM3jW6btE2PoruurooHhfVU0iTVRa2LW0EE_7uZfuyuogfx3DA0mWneK3nzArDTkJ6WDR5Tlbgh5dph1LIMjwZemAilmK9yO4aLS799w8-6Xnesiz9Xu1dHkkVPA7o0pdlBXycHw8Y3hHpBLb7QBhO-oJZFTnK8Q6IGk4cnt53mcDcWBQVGYkMdHnTLxpmfo3wFpxHj_HZImmNPaw5k9daF5ORh_zWL99X7N0PH_0xrHmZLYkoOi0pagAmTLsLMmF3hEnyco8KIDkxGEPw0GdzLviHPdtd5Kts5ieXApI8CWmIsL7exSOFQ-2p_6wmK7O_IC9ohPGKI3oAgrualT2SqSbv3mAu9ZUp04TNFCsy1I5bhptW8PmrT8voGqpjDM-oxiV5B2laBckMV2KnFIpFx6OLRqiscFgcWGX0nRo8y5UrJPOOIIJEitiRHsBWopc-pWQXiJ5LrIJTCMMWlq8MwSHytfbQTNK4Rddit8hb1C5eOaOjHnC9qZBc1yhc1eqvDRpXaqPxiBxFzHIbNMtyrw16VqdHj36Ot_W34NkxdHbei89PLzjpMu5jrXBq4ATWbDrNpKU4Wb5VV_An4SPR1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Level-set+based+shape+optimization+for+plane+elastic+structures+using+radial+basis+functions+and+Hilbertian+descent+direction&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Sobczak%2C+Przemys%C5%82aw&rft.au=Sok%C3%B3%C5%82%2C+Tomasz&rft.date=2024-10-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=67&rft.issue=10&rft_id=info:doi/10.1007%2Fs00158-024-03868-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_024_03868_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |