Level-set based shape optimization for plane elastic structures using radial basis functions and Hilbertian descent direction

Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a solution of given partial differential equation. In such a framework it is convenient to work with the gradient-like method based on a concept of...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 67; no. 10; p. 174
Main Authors Sobczak, Przemysław, Sokół, Tomasz
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-147X
1615-1488
DOI10.1007/s00158-024-03868-x

Cover

Abstract Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a solution of given partial differential equation. In such a framework it is convenient to work with the gradient-like method based on a concept of a shape derivative and level set method. The key idea of level set method is to represent the structural boundary with zero level set of given function (level set function—LSF). Now, changing the shape of a structure under optimization is equivalent to transport the LSF in such a direction that ensures decreasing the value of the objective functional. To this end, we make use of coercive bilinear form taken from the weak formulation of elasticity problem to obtain descent direction at each iteration. This descent direction is a solution of an additional variational problem, involving the bilinear form mentioned above and the volumetric expression of the shape derivative plays the role of a linear form. In this paper, we combine level set method with radial basis functions (RBFs) used to approximate LSF. We focus on the so-called multiquadric RBFs, but other classes of RBFs are also briefly considered. This eventually leads to transformation of partial differential equation (linear transport equation governing the evolution of shapes) to a system of linear ordinary differential equations which admits analytical formula for the solution. We apply our method to compliance minimization of a cantilever problem as well as to total potential energy minimization of a structure with kinematic loading. To run all the numerical experiments, we wrote our own code in Wolfram Mathematica environment.
AbstractList Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a solution of given partial differential equation. In such a framework it is convenient to work with the gradient-like method based on a concept of a shape derivative and level set method. The key idea of level set method is to represent the structural boundary with zero level set of given function (level set function—LSF). Now, changing the shape of a structure under optimization is equivalent to transport the LSF in such a direction that ensures decreasing the value of the objective functional. To this end, we make use of coercive bilinear form taken from the weak formulation of elasticity problem to obtain descent direction at each iteration. This descent direction is a solution of an additional variational problem, involving the bilinear form mentioned above and the volumetric expression of the shape derivative plays the role of a linear form. In this paper, we combine level set method with radial basis functions (RBFs) used to approximate LSF. We focus on the so-called multiquadric RBFs, but other classes of RBFs are also briefly considered. This eventually leads to transformation of partial differential equation (linear transport equation governing the evolution of shapes) to a system of linear ordinary differential equations which admits analytical formula for the solution. We apply our method to compliance minimization of a cantilever problem as well as to total potential energy minimization of a structure with kinematic loading. To run all the numerical experiments, we wrote our own code in Wolfram Mathematica environment.
ArticleNumber 174
Author Sobczak, Przemysław
Sokół, Tomasz
Author_xml – sequence: 1
  givenname: Przemysław
  orcidid: 0000-0003-1633-0285
  surname: Sobczak
  fullname: Sobczak, Przemysław
  organization: Doctoral School, Warsaw University of Technology
– sequence: 2
  givenname: Tomasz
  orcidid: 0000-0001-7777-6171
  surname: Sokół
  fullname: Sokół, Tomasz
  email: tomasz.sokol@pw.edu.pl
  organization: Faculty of Civil Engineering, Warsaw University of Technology
BookMark eNp9kE1LxDAQhoMouH78AU8Bz9WkaZrsURa_YMGLgreQptM1SzetmVRWwf9u14rePM0c3ucd5jki-6ELQMgZZxecMXWJjHGpM5YXGRO61Nl2j8x4yWXGC633f3f1fEiOENeMMc2K-Yx8LuEN2gwh0coi1BRfbA-065Pf-A-bfBdo00XatzYAhdZi8o5iioNLQwSkA_qwotHW3ra7Co-0GYLbgUhtqOmdbyuIydtAa0AHIdHaR_hOnJCDxrYIpz_zmDzdXD8u7rLlw-394mqZOcGLlElhmVJl7Zrc5XOnxlcr3dhqnitWylxzUSnFdckrWQrmcmuFBK5VY3UlZaHFMTmfevvYvQ6Ayay7IYbxpBGcj8LyopBjKp9SLnaIERrTR7-x8d1wZnaazaTZjJrNt2azHSExQTiGwwriX_U_1BeJAoRm
Cites_doi 10.1016/0021-9991(88)90002-2
10.1093/oso/9780199205219.001.0001
10.1007/s00158-011-0674-3
10.1016/j.jcp.2003.09.032
10.1016/j.cma.2022.114991
10.1007/978-981-15-7618-8
10.1016/j.camwa.2014.09.015
10.1016/j.compstruct.2023.116784
10.1016/S1631-073X(02)02412-3
10.1137/050624108
10.1007/s00158-018-1950-2
10.1016/j.camwa.2006.04.007
10.1007/978-3-642-58106-9
10.1051/m2an/2015075
10.1142/6437
10.1007/3-540-07623-9_279
10.1017/CBO9780511543241
10.48550/arXiv.2308.06756
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00158-024-03868-x
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10_1007_s00158_024_03868_x
GrantInformation_xml – fundername: Narodowe Centrum Nauki
  grantid: 2019/33/B/ST8/00325
  funderid: http://dx.doi.org/10.13039/501100004281
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
ID FETCH-LOGICAL-c314t-53a0776dcf2c29c7158b8fab9270652813b771861b5630c2aa35e187fa8b55483
IEDL.DBID C6C
ISSN 1615-147X
IngestDate Fri Jul 25 11:11:40 EDT 2025
Tue Jul 01 01:31:49 EDT 2025
Fri Feb 21 02:40:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Radial basis function
Transport equation
Hilbertian descent direction
Shape derivative
Level-set method
Shape and topology optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-53a0776dcf2c29c7158b8fab9270652813b771861b5630c2aa35e187fa8b55483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7777-6171
0000-0003-1633-0285
OpenAccessLink https://doi.org/10.1007/s00158-024-03868-x
PQID 3113862445
PQPubID 2043658
ParticipantIDs proquest_journals_3113862445
crossref_primary_10_1007_s00158_024_03868_x
springer_journals_10_1007_s00158_024_03868_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hadamard (CR13) 1908
Hon, Schaback, Zhong (CR15) 2014; 68
Platte, Driscoll (CR23) 2006; 51
Azegami (CR5) 2020
Allaire, Jouve, Toader (CR4) 2004; 194
Hintermuller (CR14) 2005; 34
Klein, Nair, Yano (CR17) 2022; 395
Sokołowski, Zolésio (CR24) 1992
Delfour, Zolésio (CR10) 2011
Allaire, Jouve, Toader (CR3) 2002; 334
Evans (CR11) 2010
Abdalla, Boussaa, Sburlati, Casagrande (CR1) 2023; 311
Klarbring, Stromberg (CR16) 2012; 45
CR7
De Gournay (CR9) 2006; 45
Bołbotowski, Lewiński (CR6) 2022
CR26
CR25
Allaire (CR2) 2007
Dambrine, Kateb (CR8) 2010; 16
CR20
Osher, Sethian (CR21) 1988; 79
Paganini, Hiptmair, Bociu, Desideri, Habbal (CR22) 2016
Fasshauer (CR12) 2007
Laurin, Sturm (CR19) 2016; 50
Laurin (CR18) 2018; 58
A Klein (3868_CR17) 2022; 395
A Laurin (3868_CR19) 2016; 50
LC Evans (3868_CR11) 2010
3868_CR7
M Hintermuller (3868_CR14) 2005; 34
MC Delfour (3868_CR10) 2011
3868_CR25
3868_CR26
A Laurin (3868_CR18) 2018; 58
3868_CR20
HMA Abdalla (3868_CR1) 2023; 311
J Hadamard (3868_CR13) 1908
S Osher (3868_CR21) 1988; 79
A Paganini (3868_CR22) 2016
G Allaire (3868_CR3) 2002; 334
YC Hon (3868_CR15) 2014; 68
G Allaire (3868_CR4) 2004; 194
K Bołbotowski (3868_CR6) 2022
F De Gournay (3868_CR9) 2006; 45
G Allaire (3868_CR2) 2007
M Dambrine (3868_CR8) 2010; 16
H Azegami (3868_CR5) 2020
J Sokołowski (3868_CR24) 1992
A Klarbring (3868_CR16) 2012; 45
GE Fasshauer (3868_CR12) 2007
RB Platte (3868_CR23) 2006; 51
References_xml – volume: 79
  start-page: 12
  issue: 1
  year: 1988
  end-page: 49
  ident: CR21
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton Jacobi formulations
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– year: 2022
  ident: CR6
  publication-title: Setting the free material design problem through the methods of optimal mass distribution, calculus of variations and partial differential equations
– year: 2010
  ident: CR11
  publication-title: Partial differential equations
– start-page: 399
  year: 2016
  end-page: 409
  ident: CR22
  article-title: Approximate Riesz representatives of shape gradients
  publication-title: System modeling and optimization: CSMO 2015: IFIP advances in information and communication technology
– year: 2007
  ident: CR2
  publication-title: Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation
  doi: 10.1093/oso/9780199205219.001.0001
– volume: 45
  start-page: 147
  year: 2012
  end-page: 149
  ident: CR16
  article-title: BRIEF NOTE A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-011-0674-3
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  end-page: 393
  ident: CR4
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.032
– ident: CR25
– volume: 16
  start-page: 618
  issue: 3
  year: 2010
  end-page: 634
  ident: CR8
  article-title: On the ersatz material approximation in level-set methods
  publication-title: ESAIM: Control, Optim Calculus Variations
– volume: 395
  start-page: 114991
  year: 2022
  ident: CR17
  article-title: A priori error analysis of shape derivatives of linear functionals in structural topology optimization
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114991
– volume: 34
  start-page: 305
  issue: 1
  year: 2005
  end-page: 324
  ident: CR14
  article-title: Fast level set based algorithm using shape and topological sensitivity information
  publication-title: Control Cybern
– year: 2020
  ident: CR5
  publication-title: Shape optimization problems, springer optimization and its applications
  doi: 10.1007/978-981-15-7618-8
– volume: 68
  start-page: 2057
  issue: 12
  year: 2014
  end-page: 2067
  ident: CR15
  article-title: The meshless Kernel-based method of lines for parabolic equations
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2014.09.015
– volume: 311
  start-page: 116784
  year: 2023
  ident: CR1
  article-title: On the best volume fraction distributions for functionally graded cylinders, spheres and disks—a pseudospectral approach
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2023.116784
– volume: 334
  start-page: 1125
  year: 2002
  end-page: 1130
  ident: CR3
  article-title: A level-set method for shape optimization
  publication-title: C R Acad Sci Paris Ser I
  doi: 10.1016/S1631-073X(02)02412-3
– volume: 45
  start-page: 343
  issue: 1
  year: 2006
  end-page: 367
  ident: CR9
  article-title: Velocity extension for the level-set method and multiple eigenvalues in shape optimization
  publication-title: SIAM J Control Optim
  doi: 10.1137/050624108
– year: 2011
  ident: CR10
  publication-title: Shapes and geometries metrics, analysis, differential calculus, and optimization
– year: 2007
  ident: CR12
  publication-title: Meshfree approximation methods with Matlab: interdisciplinary mathematical sciences
– volume: 58
  start-page: 1311
  issue: 3
  year: 2018
  end-page: 1334
  ident: CR18
  article-title: A level set-based structural optimization code using FEniCS
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-1950-2
– ident: CR7
– year: 1908
  ident: CR13
  publication-title: Mémoire sur le problème d’analyse relatif a l’équilibre des plaques élastiques encastrèes
– volume: 51
  start-page: 1251
  year: 2006
  end-page: 1268
  ident: CR23
  article-title: Eigenvalue stability of radial basis function discretizations for time-dependent problems
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2006.04.007
– year: 1992
  ident: CR24
  publication-title: Introduction to shape optimization: shape sensitivity analysis
  doi: 10.1007/978-3-642-58106-9
– ident: CR26
– volume: 50
  start-page: 1241
  issue: 4
  year: 2016
  end-page: 1267
  ident: CR19
  article-title: Distributed shape derivative via averaged adjoint method and applications
  publication-title: ESAIM: Math Model Numerical Anal
  doi: 10.1051/m2an/2015075
– ident: CR20
– volume: 68
  start-page: 2057
  issue: 12
  year: 2014
  ident: 3868_CR15
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2014.09.015
– volume-title: Setting the free material design problem through the methods of optimal mass distribution, calculus of variations and partial differential equations
  year: 2022
  ident: 3868_CR6
– volume: 311
  start-page: 116784
  year: 2023
  ident: 3868_CR1
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2023.116784
– volume-title: Shape optimization problems, springer optimization and its applications
  year: 2020
  ident: 3868_CR5
  doi: 10.1007/978-981-15-7618-8
– volume: 45
  start-page: 343
  issue: 1
  year: 2006
  ident: 3868_CR9
  publication-title: SIAM J Control Optim
  doi: 10.1137/050624108
– volume-title: Mémoire sur le problème d’analyse relatif a l’équilibre des plaques élastiques encastrèes
  year: 1908
  ident: 3868_CR13
– start-page: 399
  volume-title: System modeling and optimization: CSMO 2015: IFIP advances in information and communication technology
  year: 2016
  ident: 3868_CR22
– volume-title: Meshfree approximation methods with Matlab: interdisciplinary mathematical sciences
  year: 2007
  ident: 3868_CR12
  doi: 10.1142/6437
– volume: 50
  start-page: 1241
  issue: 4
  year: 2016
  ident: 3868_CR19
  publication-title: ESAIM: Math Model Numerical Anal
  doi: 10.1051/m2an/2015075
– ident: 3868_CR25
– volume-title: Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation
  year: 2007
  ident: 3868_CR2
  doi: 10.1093/oso/9780199205219.001.0001
– volume-title: Partial differential equations
  year: 2010
  ident: 3868_CR11
– volume: 16
  start-page: 618
  issue: 3
  year: 2010
  ident: 3868_CR8
  publication-title: ESAIM: Control, Optim Calculus Variations
– volume-title: Shapes and geometries metrics, analysis, differential calculus, and optimization
  year: 2011
  ident: 3868_CR10
– volume: 34
  start-page: 305
  issue: 1
  year: 2005
  ident: 3868_CR14
  publication-title: Control Cybern
– ident: 3868_CR20
  doi: 10.1007/3-540-07623-9_279
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 3868_CR21
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– volume: 45
  start-page: 147
  year: 2012
  ident: 3868_CR16
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-011-0674-3
– volume: 51
  start-page: 1251
  year: 2006
  ident: 3868_CR23
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2006.04.007
– volume: 334
  start-page: 1125
  year: 2002
  ident: 3868_CR3
  publication-title: C R Acad Sci Paris Ser I
  doi: 10.1016/S1631-073X(02)02412-3
– ident: 3868_CR7
  doi: 10.1017/CBO9780511543241
– ident: 3868_CR26
  doi: 10.48550/arXiv.2308.06756
– volume: 58
  start-page: 1311
  issue: 3
  year: 2018
  ident: 3868_CR18
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-018-1950-2
– volume-title: Introduction to shape optimization: shape sensitivity analysis
  year: 1992
  ident: 3868_CR24
  doi: 10.1007/978-3-642-58106-9
– volume: 395
  start-page: 114991
  year: 2022
  ident: 3868_CR17
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114991
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  ident: 3868_CR4
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.032
SSID ssj0008049
Score 2.4188247
Snippet Structural optimization problems are often associated with the so-called shape functionals depending on a shape through its geometry and the state being a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 174
SubjectTerms Computational Mathematics and Numerical Analysis
Derivatives
Differential geometry
Engineering
Engineering Design
Functionals
Kinematics
Optimization
Ordinary differential equations
Partial differential equations
Potential energy
Radial basis function
Research Paper
Shape optimization
Theoretical and Applied Mechanics
Transport equations
Title Level-set based shape optimization for plane elastic structures using radial basis functions and Hilbertian descent direction
URI https://link.springer.com/article/10.1007/s00158-024-03868-x
https://www.proquest.com/docview/3113862445
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQLDAgPkWhIA9sYKm2Y8cZS0Wp-OhEpTJFju0AEqQVKRIL_527JC0fgoElGWLd4Hf2e5Hvngk57ljlbSfKmMtFwiLPJQOVoVisktw4J7Wr7Bhuhnowii7HatzY5GAvzI_zezT75MowYBLWkUYbBnpxRcHGi9nc073FrmtqqYsChvEoHjcNMr_H-E5Cn8ryx2FoxTH9DbLeiEPardHcJEuh2CJrXywDt8n7NVb5sDLMKBKQp-WDnQY6gZX_3LRUUtChdIpFrDSANoZYtHaJfYVfa4qF7vf0BS0JnjDEY0mR26r0o7bwdPD4VBVb24L62uuJ1rwHI3bIqH9-2xuw5goF5iSPZkxJi349HpBwInExzENmcpslAo83heEyi4GdNM_QJ8wJa6UK3MS5NRkIDSN3yXIxKcIeoTq3kY8Ta4J0kRU-SeJce6_R0i-IYFrkZD6n6bR2ykgXnsgVAikgkFYIpG8t0p5Pe9qsmjKVnEtsWIlUi5zOofj8_He0_f8NPyCrArOhqslrk2XAIByCtphlR2Sl2z87G-L74u7q_KhKMniORPcDB_DLPQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDMCA-BSFAh7YwFIdJ44zoooqQNuplbpZju1ApZJWpEgs_Hd8TtpCBQNzrBvunfNedHcvCF23VGRUK8yIzoOEhIYy4lRGROIoyYXWjGtvx9Dr83QYPo6iUW2TA7swa_17MPukkSCOSUiLCS6I04tb0LkEn_w2by_fuqKSuiBgCA3jUb0g83uMnyS0UpZrzVDPMZ19tFeLQ3xXoXmANmxxiHa_WQYeoc8uTPmQ0s4xEJDB5YuaWTx1N_-1XqnETofiGQyxYuu0sYuFK5fYd_dpjWHQ_Rm_gSXBBEKMSwzc5ssPq8LgdDzxw9aqwKbyesIV77kTx2jYuR-0U1L_QoFoRsM5iZgCvx7jkNBBomOXh0zkKksCaG8GgrIsduzEaQY-YTpQikWWijhXInNCQ7ATtFlMC3uKMM9VaOJECct0qAKTJHHOjeFg6WcDKxroZpFTOaucMuTSE9kjIB0C0iMgPxqouUi7rG9NKRmlDBZWwqiBbhdQrB7_He3sf8ev0HY66HVl96H_dI52AqgMP5_XRJsOD3vhdMY8u_QF9gU98Moz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB1kBdGD3-L6mYM3jW6btE2PoruurooHhfVU0iTVRa2LW0EE_7uZfuyuogfx3DA0mWneK3nzArDTkJ6WDR5Tlbgh5dph1LIMjwZemAilmK9yO4aLS799w8-6Xnesiz9Xu1dHkkVPA7o0pdlBXycHw8Y3hHpBLb7QBhO-oJZFTnK8Q6IGk4cnt53mcDcWBQVGYkMdHnTLxpmfo3wFpxHj_HZImmNPaw5k9daF5ORh_zWL99X7N0PH_0xrHmZLYkoOi0pagAmTLsLMmF3hEnyco8KIDkxGEPw0GdzLviHPdtd5Kts5ieXApI8CWmIsL7exSOFQ-2p_6wmK7O_IC9ohPGKI3oAgrualT2SqSbv3mAu9ZUp04TNFCsy1I5bhptW8PmrT8voGqpjDM-oxiV5B2laBckMV2KnFIpFx6OLRqiscFgcWGX0nRo8y5UrJPOOIIJEitiRHsBWopc-pWQXiJ5LrIJTCMMWlq8MwSHytfbQTNK4Rddit8hb1C5eOaOjHnC9qZBc1yhc1eqvDRpXaqPxiBxFzHIbNMtyrw16VqdHj36Ot_W34NkxdHbei89PLzjpMu5jrXBq4ATWbDrNpKU4Wb5VV_An4SPR1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Level-set+based+shape+optimization+for+plane+elastic+structures+using+radial+basis+functions+and+Hilbertian+descent+direction&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Sobczak%2C+Przemys%C5%82aw&rft.au=Sok%C3%B3%C5%82%2C+Tomasz&rft.date=2024-10-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=67&rft.issue=10&rft_id=info:doi/10.1007%2Fs00158-024-03868-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_024_03868_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon