Artificial Ecosystem Optimizer-Based System Identification and Its Performance Evaluation
This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identific...
Saved in:
| Published in | Arabian journal for science and engineering (2011) Vol. 49; no. 12; pp. 16083 - 16106 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2193-567X 1319-8025 2191-4281 2191-4281 |
| DOI | 10.1007/s13369-024-08841-w |
Cover
| Abstract | This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identification problems. Inspired by the energy flow of natural ecosystems, AEO has undergone specific modifications leading to derived versions. Additionally, five diverse meta-heuristic algorithms are employed to assess their applicability and performance in system identification using data from an air stream heater experiment kit. A comprehensive performance comparison is made, considering time bounds, maximum generations, early stopping, and function evaluation constraints, presenting their respective performances. Among the evaluated algorithms, the AEO algorithm enhanced with the sine and cosine strategy stands out with a determined R
2
value of 0.951. This algorithm consistently outperforms others in Wilcoxon tests, showcasing its significant success. Our study affirms that meta-heuristic algorithms, particularly the proposed AEO algorithm, can be effectively applied to system identification problems, yielding successful calculations of transfer function parameters. |
|---|---|
| AbstractList | This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identification problems. Inspired by the energy flow of natural ecosystems, AEO has undergone specific modifications leading to derived versions. Additionally, five diverse meta-heuristic algorithms are employed to assess their applicability and performance in system identification using data from an air stream heater experiment kit. A comprehensive performance comparison is made, considering time bounds, maximum generations, early stopping, and function evaluation constraints, presenting their respective performances. Among the evaluated algorithms, the AEO algorithm enhanced with the sine and cosine strategy stands out with a determined R
2
value of 0.951. This algorithm consistently outperforms others in Wilcoxon tests, showcasing its significant success. Our study affirms that meta-heuristic algorithms, particularly the proposed AEO algorithm, can be effectively applied to system identification problems, yielding successful calculations of transfer function parameters. This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identification problems. Inspired by the energy flow of natural ecosystems, AEO has undergone specific modifications leading to derived versions. Additionally, five diverse meta-heuristic algorithms are employed to assess their applicability and performance in system identification using data from an air stream heater experiment kit. A comprehensive performance comparison is made, considering time bounds, maximum generations, early stopping, and function evaluation constraints, presenting their respective performances. Among the evaluated algorithms, the AEO algorithm enhanced with the sine and cosine strategy stands out with a determined R2 value of 0.951. This algorithm consistently outperforms others in Wilcoxon tests, showcasing its significant success. Our study affirms that meta-heuristic algorithms, particularly the proposed AEO algorithm, can be effectively applied to system identification problems, yielding successful calculations of transfer function parameters. |
| Author | Fidan, Şehmus |
| Author_xml | – sequence: 1 givenname: Şehmus orcidid: 0000-0002-5249-7245 surname: Fidan fullname: Fidan, Şehmus email: sehmus.fidan@batman.edu.tr organization: Vocational School of Technical Sciences, Electronic Program, Batman University |
| BookMark | eNqNkFFLwzAUhYNMcM79AZ8KPkdzk7ZpH-eYOhgoqKBPIWkSqbRpTTrH_PXWduCb-HQv955zOHynaOIaZxA6B3IJhPCrAIylOSY0xiTLYsC7IzSlkAOOaQaTYWc4SfnLCZqHUCoSZyxPANgUvS58V9qyKGUVrYom7ENn6ui-7cq6_DIeX8tgdPQ4ntfauEEtu7JxkXQ6WnchejDeNr6WrjDR6lNW2-F9ho6trIKZH-YMPd-snpZ3eHN_u14uNrhgEHc4tiZXyhgpNbWJtJQqmsecJqlVCSjFtaYq1RkDnmkLiluaFzzNeaKAFESzGWJj7ta1cr-TVSVaX9bS7wUQ8QNIjIBED0gMgMSud12MrtY3H1sTOvHebL3riwoGQDPGOY17FR1VhW9C8Mb-L_pQKPRi92b8b_Qfrm8T8olO |
| Cites_doi | 10.1155/2014/425853 10.1016/j.procs.2020.04.219 10.1007/s11042-022-13836-6 10.1109/ACCESS.2020.2973351 10.1002/er.5747 10.1002/2050-7038.13043 10.1080/0952813X.2022.2104388 10.1002/2050-7038.12433 10.3390/electronics11020204 10.1007/s00521-020-05496-0 10.1016/j.sysarc.2023.102871 10.1109/ACCESS.2020.3027654 10.1016/j.compstruc.2012.07.010 10.1007/s11227-022-04367-w 10.1016/j.future.2019.02.028 10.3390/sym12071146 10.1213/ANE.0b013e31827f53d7 10.1049/cp.2016.0172 10.1007/s41403-022-00334-2 10.1142/9789814261302_0041 10.1007/978-3-030-12127-3_12 10.1016/j.heliyon.2022.e09399 10.1109/GEC55014.2022.9986621 10.1515/ijeeps-2021-0104 10.1049/rpg2.12510 10.1016/j.advengsoft.2015.01.010 10.3390/su141811704 10.1007/s00521-019-04452-x 10.1109/IECON.2013.6699402 10.1007/s00500-021-06346-4 10.1016/J.AEJ.2021.07.037 10.1007/s12647-018-00300-w 10.1007/s00366-020-01120-w 10.1007/978-3-030-79357-9_15 10.1109/ICAACCA51523.2021.9465189 10.1080/13873954.2016.1232283 10.1016/B978-012526430-3/50003-9 10.1002/cpe.6639 10.1007/978-981-16-9416-5_55 10.1016/j.eswa.2022.118047 10.1016/j.asoc.2022.109478 10.59287/icras.697 10.1049/rpg2.12059 10.1007/s00521-022-07142-3 10.1177/0020720920940605 10.1007/s10845-021-01817-9 10.1016/j.enconman.2020.113385 10.1016/j.aej.2021.11.035 10.1016/j.matcom.2023.06.015 10.1016/j.psep.2020.07.044 10.2991/ijcis.2018.25905179 10.1016/j.jobe.2020.101647 10.1016/j.aej.2020.10.027 10.1016/j.ijhydene.2020.06.256 10.3390/math9192363 10.1016/j.jhydrol.2022.129034 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L 10.21203/rs.3.rs-305087/v1 10.1109/ACCESS.2021.3066914 10.1016/j.advengsoft.2013.12.007 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1007/s13369-024-08841-w |
| DatabaseName | SpringerLink Journals Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 16106 |
| ExternalDocumentID | 10.1007/s13369-024-08841-w 10_1007_s13369_024_08841_w |
| GrantInformation_xml | – fundername: Batman University |
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA C6C CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c314t-4fe9bbeeaad2f5af22b2947256fb51bb7dd2b6d83178df1b7f29c76975b10c0d3 |
| IEDL.DBID | C6C |
| ISSN | 2193-567X 1319-8025 2191-4281 |
| IngestDate | Tue Aug 19 17:31:16 EDT 2025 Mon Jun 30 08:58:25 EDT 2025 Wed Oct 01 02:18:52 EDT 2025 Fri Feb 21 02:40:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Meta-heuristic algorithm Air stream heater process System identification Artificial ecosystem algorithm |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-4fe9bbeeaad2f5af22b2947256fb51bb7dd2b6d83178df1b7f29c76975b10c0d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5249-7245 |
| OpenAccessLink | https://doi.org/10.1007/s13369-024-08841-w |
| PQID | 3112837724 |
| PQPubID | 2044268 |
| PageCount | 24 |
| ParticipantIDs | unpaywall_primary_10_1007_s13369_024_08841_w proquest_journals_3112837724 crossref_primary_10_1007_s13369_024_08841_w springer_journals_10_1007_s13369_024_08841_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering (2011) |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | SonmezYDumanSKahramanHTKatiMArasSGuvencUFitness-distance balance based artificial ecosystem optimisation to solve transient stability constrained optimal power flow problemJ. Exp. Theor. Artif. Intelli.202210.1080/0952813X.2022.2104388 Van ThieuNMirjaliliSMEALPY: An open-source library for latest meta-heuristic algorithms in PythonJ. Syst. Architect.202313910287110.1016/j.sysarc.2023.102871 Devi, R. R.; Sethukarasi, T.: HIWAEO: Hybrid Improved Whale Artificial Ecosystem Optimization Algorithm based Energy-Efficient Routing Protocol for Wireless Sensor Network. (2021) Doi: https://doi.org/10.21203/rs.3.rs-305087/v1 DeviRRSethukarasiTAn energy-efficient routing based on a hybrid improved whale artificial ecosystem optimization algorithm in WSNConcurren. Comput. Practice Exper.2022344e663910.1002/cpe.6639 NguyenTTNguyenTTTranTNParameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimizationNeural Comput. Appl.Comput. Appl.20223415128191284410.1007/s00521-022-07142-3 OmotosoHOAl-ShaalanAMFarhAl-Shamma’aHMHAATechno-economic evaluation of hybrid energy systems using artificial ecosystem-based optimization with demand side managementElectronics202211220410.3390/electronics11020204 DiabAAZEzzatARafaatAEDenisKAAbdelsalamHAAbdelhamidAMOptimal identification of model parameters for PVs using equilibrium, coot bird and artificial ecosystem optimisation algorithmsIET Renew. Power Gener.Gener.202216102172219010.1049/rpg2.12510 Van ThieuNBarmaSDVan LamTKisiOMaheshaAGroundwater level modeling using augmented artificial ecosystem optimizationJ. Hydrol.Hydrol.202361712903410.1016/j.jhydrol.2022.129034 GoudHSwarnkarPInvestigations on metaheuristic algorithm for designing adaptive PID controller for continuous stirred tank reactorMapan201934111311910.1007/s12647-018-00300-w AwoudaAMamatRNew PID tuning rule using ITAE criteriaInt. J. Eng.201036597608 RavberMLiuSHMernikMČrepinšekMMaximum number of generations as a stopping criterion considered harmfulAppl. Soft Comput.Comput.202212810947810.1016/j.asoc.2022.109478 Zhang, W.; Pan, K.; Li, S.; Wang, Y.: Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math. Comput. Simul. (2023). Fidan, Ş.; Sevim, D.; Erkan, E.: System Identification and Control of High Voltage Boost Converter, In: 2022 Global Energy Conference (GEC), Batman, Turkey, pp. 25-31. (2022)1 doi: https://doi.org/10.1109/GEC55014.2022.9986621 ValluruSKSinghMOptimization strategy of bio-inspired metaheuristic algorithms tuned PID controller for PMBDC actuated robotic manipulatorProc. Comput. Sci.20201712040204910.1016/j.procs.2020.04.219 EssaFAAbdElazizMElsheikhAHPrediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimizationProcess. Saf. Environ. Prot.Saf. Environ. Prot.202014432232910.1016/j.psep.2020.07.044 EweesAAAbualigahLYousriDSahlolATAl-qanessMAAAlshathriSElazizMAModified artificial ecosystem-based optimization for multilevel thresholding image segmentationMathematics2021919236310.3390/math9192363 MouassaSJuradoFBouktirTRajaMAZNovel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity gridNeural Comput. Appl.Comput. Appl.202133137467749010.1007/s00521-020-05496-0 ElkholyMMEl-HameedMAEl-FerganyAAArtificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validationsIET Renew. Power Gener.Gener.202115370171510.1049/rpg2.12059 Kamal Kumar, U.; Janamala, V.: Artificial Ecosystem-Based Optimization for Optimal Location and Sizing of Solar Photovoltaic Distribution Generation in Agriculture Feeders. pp. 743–757. (2022) doi: https://doi.org/10.1007/978-981-16-9416-5_55 NiuYYanXWangYNiuYDynamic opposite learning enhanced artificial ecosystem optimizer for IIR system identificationJ. Supercomput.Supercomput.20227811130401308510.1007/s11227-022-04367-w Kang, S.; Jin, R.; Deng, X.; Kenett, R. S:. Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective. J. Intell. Manuf., 1–14. (2021). Zadeh, L. A.: The role of fuzzy logic in modeling, identification and control. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh. pp. 783–795. (1996). Mirjalili, S. M.; Mirjalili, S. Z.; Saremi, S.; Mirjalili, S.: Sine cosine algorithm: theory, literature review, and application in designing bend photonic crystal waveguides. Nature-inspired optimizers, 201–217. (2020) Rizk-AllahRMEl-FerganyAAArtificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells modelInt. J. Hydrogen Energy20214675376123762710.1016/j.ijhydene.2020.06.256 BaždarićRMatkoDLebanAVončinaDŠkrjancIFuzzy model predictive control of a DC-DC boost converter based on non-linear model identificationMath. Comput. Model. Dyn. Syst.Comput. Model. Dyn. Syst.2017232116134360445610.1080/13873954.2016.1232283 Barto, A. G.: Reinforcement learning. In Neural systems for control. pp. 7–30. Academic Press. (1997) VillaseñorCArana-DanielNAlanisAYLópez-FrancoCHernandez-VargasEAGerminal center optimization algorithmInt. J. Comput. Intell. Syst.2018121132710.2991/ijcis.2018.25905179 Al DuhayyimMMohamedHGAljebreenMNourMKMohamedAAbdelmageedAAYaseenIMohammedGPArtificial ecosystem-based optimization with an improved deep learning model for IoT-assisted sustainable waste managementSustainability202214181170410.3390/su141811704 Zaloğlu, M.; Şehmus F.; Erkan, E.: Meta Heuristik Optimizasyon Algoritmalarının Sistem Tanımlama Problemine Uygulanması ve Performans Karşılaştırması. In: International Conference on Engineering, Natural and Social Sciences, vol. 1, pp. 510- 515. (2023). Ćalasan, M.; Micev, M.; Djurovic, Ž.; Mageed, H. M. A.: Artificial ecosystem-based optimization for optimal tuning of robust PID controllers in AVR systems with constrained value of excitation voltage. Int. J. Elect. Eng. Edu., 0020720920940605. (2020) IzciDHekimoğluBEkinciSA new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller design of buck converterAlex. Eng. J.20226132030204410.1016/J.AEJ.2021.07.037 Yang, X. S.; Chien, S. F.; Ting, T. O.: Computational intelligence and metaheuristic algorithms with applications. Sci. World J. (2014). Niu, Y.; Yan, X.; Wang, Y.: An adaptive neighborhood-based search enhanced artificial ecosystem optimizer for UCAV path planning. (2022) doi: https://doi.org/10.1016/j.eswa.2022.118047 BoothSKnoxWBShahJNiekumSStonePAllieviAThe perils of trial-and-error reward design: misdesign through overfitting and invalid task specificationsProce. AAAI Conf. Artif. Intell.202337559205929 Guvenc, U.; Bakir, H.; Duman, S.: Optimal Coordination of Directional Overcurrent Relays Using Artificial Ecosystem-Based Optimization. pp. 150–164. (2021) doi: https://doi.org/10.1007/978-3-030-79357-9_15 Fidan, Ş.; Erkan, E.: Boost Konvertörün Black-Box Sistem Tanımlama Yöntemi ile Transfer Fonksiyonunun Elde Edilmesi ve Parçacık Sürü Algoritması Tabanlı PI Kontrolör Tasarımı. In: International Conference on Recent Academic Studies Vol. 1, No. 1, pp. 210–217. (2023) CelikelRGundogduASystem identification-based MPPT algorithm for PV systems under variable atmosphere conditions using current sensorless approachInt. Trans. Elect. Energy Syst.202010.1002/2050-7038.12433 Manganiello, P.; Ricco, M.; Monmasson, E.; Petrone, G.; Spagnuolo, G.: On-line optimization of the P&O MPPT method by means of the system identification, In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 1786–1791, (2013). doi: https://doi.org/10.1109/IECON.2013.6699402. MenesyASSultanHMKorashyABanakhrFAAshmawyMGKamelSEffective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithmIEEE Access20208318923190910.1109/ACCESS.2020.2973351 Ruisheng, L.; Armstrong, M.; Gadoue, S.; Wang, C.: On-line parameter estimation of non-minimum phase switch mode power DC-DC boost converters, In: IET Conference Proceedings, 2016, pp. 6-6. doi: https://doi.org/10.1049/cp.2016.0172 IET Digital Library. MouassaSTostado-VélizMJuradoFEfficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemesInt. J. Emerg. Electr. Power Syst.Emerg. Electr. Power Syst.202122664366010.1515/ijeeps-2021-0104 Abdelhamid, M.; Kamel, S.; Mohamed, M. A.; Rahmann, C.: An Effective Approach for Optimal Coordination of Directional Overcurrent Relays Based on Artificial Ecosystem Optimizer. In: 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6. (2021). doi: https://doi.org/10.1109/ICAACCA51523.2021.9465189 UlusoySNigdeliSMBekdaşGNovel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustnessJ. Build. Eng.20213310164710.1016/j.jobe.2020.101647 MirjaliliSThe ant lion optimizerAdv. Eng. Softw.Softw.201583809810.1016/j.advengsoft.2015.01.010 Joseph, S. B.; Dada, E. G.; Abidemi, A.; Oyewola, D. O.; Khammas, B. M.: Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon. (2022) MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.Softw.201469466110.1016/j.advengsoft.2013.12.007 HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFutur. Gener. Comput. Syst.. Gener. Comput. Syst.20199784987210.1016/j.future.2019.02.028 SahlolATAbdElazizMTariq JamalADamaševičiusRFarouk HassanOA novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network featuresSymmetry2020127114610.3390/sym12071146 EskandarHSadollahABahre 8841_CR27 C Villaseñor (8841_CR59) 2018; 12 AA Ewees (8841_CR37) 2021; 9 H Goud (8841_CR55) 2019; 34 G Divine (8841_CR63) 2013; 117 HM Sultan (8841_CR25) 2021; 60 D Yousri (8841_CR33) 2020; 225 M Ravber (8841_CR47) 2022; 128 RM Rizk-Allah (8841_CR42) 2021; 46 8841_CR20 W Zhao (8841_CR9) 2020; 32 S Mirjalili (8841_CR60) 2014; 69 RR Devi (8841_CR14) 2022; 34 R Baždarić (8841_CR3) 2017; 23 8841_CR17 8841_CR13 D Izci (8841_CR16) 2022; 61 8841_CR54 MH Hassan (8841_CR10) 2021; 9 S Mirjalili (8841_CR62) 2015; 83 8841_CR18 8841_CR19 N Van Thieu (8841_CR44) 2023; 617 S Booth (8841_CR52) 2023; 37 S Mouassa (8841_CR22) 2021; 22 MM Elkholy (8841_CR29) 2021; 15 R Celikel (8841_CR5) 2020 8841_CR53 N Van Thieu (8841_CR45) 2023; 139 8841_CR50 TT Nguyen (8841_CR15) 2021; 25 A Shaheen (8841_CR21) 2022; 61 AAZ Diab (8841_CR30) 2022; 16 8841_CR49 8841_CR48 HO Omotoso (8841_CR11) 2022; 11 Y Sonmez (8841_CR43) 2022 S Mouassa (8841_CR28) 2021; 33 AT Sahlol (8841_CR36) 2020; 12 S Ulusoy (8841_CR57) 2021; 33 M Al Duhayyim (8841_CR38) 2022; 14 S Barshandeh (8841_CR35) 2022; 38 SK Valluru (8841_CR56) 2020; 171 D Yousri (8841_CR34) 2020; 44 JE Dayhoff (8841_CR51) 2001; 91 8841_CR2 B Mahdad (8841_CR12) 2022; 7 8841_CR41 8841_CR1 8841_CR4 8841_CR6 8841_CR8 8841_CR7 TT Nguyen (8841_CR32) 2022; 34 A Eid (8841_CR26) 2020; 8 MA El-Dabah (8841_CR31) 2021 A Awouda (8841_CR46) 2010; 3 AA Heidari (8841_CR61) 2019; 97 FA Essa (8841_CR40) 2020; 144 Y Niu (8841_CR23) 2022; 78 AS Menesy (8841_CR24) 2020; 8 F Hosseini (8841_CR39) 2022 H Eskandar (8841_CR58) 2012; 110 |
| References_xml | – reference: ValluruSKSinghMOptimization strategy of bio-inspired metaheuristic algorithms tuned PID controller for PMBDC actuated robotic manipulatorProc. Comput. Sci.20201712040204910.1016/j.procs.2020.04.219 – reference: DeviRRSethukarasiTAn energy-efficient routing based on a hybrid improved whale artificial ecosystem optimization algorithm in WSNConcurren. Comput. Practice Exper.2022344e663910.1002/cpe.6639 – reference: MenesyASSultanHMKorashyABanakhrFAAshmawyMGKamelSEffective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithmIEEE Access20208318923190910.1109/ACCESS.2020.2973351 – reference: Van ThieuNMirjaliliSMEALPY: An open-source library for latest meta-heuristic algorithms in PythonJ. Syst. Architect.202313910287110.1016/j.sysarc.2023.102871 – reference: UlusoySNigdeliSMBekdaşGNovel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustnessJ. Build. Eng.20213310164710.1016/j.jobe.2020.101647 – reference: DayhoffJEDeLeoJMArtificial neural networks: opening the black boxCancer: Interdiscip. Inte. J. Am. Cancer Soci.200191S81615163510.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L – reference: HosseiniFGharehchopoghFSMasdariMMOAEOSCA: an enhanced multi-objective hybrid artificial ecosystem-based optimization with sine cosine algorithm for feature selection in botnet detection in IoTMultimed. Tools Appl.202210.1007/s11042-022-13836-6 – reference: Fidan, Ş.; Erkan, E.: Boost Konvertörün Black-Box Sistem Tanımlama Yöntemi ile Transfer Fonksiyonunun Elde Edilmesi ve Parçacık Sürü Algoritması Tabanlı PI Kontrolör Tasarımı. In: International Conference on Recent Academic Studies Vol. 1, No. 1, pp. 210–217. (2023) – reference: YousriDRezkHFathyAIdentifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approachInt. J. Energy Res.20204414113021132210.1002/er.5747 – reference: RavberMLiuSHMernikMČrepinšekMMaximum number of generations as a stopping criterion considered harmfulAppl. Soft Comput.Comput.202212810947810.1016/j.asoc.2022.109478 – reference: Kamal Kumar, U.; Janamala, V.: Artificial Ecosystem-Based Optimization for Optimal Location and Sizing of Solar Photovoltaic Distribution Generation in Agriculture Feeders. pp. 743–757. (2022) doi: https://doi.org/10.1007/978-981-16-9416-5_55 – reference: Yang, X. S.; Chien, S. F.; Ting, T. O.: Computational intelligence and metaheuristic algorithms with applications. Sci. World J. (2014). – reference: Kang, S.; Jin, R.; Deng, X.; Kenett, R. S:. Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective. J. Intell. Manuf., 1–14. (2021). – reference: MirjaliliSThe ant lion optimizerAdv. Eng. Softw.Softw.201583809810.1016/j.advengsoft.2015.01.010 – reference: Ćalasan, M.; Micev, M.; Djurovic, Ž.; Mageed, H. M. A.: Artificial ecosystem-based optimization for optimal tuning of robust PID controllers in AVR systems with constrained value of excitation voltage. Int. J. Elect. Eng. Edu., 0020720920940605. (2020) – reference: Abdelhamid, M.; Kamel, S.; Mohamed, M. A.; Rahmann, C.: An Effective Approach for Optimal Coordination of Directional Overcurrent Relays Based on Artificial Ecosystem Optimizer. In: 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6. (2021). doi: https://doi.org/10.1109/ICAACCA51523.2021.9465189 – reference: AwoudaAMamatRNew PID tuning rule using ITAE criteriaInt. J. Eng.201036597608 – reference: IzciDHekimoğluBEkinciSA new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller design of buck converterAlex. Eng. J.20226132030204410.1016/J.AEJ.2021.07.037 – reference: EidAKamelSKorashyAKhurshaidTAn enhanced artificial ecosystem-based optimization for optimal allocation of multiple distributed generationsIEEE Access2020817849317851310.1109/ACCESS.2020.3027654 – reference: Mirjalili, S. M.; Mirjalili, S. Z.; Saremi, S.; Mirjalili, S.: Sine cosine algorithm: theory, literature review, and application in designing bend photonic crystal waveguides. Nature-inspired optimizers, 201–217. (2020) – reference: MouassaSJuradoFBouktirTRajaMAZNovel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity gridNeural Comput. Appl.Comput. Appl.202133137467749010.1007/s00521-020-05496-0 – reference: YousriDBabuTSMirjaliliSRajasekarNElazizMAA novel objective function with artificial ecosystem-based optimization for relieving the mismatching power loss of large-scale photovoltaic arrayEnergy Convers. Manage.202022511338510.1016/j.enconman.2020.113385 – reference: Joseph, S. B.; Dada, E. G.; Abidemi, A.; Oyewola, D. O.; Khammas, B. M.: Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon. (2022) – reference: Manganiello, P.; Ricco, M.; Monmasson, E.; Petrone, G.; Spagnuolo, G.: On-line optimization of the P&O MPPT method by means of the system identification, In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 1786–1791, (2013). doi: https://doi.org/10.1109/IECON.2013.6699402. – reference: SahlolATAbdElazizMTariq JamalADamaševičiusRFarouk HassanOA novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network featuresSymmetry2020127114610.3390/sym12071146 – reference: Niu, Y.; Yan, X.; Wang, Y.: An adaptive neighborhood-based search enhanced artificial ecosystem optimizer for UCAV path planning. (2022) doi: https://doi.org/10.1016/j.eswa.2022.118047 – reference: El-DabahMAEl-SehiemyRABecherifMEbrahimMAParameter estimation of triple diode photovoltaic model using an artificial ecosystem-based optimizerInt. Trans. Elect. Energy Syst.202110.1002/2050-7038.13043 – reference: ShaheenAElsayedAGinidiAEl-SehiemyRElattarEReconfiguration of electrical distribution network-based DG and capacitors allocations using artificial ecosystem optimizer: Practical case studyAlex. Eng. J.20226186105611810.1016/j.aej.2021.11.035 – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFutur. Gener. Comput. Syst.. Gener. Comput. Syst.20199784987210.1016/j.future.2019.02.028 – reference: Guvenc, U.; Bakir, H.; Duman, S.: Optimal Coordination of Directional Overcurrent Relays Using Artificial Ecosystem-Based Optimization. pp. 150–164. (2021) doi: https://doi.org/10.1007/978-3-030-79357-9_15 – reference: Zaloğlu, M.; Şehmus F.; Erkan, E.: Meta Heuristik Optimizasyon Algoritmalarının Sistem Tanımlama Problemine Uygulanması ve Performans Karşılaştırması. In: International Conference on Engineering, Natural and Social Sciences, vol. 1, pp. 510- 515. (2023). – reference: NiuYYanXWangYNiuYDynamic opposite learning enhanced artificial ecosystem optimizer for IIR system identificationJ. Supercomput.Supercomput.20227811130401308510.1007/s11227-022-04367-w – reference: Zhang, W.; Pan, K.; Li, S.; Wang, Y.: Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math. Comput. Simul. (2023). – reference: Al DuhayyimMMohamedHGAljebreenMNourMKMohamedAAbdelmageedAAYaseenIMohammedGPArtificial ecosystem-based optimization with an improved deep learning model for IoT-assisted sustainable waste managementSustainability202214181170410.3390/su141811704 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.Softw.201469466110.1016/j.advengsoft.2013.12.007 – reference: DivineGNortonHJHuntRDienemannJA review of analysis and sample size calculation considerations for Wilcoxon testsAnesth. Analg.2013117369971010.1213/ANE.0b013e31827f53d7 – reference: Devi, R. R.; Sethukarasi, T.: HIWAEO: Hybrid Improved Whale Artificial Ecosystem Optimization Algorithm based Energy-Efficient Routing Protocol for Wireless Sensor Network. (2021) Doi: https://doi.org/10.21203/rs.3.rs-305087/v1 – reference: NguyenTTA novel metaheuristic method based on artificial ecosystem-based optimization for optimization of network reconfiguration to reduce power lossSoft. Comput.Comput.20212523147291474010.1007/s00500-021-06346-4 – reference: MahdadBAdaptive split artificial ecosystem-based optimization to solving non-smooth economic dispatchTransactions of the Indian National Academy of Engineering20227387389510.1007/s41403-022-00334-2 – reference: CelikelRGundogduASystem identification-based MPPT algorithm for PV systems under variable atmosphere conditions using current sensorless approachInt. Trans. Elect. Energy Syst.202010.1002/2050-7038.12433 – reference: Van ThieuNBarmaSDVan LamTKisiOMaheshaAGroundwater level modeling using augmented artificial ecosystem optimizationJ. Hydrol.Hydrol.202361712903410.1016/j.jhydrol.2022.129034 – reference: EssaFAAbdElazizMElsheikhAHPrediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimizationProcess. Saf. Environ. Prot.Saf. Environ. Prot.202014432232910.1016/j.psep.2020.07.044 – reference: BaždarićRMatkoDLebanAVončinaDŠkrjancIFuzzy model predictive control of a DC-DC boost converter based on non-linear model identificationMath. Comput. Model. Dyn. Syst.Comput. Model. Dyn. Syst.2017232116134360445610.1080/13873954.2016.1232283 – reference: Rizk-AllahRMEl-FerganyAAArtificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells modelInt. J. Hydrogen Energy20214675376123762710.1016/j.ijhydene.2020.06.256 – reference: OmotosoHOAl-ShaalanAMFarhAl-Shamma’aHMHAATechno-economic evaluation of hybrid energy systems using artificial ecosystem-based optimization with demand side managementElectronics202211220410.3390/electronics11020204 – reference: Barto, A. G.: Reinforcement learning. In Neural systems for control. pp. 7–30. Academic Press. (1997) – reference: SultanHMMenesyASKamelSKorashyAAlmohaimeedSAAbdel-AkherMAn improved artificial ecosystem optimization algorithm for optimal configuration of a hybrid PV/WT/FC energy systemAlex. Eng. J.20216011001102510.1016/j.aej.2020.10.027 – reference: ElkholyMMEl-HameedMAEl-FerganyAAArtificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validationsIET Renew. Power Gener.Gener.202115370171510.1049/rpg2.12059 – reference: Ruisheng, L.; Armstrong, M.; Gadoue, S.; Wang, C.: On-line parameter estimation of non-minimum phase switch mode power DC-DC boost converters, In: IET Conference Proceedings, 2016, pp. 6-6. doi: https://doi.org/10.1049/cp.2016.0172 IET Digital Library. – reference: SonmezYDumanSKahramanHTKatiMArasSGuvencUFitness-distance balance based artificial ecosystem optimisation to solve transient stability constrained optimal power flow problemJ. Exp. Theor. Artif. Intelli.202210.1080/0952813X.2022.2104388 – reference: Fidan, Ş.; Sevim, D.; Erkan, E.: System Identification and Control of High Voltage Boost Converter, In: 2022 Global Energy Conference (GEC), Batman, Turkey, pp. 25-31. (2022)1 doi: https://doi.org/10.1109/GEC55014.2022.9986621 – reference: MouassaSTostado-VélizMJuradoFEfficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemesInt. J. Emerg. Electr. Power Syst.Emerg. Electr. Power Syst.202122664366010.1515/ijeeps-2021-0104 – reference: EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problemsComput. Struct.. Struct.201211015116610.1016/j.compstruc.2012.07.010 – reference: DiabAAZEzzatARafaatAEDenisKAAbdelsalamHAAbdelhamidAMOptimal identification of model parameters for PVs using equilibrium, coot bird and artificial ecosystem optimisation algorithmsIET Renew. Power Gener.Gener.202216102172219010.1049/rpg2.12510 – reference: VillaseñorCArana-DanielNAlanisAYLópez-FrancoCHernandez-VargasEAGerminal center optimization algorithmInt. J. Comput. Intell. Syst.2018121132710.2991/ijcis.2018.25905179 – reference: Zadeh, L. A.: The role of fuzzy logic in modeling, identification and control. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh. pp. 783–795. (1996). – reference: NguyenTTNguyenTTTranTNParameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimizationNeural Comput. Appl.Comput. Appl.20223415128191284410.1007/s00521-022-07142-3 – reference: HassanMHKamelSSalihSQKhurshaidTEbeedMDeveloping chaotic artificial ecosystem-based optimization algorithm for combined economic emission dispatchIEEE Access20219511465116510.1109/ACCESS.2021.3066914 – reference: ZhaoWWangLZhangZArtificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithmNeural Comput. Appl.Comput. Appl.202032139383942510.1007/s00521-019-04452-x – reference: BoothSKnoxWBShahJNiekumSStonePAllieviAThe perils of trial-and-error reward design: misdesign through overfitting and invalid task specificationsProce. AAAI Conf. Artif. Intell.202337559205929 – reference: EweesAAAbualigahLYousriDSahlolATAl-qanessMAAAlshathriSElazizMAModified artificial ecosystem-based optimization for multilevel thresholding image segmentationMathematics2021919236310.3390/math9192363 – reference: GoudHSwarnkarPInvestigations on metaheuristic algorithm for designing adaptive PID controller for continuous stirred tank reactorMapan201934111311910.1007/s12647-018-00300-w – reference: BarshandehSPiriFSanganiSRHMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problemsEng. Comput.Comput.20223821581162510.1007/s00366-020-01120-w – ident: 8841_CR49 doi: 10.1155/2014/425853 – volume: 171 start-page: 2040 year: 2020 ident: 8841_CR56 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.04.219 – year: 2022 ident: 8841_CR39 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13836-6 – volume: 8 start-page: 31892 year: 2020 ident: 8841_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973351 – volume: 44 start-page: 11302 issue: 14 year: 2020 ident: 8841_CR34 publication-title: Int. J. Energy Res. doi: 10.1002/er.5747 – year: 2021 ident: 8841_CR31 publication-title: Int. Trans. Elect. Energy Syst. doi: 10.1002/2050-7038.13043 – year: 2022 ident: 8841_CR43 publication-title: J. Exp. Theor. Artif. Intelli. doi: 10.1080/0952813X.2022.2104388 – year: 2020 ident: 8841_CR5 publication-title: Int. Trans. Elect. Energy Syst. doi: 10.1002/2050-7038.12433 – volume: 11 start-page: 204 issue: 2 year: 2022 ident: 8841_CR11 publication-title: Electronics doi: 10.3390/electronics11020204 – volume: 33 start-page: 7467 issue: 13 year: 2021 ident: 8841_CR28 publication-title: Neural Comput. Appl.Comput. Appl. doi: 10.1007/s00521-020-05496-0 – volume: 139 start-page: 102871 year: 2023 ident: 8841_CR45 publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2023.102871 – volume: 8 start-page: 178493 year: 2020 ident: 8841_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3027654 – volume: 110 start-page: 151 year: 2012 ident: 8841_CR58 publication-title: Comput. Struct.. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 78 start-page: 13040 issue: 11 year: 2022 ident: 8841_CR23 publication-title: J. Supercomput.Supercomput. doi: 10.1007/s11227-022-04367-w – volume: 97 start-page: 849 year: 2019 ident: 8841_CR61 publication-title: Futur. Gener. Comput. Syst.. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 12 start-page: 1146 issue: 7 year: 2020 ident: 8841_CR36 publication-title: Symmetry doi: 10.3390/sym12071146 – volume: 117 start-page: 699 issue: 3 year: 2013 ident: 8841_CR63 publication-title: Anesth. Analg. doi: 10.1213/ANE.0b013e31827f53d7 – ident: 8841_CR4 doi: 10.1049/cp.2016.0172 – volume: 7 start-page: 873 issue: 3 year: 2022 ident: 8841_CR12 publication-title: Transactions of the Indian National Academy of Engineering doi: 10.1007/s41403-022-00334-2 – ident: 8841_CR1 doi: 10.1142/9789814261302_0041 – ident: 8841_CR27 doi: 10.1007/978-3-030-12127-3_12 – ident: 8841_CR54 doi: 10.1016/j.heliyon.2022.e09399 – ident: 8841_CR8 doi: 10.1109/GEC55014.2022.9986621 – volume: 22 start-page: 643 issue: 6 year: 2021 ident: 8841_CR22 publication-title: Int. J. Emerg. Electr. Power Syst.Emerg. Electr. Power Syst. doi: 10.1515/ijeeps-2021-0104 – volume: 16 start-page: 2172 issue: 10 year: 2022 ident: 8841_CR30 publication-title: IET Renew. Power Gener.Gener. doi: 10.1049/rpg2.12510 – volume: 83 start-page: 80 year: 2015 ident: 8841_CR62 publication-title: Adv. Eng. Softw.Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 14 start-page: 11704 issue: 18 year: 2022 ident: 8841_CR38 publication-title: Sustainability doi: 10.3390/su141811704 – volume: 32 start-page: 9383 issue: 13 year: 2020 ident: 8841_CR9 publication-title: Neural Comput. Appl.Comput. Appl. doi: 10.1007/s00521-019-04452-x – ident: 8841_CR2 doi: 10.1109/IECON.2013.6699402 – volume: 25 start-page: 14729 issue: 23 year: 2021 ident: 8841_CR15 publication-title: Soft. Comput.Comput. doi: 10.1007/s00500-021-06346-4 – volume: 61 start-page: 2030 issue: 3 year: 2022 ident: 8841_CR16 publication-title: Alex. Eng. J. doi: 10.1016/J.AEJ.2021.07.037 – volume: 34 start-page: 113 issue: 1 year: 2019 ident: 8841_CR55 publication-title: Mapan doi: 10.1007/s12647-018-00300-w – volume: 38 start-page: 1581 issue: 2 year: 2022 ident: 8841_CR35 publication-title: Eng. Comput.Comput. doi: 10.1007/s00366-020-01120-w – ident: 8841_CR19 doi: 10.1007/978-3-030-79357-9_15 – ident: 8841_CR20 doi: 10.1109/ICAACCA51523.2021.9465189 – volume: 23 start-page: 116 issue: 2 year: 2017 ident: 8841_CR3 publication-title: Math. Comput. Model. Dyn. Syst.Comput. Model. Dyn. Syst. doi: 10.1080/13873954.2016.1232283 – ident: 8841_CR53 doi: 10.1016/B978-012526430-3/50003-9 – volume: 34 start-page: e6639 issue: 4 year: 2022 ident: 8841_CR14 publication-title: Concurren. Comput. Practice Exper. doi: 10.1002/cpe.6639 – ident: 8841_CR18 doi: 10.1007/978-981-16-9416-5_55 – ident: 8841_CR41 doi: 10.1016/j.eswa.2022.118047 – volume: 128 start-page: 109478 year: 2022 ident: 8841_CR47 publication-title: Appl. Soft Comput.Comput. doi: 10.1016/j.asoc.2022.109478 – ident: 8841_CR7 doi: 10.59287/icras.697 – volume: 37 start-page: 5920 issue: 5 year: 2023 ident: 8841_CR52 publication-title: Proce. AAAI Conf. Artif. Intell. – volume: 15 start-page: 701 issue: 3 year: 2021 ident: 8841_CR29 publication-title: IET Renew. Power Gener.Gener. doi: 10.1049/rpg2.12059 – volume: 34 start-page: 12819 issue: 15 year: 2022 ident: 8841_CR32 publication-title: Neural Comput. Appl.Comput. Appl. doi: 10.1007/s00521-022-07142-3 – ident: 8841_CR17 doi: 10.1177/0020720920940605 – ident: 8841_CR50 doi: 10.1007/s10845-021-01817-9 – volume: 225 start-page: 113385 year: 2020 ident: 8841_CR33 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113385 – volume: 61 start-page: 6105 issue: 8 year: 2022 ident: 8841_CR21 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.11.035 – volume: 3 start-page: 597 issue: 6 year: 2010 ident: 8841_CR46 publication-title: Int. J. Eng. – ident: 8841_CR48 doi: 10.1016/j.matcom.2023.06.015 – volume: 144 start-page: 322 year: 2020 ident: 8841_CR40 publication-title: Process. Saf. Environ. Prot.Saf. Environ. Prot. doi: 10.1016/j.psep.2020.07.044 – volume: 12 start-page: 13 issue: 1 year: 2018 ident: 8841_CR59 publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.2018.25905179 – volume: 33 start-page: 101647 year: 2021 ident: 8841_CR57 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101647 – volume: 60 start-page: 1001 issue: 1 year: 2021 ident: 8841_CR25 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.10.027 – volume: 46 start-page: 37612 issue: 75 year: 2021 ident: 8841_CR42 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.256 – volume: 9 start-page: 2363 issue: 19 year: 2021 ident: 8841_CR37 publication-title: Mathematics doi: 10.3390/math9192363 – volume: 617 start-page: 129034 year: 2023 ident: 8841_CR44 publication-title: J. Hydrol.Hydrol. doi: 10.1016/j.jhydrol.2022.129034 – ident: 8841_CR6 – volume: 91 start-page: 1615 issue: S8 year: 2001 ident: 8841_CR51 publication-title: Cancer: Interdiscip. Inte. J. Am. Cancer Soci. doi: 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L – ident: 8841_CR13 doi: 10.21203/rs.3.rs-305087/v1 – volume: 9 start-page: 51146 year: 2021 ident: 8841_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3066914 – volume: 69 start-page: 46 year: 2014 ident: 8841_CR60 publication-title: Adv. Eng. Softw.Softw. doi: 10.1016/j.advengsoft.2013.12.007 |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.3318672 |
| Snippet | This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 16083 |
| SubjectTerms | Algorithms Energy flow Engineering Heuristic methods Humanities and Social Sciences multidisciplinary Parameter identification Performance evaluation Research Article-Electrical Engineering Science System identification Transfer functions |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB74EO0KhQqH3oDL2s7sZMjH4sAqZQDKy2nyI5tCQFhxWa1Yn99J-tkQytUFXFL5Ggiz9iZ53jeM8CPJBe-h7ia5pidcIESe2q84lSLyMikEghRFTn556U8G0QXw3i4BCcNF2Ze7d5sSQZOQ6XSVJQHI-sPWuKbEDKlmF8ozpKI0WkXmz_AsowRkXdgeXB5dXhTnSuHyxGKCJuFa0FjqYY1d-Z1Q3_mpxZ0LvZJP8HKpBjp56m-v3-Rik7XwDWdCBUod91Jabr57C99x_f2ch1Wa6xKDsPg2oAlV2zCTXUbZCdIP38MStDkF355Hm5n7okeYVq0JAihk0AD9vV_QaILS87LMblq2Qqkv5Ab_wyD0_718Rmtz2eguWBRSSPvUmOc09pyH2vPueEYWwRR3sTMGGUtN9ImCFES65lRnqe5kqmKDevlPSu-QKd4LNxXIAKzIuOKRToVkdBSu0TL2HjNZKUYF23BXhOVbBRkOLJWcLlyU4ZuyuZuyqZbsNMELqun5DgTiCxxNa44GttvfN82_8va_iLg__Hy7bc9_g0-8irC8wqZHeiUTxO3izinNN_rYfwbCdP0dg priority: 102 providerName: Unpaywall |
| Title | Artificial Ecosystem Optimizer-Based System Identification and Its Performance Evaluation |
| URI | https://link.springer.com/article/10.1007/s13369-024-08841-w https://www.proquest.com/docview/3112837724 https://link.springer.com/content/pdf/10.1007/s13369-024-08841-w.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2191-4281 databaseCode: AFBBN dateStart: 20110101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 2193-567X databaseCode: U2A dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAGB20PWgP4oprmYM3HewsmUmOrbQuYPVgIT2FmSQDQo1iU4r-er9sTRURveSQgS_w5pu8N8v3BqFTN-S2A7qahMBOMEFxLDFWMaK5MNLNDEJUVpx8N5TXI3HrO35pk5PVwnzbv7-YwhxKegSYhMB4EJTMV1ETSErmG7PyssodAUQP2oHX6yuge1h-gSyMSU4cqfyyZubnsF95qRabi_3RFlqbJa_6fa4nkyUKGmyijVI74m7R2VtoJU62UWvJUXAHjbPGwhQC98OXwqcZ38N_4fnpI34jPSCtCBc25bgo0rXlqh3WSYRv0il-qGsJcH9hBr6LRoP-4-U1KW9PICGnIiXCxp4xcax1xKyjLWOGAfIgcaxxqDEqipiRkQsCwo0sNcoyL1TSU46hnbAT8T3USF6SeB9hDpxFmaJCe1xwLXXsaukYq6nM_NzEATqrsAteC5OMoLZDzpAOAOkgRzqYH6DjCt6gHDDTgIPug7myYhDsvIK8bv4t2vmiW_7w8cP_RT9C6yxLkvz8yjFqpG-z-ARUSGraqNkd9HrDdp6G8LzyKbwbDR-6409gzNR3 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsABsYqy-sCNWtRL7OQIVasWaOFApXKK7CSWkEqo2lQVfD2TrQGEEJwtTaRnj98bO_OM0LkbcNsAXU0CYCcoUBxLjFWMaC6MdFODEJU2J_f6sjMQN0NnWNjkpL0w3-7vL6dQQ0mPAJMQyAdByXwZrQrqumkSNmWzXDsCiB60A6_OV0D3sOwBWchJThyphkXPzM9hv_JSJTYX96MbaG0Wj_XbXI9GnyiovYU2C-2Ir_LJ3kZLUbyDNj45Cu6ip3QwN4XAreA192nG97AvvDy_RxNyDaQV4tymHOdNurY4tcM6DnE3meKHqpcAtxZm4Hto0G49NjukeD2BBJyKhAgbecZEkdYhs462jBkGyIPEscahxqgwZEaGLggIN7TUKMu8QElPOYY2gkbI99FK_BpHBwhz4CzKFBXa44JrqSNXS8dYTWXq5yZq6KLEzh_nJhl-ZYecIu0D0n6GtD-voeMSXr9ImKnPQfdBrawYBKuXkFfDv0WrL6blDx8__F_0M7TWeezd-Xfd_u0RWmfpgsn-ZTlGK8lkFp2AIknMabYUPwBAs9NJ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aweUgrlitmoM3DTbLJDNHrS3uelCopyGZTECoY7EjRX-9b7ZOBRE9B97Ay8t8X5bvewgd-BF3beDVJAJ0gg2K54hxihHNhZF-ZhCiMnHyza08fxSXfa8_peLPX7tXV5KFpiFzaUrS46F1x7XwjXMZEMAXAqtEUDKeRXMC0C3rYdCRnaqiBMA_MApen7oAG2J5W1lYqZx4UvVLJc3PYb-jVU1BJ7emS2jhPRnqj7EeDKaAqbeClktGiU-KElhFM3GyhpamfAbX0VM2WFhF4G70Wrg34zv4W7w8f8Zv5BSgzOLCvBwX0l1XnuVhnVh8kY7wfa0wwN2JRfgGeux1HzrnpOypQCJORUqEiwNj4lhry5ynHWOGwXwA8XHGo8Yoa5mR1gda4VtHjXIsiJQMlGdoO2pbvokayWsSbyHMAckoU1TogAuupY59LT3jNJWZy5toosMqd-GwsM4Ia5PkLNMhZDrMMx2Om6hVpTcsl9Eo5MAGYQetGAQ7qlJeD_8W7WgyLX_4-Pb_ou-j-fuzXnh9cXu1gxZZVi_5A5cWaqRv7_Eu0JTU7OWV-AWjx9uQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB74EO0KhQqH3oDL2s7sZMjH4sAqZQDKy2nyI5tCQFhxWa1Yn99J-tkQytUFXFL5Ggiz9iZ53jeM8CPJBe-h7ia5pidcIESe2q84lSLyMikEghRFTn556U8G0QXw3i4BCcNF2Ze7d5sSQZOQ6XSVJQHI-sPWuKbEDKlmF8ozpKI0WkXmz_AsowRkXdgeXB5dXhTnSuHyxGKCJuFa0FjqYY1d-Z1Q3_mpxZ0LvZJP8HKpBjp56m-v3-Rik7XwDWdCBUod91Jabr57C99x_f2ch1Wa6xKDsPg2oAlV2zCTXUbZCdIP38MStDkF355Hm5n7okeYVq0JAihk0AD9vV_QaILS87LMblq2Qqkv5Ab_wyD0_718Rmtz2eguWBRSSPvUmOc09pyH2vPueEYWwRR3sTMGGUtN9ImCFES65lRnqe5kqmKDevlPSu-QKd4LNxXIAKzIuOKRToVkdBSu0TL2HjNZKUYF23BXhOVbBRkOLJWcLlyU4ZuyuZuyqZbsNMELqun5DgTiCxxNa44GttvfN82_8va_iLg__Hy7bc9_g0-8irC8wqZHeiUTxO3izinNN_rYfwbCdP0dg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Ecosystem+Optimizer-Based+System+Identification+and+Its+Performance+Evaluation&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Fidan%2C+%C5%9Eehmus&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=49&rft.issue=12&rft.spage=16083&rft.epage=16106&rft_id=info:doi/10.1007%2Fs13369-024-08841-w&rft.externalDocID=10_1007_s13369_024_08841_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |