Artificial Ecosystem Optimizer-Based System Identification and Its Performance Evaluation

This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identific...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 49; no. 12; pp. 16083 - 16106
Main Author Fidan, Şehmus
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
2191-4281
DOI10.1007/s13369-024-08841-w

Cover

Abstract This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identification problems. Inspired by the energy flow of natural ecosystems, AEO has undergone specific modifications leading to derived versions. Additionally, five diverse meta-heuristic algorithms are employed to assess their applicability and performance in system identification using data from an air stream heater experiment kit. A comprehensive performance comparison is made, considering time bounds, maximum generations, early stopping, and function evaluation constraints, presenting their respective performances. Among the evaluated algorithms, the AEO algorithm enhanced with the sine and cosine strategy stands out with a determined R 2 value of 0.951. This algorithm consistently outperforms others in Wilcoxon tests, showcasing its significant success. Our study affirms that meta-heuristic algorithms, particularly the proposed AEO algorithm, can be effectively applied to system identification problems, yielding successful calculations of transfer function parameters.
AbstractList This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identification problems. Inspired by the energy flow of natural ecosystems, AEO has undergone specific modifications leading to derived versions. Additionally, five diverse meta-heuristic algorithms are employed to assess their applicability and performance in system identification using data from an air stream heater experiment kit. A comprehensive performance comparison is made, considering time bounds, maximum generations, early stopping, and function evaluation constraints, presenting their respective performances. Among the evaluated algorithms, the AEO algorithm enhanced with the sine and cosine strategy stands out with a determined R 2 value of 0.951. This algorithm consistently outperforms others in Wilcoxon tests, showcasing its significant success. Our study affirms that meta-heuristic algorithms, particularly the proposed AEO algorithm, can be effectively applied to system identification problems, yielding successful calculations of transfer function parameters.
This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems based on input/output data. This work particularly proposes the application of artificial ecosystem algorithm (AEO) for solving system identification problems. Inspired by the energy flow of natural ecosystems, AEO has undergone specific modifications leading to derived versions. Additionally, five diverse meta-heuristic algorithms are employed to assess their applicability and performance in system identification using data from an air stream heater experiment kit. A comprehensive performance comparison is made, considering time bounds, maximum generations, early stopping, and function evaluation constraints, presenting their respective performances. Among the evaluated algorithms, the AEO algorithm enhanced with the sine and cosine strategy stands out with a determined R2 value of 0.951. This algorithm consistently outperforms others in Wilcoxon tests, showcasing its significant success. Our study affirms that meta-heuristic algorithms, particularly the proposed AEO algorithm, can be effectively applied to system identification problems, yielding successful calculations of transfer function parameters.
Author Fidan, Şehmus
Author_xml – sequence: 1
  givenname: Şehmus
  orcidid: 0000-0002-5249-7245
  surname: Fidan
  fullname: Fidan, Şehmus
  email: sehmus.fidan@batman.edu.tr
  organization: Vocational School of Technical Sciences, Electronic Program, Batman University
BookMark eNqNkFFLwzAUhYNMcM79AZ8KPkdzk7ZpH-eYOhgoqKBPIWkSqbRpTTrH_PXWduCb-HQv955zOHynaOIaZxA6B3IJhPCrAIylOSY0xiTLYsC7IzSlkAOOaQaTYWc4SfnLCZqHUCoSZyxPANgUvS58V9qyKGUVrYom7ENn6ui-7cq6_DIeX8tgdPQ4ntfauEEtu7JxkXQ6WnchejDeNr6WrjDR6lNW2-F9ho6trIKZH-YMPd-snpZ3eHN_u14uNrhgEHc4tiZXyhgpNbWJtJQqmsecJqlVCSjFtaYq1RkDnmkLiluaFzzNeaKAFESzGWJj7ta1cr-TVSVaX9bS7wUQ8QNIjIBED0gMgMSud12MrtY3H1sTOvHebL3riwoGQDPGOY17FR1VhW9C8Mb-L_pQKPRi92b8b_Qfrm8T8olO
Cites_doi 10.1155/2014/425853
10.1016/j.procs.2020.04.219
10.1007/s11042-022-13836-6
10.1109/ACCESS.2020.2973351
10.1002/er.5747
10.1002/2050-7038.13043
10.1080/0952813X.2022.2104388
10.1002/2050-7038.12433
10.3390/electronics11020204
10.1007/s00521-020-05496-0
10.1016/j.sysarc.2023.102871
10.1109/ACCESS.2020.3027654
10.1016/j.compstruc.2012.07.010
10.1007/s11227-022-04367-w
10.1016/j.future.2019.02.028
10.3390/sym12071146
10.1213/ANE.0b013e31827f53d7
10.1049/cp.2016.0172
10.1007/s41403-022-00334-2
10.1142/9789814261302_0041
10.1007/978-3-030-12127-3_12
10.1016/j.heliyon.2022.e09399
10.1109/GEC55014.2022.9986621
10.1515/ijeeps-2021-0104
10.1049/rpg2.12510
10.1016/j.advengsoft.2015.01.010
10.3390/su141811704
10.1007/s00521-019-04452-x
10.1109/IECON.2013.6699402
10.1007/s00500-021-06346-4
10.1016/J.AEJ.2021.07.037
10.1007/s12647-018-00300-w
10.1007/s00366-020-01120-w
10.1007/978-3-030-79357-9_15
10.1109/ICAACCA51523.2021.9465189
10.1080/13873954.2016.1232283
10.1016/B978-012526430-3/50003-9
10.1002/cpe.6639
10.1007/978-981-16-9416-5_55
10.1016/j.eswa.2022.118047
10.1016/j.asoc.2022.109478
10.59287/icras.697
10.1049/rpg2.12059
10.1007/s00521-022-07142-3
10.1177/0020720920940605
10.1007/s10845-021-01817-9
10.1016/j.enconman.2020.113385
10.1016/j.aej.2021.11.035
10.1016/j.matcom.2023.06.015
10.1016/j.psep.2020.07.044
10.2991/ijcis.2018.25905179
10.1016/j.jobe.2020.101647
10.1016/j.aej.2020.10.027
10.1016/j.ijhydene.2020.06.256
10.3390/math9192363
10.1016/j.jhydrol.2022.129034
10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L
10.21203/rs.3.rs-305087/v1
10.1109/ACCESS.2021.3066914
10.1016/j.advengsoft.2013.12.007
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s13369-024-08841-w
DatabaseName SpringerLink Journals Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 16106
ExternalDocumentID 10.1007/s13369-024-08841-w
10_1007_s13369_024_08841_w
GrantInformation_xml – fundername: Batman University
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
C6C
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-4fe9bbeeaad2f5af22b2947256fb51bb7dd2b6d83178df1b7f29c76975b10c0d3
IEDL.DBID C6C
ISSN 2193-567X
1319-8025
2191-4281
IngestDate Tue Aug 19 17:31:16 EDT 2025
Mon Jun 30 08:58:25 EDT 2025
Wed Oct 01 02:18:52 EDT 2025
Fri Feb 21 02:40:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Meta-heuristic algorithm
Air stream heater process
System identification
Artificial ecosystem algorithm
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-4fe9bbeeaad2f5af22b2947256fb51bb7dd2b6d83178df1b7f29c76975b10c0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5249-7245
OpenAccessLink https://doi.org/10.1007/s13369-024-08841-w
PQID 3112837724
PQPubID 2044268
PageCount 24
ParticipantIDs unpaywall_primary_10_1007_s13369_024_08841_w
proquest_journals_3112837724
crossref_primary_10_1007_s13369_024_08841_w
springer_journals_10_1007_s13369_024_08841_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SonmezYDumanSKahramanHTKatiMArasSGuvencUFitness-distance balance based artificial ecosystem optimisation to solve transient stability constrained optimal power flow problemJ. Exp. Theor. Artif. Intelli.202210.1080/0952813X.2022.2104388
Van ThieuNMirjaliliSMEALPY: An open-source library for latest meta-heuristic algorithms in PythonJ. Syst. Architect.202313910287110.1016/j.sysarc.2023.102871
Devi, R. R.; Sethukarasi, T.: HIWAEO: Hybrid Improved Whale Artificial Ecosystem Optimization Algorithm based Energy-Efficient Routing Protocol for Wireless Sensor Network. (2021) Doi: https://doi.org/10.21203/rs.3.rs-305087/v1
DeviRRSethukarasiTAn energy-efficient routing based on a hybrid improved whale artificial ecosystem optimization algorithm in WSNConcurren. Comput. Practice Exper.2022344e663910.1002/cpe.6639
NguyenTTNguyenTTTranTNParameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimizationNeural Comput. Appl.Comput. Appl.20223415128191284410.1007/s00521-022-07142-3
OmotosoHOAl-ShaalanAMFarhAl-Shamma’aHMHAATechno-economic evaluation of hybrid energy systems using artificial ecosystem-based optimization with demand side managementElectronics202211220410.3390/electronics11020204
DiabAAZEzzatARafaatAEDenisKAAbdelsalamHAAbdelhamidAMOptimal identification of model parameters for PVs using equilibrium, coot bird and artificial ecosystem optimisation algorithmsIET Renew. Power Gener.Gener.202216102172219010.1049/rpg2.12510
Van ThieuNBarmaSDVan LamTKisiOMaheshaAGroundwater level modeling using augmented artificial ecosystem optimizationJ. Hydrol.Hydrol.202361712903410.1016/j.jhydrol.2022.129034
GoudHSwarnkarPInvestigations on metaheuristic algorithm for designing adaptive PID controller for continuous stirred tank reactorMapan201934111311910.1007/s12647-018-00300-w
AwoudaAMamatRNew PID tuning rule using ITAE criteriaInt. J. Eng.201036597608
RavberMLiuSHMernikMČrepinšekMMaximum number of generations as a stopping criterion considered harmfulAppl. Soft Comput.Comput.202212810947810.1016/j.asoc.2022.109478
Zhang, W.; Pan, K.; Li, S.; Wang, Y.: Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math. Comput. Simul. (2023).
Fidan, Ş.; Sevim, D.; Erkan, E.: System Identification and Control of High Voltage Boost Converter, In: 2022 Global Energy Conference (GEC), Batman, Turkey, pp. 25-31. (2022)1 doi: https://doi.org/10.1109/GEC55014.2022.9986621
ValluruSKSinghMOptimization strategy of bio-inspired metaheuristic algorithms tuned PID controller for PMBDC actuated robotic manipulatorProc. Comput. Sci.20201712040204910.1016/j.procs.2020.04.219
EssaFAAbdElazizMElsheikhAHPrediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimizationProcess. Saf. Environ. Prot.Saf. Environ. Prot.202014432232910.1016/j.psep.2020.07.044
EweesAAAbualigahLYousriDSahlolATAl-qanessMAAAlshathriSElazizMAModified artificial ecosystem-based optimization for multilevel thresholding image segmentationMathematics2021919236310.3390/math9192363
MouassaSJuradoFBouktirTRajaMAZNovel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity gridNeural Comput. Appl.Comput. Appl.202133137467749010.1007/s00521-020-05496-0
ElkholyMMEl-HameedMAEl-FerganyAAArtificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validationsIET Renew. Power Gener.Gener.202115370171510.1049/rpg2.12059
Kamal Kumar, U.; Janamala, V.: Artificial Ecosystem-Based Optimization for Optimal Location and Sizing of Solar Photovoltaic Distribution Generation in Agriculture Feeders. pp. 743–757. (2022) doi: https://doi.org/10.1007/978-981-16-9416-5_55
NiuYYanXWangYNiuYDynamic opposite learning enhanced artificial ecosystem optimizer for IIR system identificationJ. Supercomput.Supercomput.20227811130401308510.1007/s11227-022-04367-w
Kang, S.; Jin, R.; Deng, X.; Kenett, R. S:. Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective. J. Intell. Manuf., 1–14. (2021).
Zadeh, L. A.: The role of fuzzy logic in modeling, identification and control. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh. pp. 783–795. (1996).
Mirjalili, S. M.; Mirjalili, S. Z.; Saremi, S.; Mirjalili, S.: Sine cosine algorithm: theory, literature review, and application in designing bend photonic crystal waveguides. Nature-inspired optimizers, 201–217. (2020)
Rizk-AllahRMEl-FerganyAAArtificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells modelInt. J. Hydrogen Energy20214675376123762710.1016/j.ijhydene.2020.06.256
BaždarićRMatkoDLebanAVončinaDŠkrjancIFuzzy model predictive control of a DC-DC boost converter based on non-linear model identificationMath. Comput. Model. Dyn. Syst.Comput. Model. Dyn. Syst.2017232116134360445610.1080/13873954.2016.1232283
Barto, A. G.: Reinforcement learning. In Neural systems for control. pp. 7–30. Academic Press. (1997)
VillaseñorCArana-DanielNAlanisAYLópez-FrancoCHernandez-VargasEAGerminal center optimization algorithmInt. J. Comput. Intell. Syst.2018121132710.2991/ijcis.2018.25905179
Al DuhayyimMMohamedHGAljebreenMNourMKMohamedAAbdelmageedAAYaseenIMohammedGPArtificial ecosystem-based optimization with an improved deep learning model for IoT-assisted sustainable waste managementSustainability202214181170410.3390/su141811704
Zaloğlu, M.; Şehmus F.; Erkan, E.: Meta Heuristik Optimizasyon Algoritmalarının Sistem Tanımlama Problemine Uygulanması ve Performans Karşılaştırması. In: International Conference on Engineering, Natural and Social Sciences, vol. 1, pp. 510- 515. (2023).
Ćalasan, M.; Micev, M.; Djurovic, Ž.; Mageed, H. M. A.: Artificial ecosystem-based optimization for optimal tuning of robust PID controllers in AVR systems with constrained value of excitation voltage. Int. J. Elect. Eng. Edu., 0020720920940605. (2020)
IzciDHekimoğluBEkinciSA new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller design of buck converterAlex. Eng. J.20226132030204410.1016/J.AEJ.2021.07.037
Yang, X. S.; Chien, S. F.; Ting, T. O.: Computational intelligence and metaheuristic algorithms with applications. Sci. World J. (2014).
Niu, Y.; Yan, X.; Wang, Y.: An adaptive neighborhood-based search enhanced artificial ecosystem optimizer for UCAV path planning. (2022) doi: https://doi.org/10.1016/j.eswa.2022.118047
BoothSKnoxWBShahJNiekumSStonePAllieviAThe perils of trial-and-error reward design: misdesign through overfitting and invalid task specificationsProce. AAAI Conf. Artif. Intell.202337559205929
Guvenc, U.; Bakir, H.; Duman, S.: Optimal Coordination of Directional Overcurrent Relays Using Artificial Ecosystem-Based Optimization. pp. 150–164. (2021) doi: https://doi.org/10.1007/978-3-030-79357-9_15
Fidan, Ş.; Erkan, E.: Boost Konvertörün Black-Box Sistem Tanımlama Yöntemi ile Transfer Fonksiyonunun Elde Edilmesi ve Parçacık Sürü Algoritması Tabanlı PI Kontrolör Tasarımı. In: International Conference on Recent Academic Studies Vol. 1, No. 1, pp. 210–217. (2023)
CelikelRGundogduASystem identification-based MPPT algorithm for PV systems under variable atmosphere conditions using current sensorless approachInt. Trans. Elect. Energy Syst.202010.1002/2050-7038.12433
Manganiello, P.; Ricco, M.; Monmasson, E.; Petrone, G.; Spagnuolo, G.: On-line optimization of the P&O MPPT method by means of the system identification, In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 1786–1791, (2013). doi: https://doi.org/10.1109/IECON.2013.6699402.
MenesyASSultanHMKorashyABanakhrFAAshmawyMGKamelSEffective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithmIEEE Access20208318923190910.1109/ACCESS.2020.2973351
Ruisheng, L.; Armstrong, M.; Gadoue, S.; Wang, C.: On-line parameter estimation of non-minimum phase switch mode power DC-DC boost converters, In: IET Conference Proceedings, 2016, pp. 6-6. doi: https://doi.org/10.1049/cp.2016.0172 IET Digital Library.
MouassaSTostado-VélizMJuradoFEfficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemesInt. J. Emerg. Electr. Power Syst.Emerg. Electr. Power Syst.202122664366010.1515/ijeeps-2021-0104
Abdelhamid, M.; Kamel, S.; Mohamed, M. A.; Rahmann, C.: An Effective Approach for Optimal Coordination of Directional Overcurrent Relays Based on Artificial Ecosystem Optimizer. In: 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6. (2021). doi: https://doi.org/10.1109/ICAACCA51523.2021.9465189
UlusoySNigdeliSMBekdaşGNovel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustnessJ. Build. Eng.20213310164710.1016/j.jobe.2020.101647
MirjaliliSThe ant lion optimizerAdv. Eng. Softw.Softw.201583809810.1016/j.advengsoft.2015.01.010
Joseph, S. B.; Dada, E. G.; Abidemi, A.; Oyewola, D. O.; Khammas, B. M.: Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon. (2022)
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.Softw.201469466110.1016/j.advengsoft.2013.12.007
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFutur. Gener. Comput. Syst.. Gener. Comput. Syst.20199784987210.1016/j.future.2019.02.028
SahlolATAbdElazizMTariq JamalADamaševičiusRFarouk HassanOA novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network featuresSymmetry2020127114610.3390/sym12071146
EskandarHSadollahABahre
8841_CR27
C Villaseñor (8841_CR59) 2018; 12
AA Ewees (8841_CR37) 2021; 9
H Goud (8841_CR55) 2019; 34
G Divine (8841_CR63) 2013; 117
HM Sultan (8841_CR25) 2021; 60
D Yousri (8841_CR33) 2020; 225
M Ravber (8841_CR47) 2022; 128
RM Rizk-Allah (8841_CR42) 2021; 46
8841_CR20
W Zhao (8841_CR9) 2020; 32
S Mirjalili (8841_CR60) 2014; 69
RR Devi (8841_CR14) 2022; 34
R Baždarić (8841_CR3) 2017; 23
8841_CR17
8841_CR13
D Izci (8841_CR16) 2022; 61
8841_CR54
MH Hassan (8841_CR10) 2021; 9
S Mirjalili (8841_CR62) 2015; 83
8841_CR18
8841_CR19
N Van Thieu (8841_CR44) 2023; 617
S Booth (8841_CR52) 2023; 37
S Mouassa (8841_CR22) 2021; 22
MM Elkholy (8841_CR29) 2021; 15
R Celikel (8841_CR5) 2020
8841_CR53
N Van Thieu (8841_CR45) 2023; 139
8841_CR50
TT Nguyen (8841_CR15) 2021; 25
A Shaheen (8841_CR21) 2022; 61
AAZ Diab (8841_CR30) 2022; 16
8841_CR49
8841_CR48
HO Omotoso (8841_CR11) 2022; 11
Y Sonmez (8841_CR43) 2022
S Mouassa (8841_CR28) 2021; 33
AT Sahlol (8841_CR36) 2020; 12
S Ulusoy (8841_CR57) 2021; 33
M Al Duhayyim (8841_CR38) 2022; 14
S Barshandeh (8841_CR35) 2022; 38
SK Valluru (8841_CR56) 2020; 171
D Yousri (8841_CR34) 2020; 44
JE Dayhoff (8841_CR51) 2001; 91
8841_CR2
B Mahdad (8841_CR12) 2022; 7
8841_CR41
8841_CR1
8841_CR4
8841_CR6
8841_CR8
8841_CR7
TT Nguyen (8841_CR32) 2022; 34
A Eid (8841_CR26) 2020; 8
MA El-Dabah (8841_CR31) 2021
A Awouda (8841_CR46) 2010; 3
AA Heidari (8841_CR61) 2019; 97
FA Essa (8841_CR40) 2020; 144
Y Niu (8841_CR23) 2022; 78
AS Menesy (8841_CR24) 2020; 8
F Hosseini (8841_CR39) 2022
H Eskandar (8841_CR58) 2012; 110
References_xml – reference: ValluruSKSinghMOptimization strategy of bio-inspired metaheuristic algorithms tuned PID controller for PMBDC actuated robotic manipulatorProc. Comput. Sci.20201712040204910.1016/j.procs.2020.04.219
– reference: DeviRRSethukarasiTAn energy-efficient routing based on a hybrid improved whale artificial ecosystem optimization algorithm in WSNConcurren. Comput. Practice Exper.2022344e663910.1002/cpe.6639
– reference: MenesyASSultanHMKorashyABanakhrFAAshmawyMGKamelSEffective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithmIEEE Access20208318923190910.1109/ACCESS.2020.2973351
– reference: Van ThieuNMirjaliliSMEALPY: An open-source library for latest meta-heuristic algorithms in PythonJ. Syst. Architect.202313910287110.1016/j.sysarc.2023.102871
– reference: UlusoySNigdeliSMBekdaşGNovel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustnessJ. Build. Eng.20213310164710.1016/j.jobe.2020.101647
– reference: DayhoffJEDeLeoJMArtificial neural networks: opening the black boxCancer: Interdiscip. Inte. J. Am. Cancer Soci.200191S81615163510.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L
– reference: HosseiniFGharehchopoghFSMasdariMMOAEOSCA: an enhanced multi-objective hybrid artificial ecosystem-based optimization with sine cosine algorithm for feature selection in botnet detection in IoTMultimed. Tools Appl.202210.1007/s11042-022-13836-6
– reference: Fidan, Ş.; Erkan, E.: Boost Konvertörün Black-Box Sistem Tanımlama Yöntemi ile Transfer Fonksiyonunun Elde Edilmesi ve Parçacık Sürü Algoritması Tabanlı PI Kontrolör Tasarımı. In: International Conference on Recent Academic Studies Vol. 1, No. 1, pp. 210–217. (2023)
– reference: YousriDRezkHFathyAIdentifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approachInt. J. Energy Res.20204414113021132210.1002/er.5747
– reference: RavberMLiuSHMernikMČrepinšekMMaximum number of generations as a stopping criterion considered harmfulAppl. Soft Comput.Comput.202212810947810.1016/j.asoc.2022.109478
– reference: Kamal Kumar, U.; Janamala, V.: Artificial Ecosystem-Based Optimization for Optimal Location and Sizing of Solar Photovoltaic Distribution Generation in Agriculture Feeders. pp. 743–757. (2022) doi: https://doi.org/10.1007/978-981-16-9416-5_55
– reference: Yang, X. S.; Chien, S. F.; Ting, T. O.: Computational intelligence and metaheuristic algorithms with applications. Sci. World J. (2014).
– reference: Kang, S.; Jin, R.; Deng, X.; Kenett, R. S:. Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective. J. Intell. Manuf., 1–14. (2021).
– reference: MirjaliliSThe ant lion optimizerAdv. Eng. Softw.Softw.201583809810.1016/j.advengsoft.2015.01.010
– reference: Ćalasan, M.; Micev, M.; Djurovic, Ž.; Mageed, H. M. A.: Artificial ecosystem-based optimization for optimal tuning of robust PID controllers in AVR systems with constrained value of excitation voltage. Int. J. Elect. Eng. Edu., 0020720920940605. (2020)
– reference: Abdelhamid, M.; Kamel, S.; Mohamed, M. A.; Rahmann, C.: An Effective Approach for Optimal Coordination of Directional Overcurrent Relays Based on Artificial Ecosystem Optimizer. In: 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6. (2021). doi: https://doi.org/10.1109/ICAACCA51523.2021.9465189
– reference: AwoudaAMamatRNew PID tuning rule using ITAE criteriaInt. J. Eng.201036597608
– reference: IzciDHekimoğluBEkinciSA new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller design of buck converterAlex. Eng. J.20226132030204410.1016/J.AEJ.2021.07.037
– reference: EidAKamelSKorashyAKhurshaidTAn enhanced artificial ecosystem-based optimization for optimal allocation of multiple distributed generationsIEEE Access2020817849317851310.1109/ACCESS.2020.3027654
– reference: Mirjalili, S. M.; Mirjalili, S. Z.; Saremi, S.; Mirjalili, S.: Sine cosine algorithm: theory, literature review, and application in designing bend photonic crystal waveguides. Nature-inspired optimizers, 201–217. (2020)
– reference: MouassaSJuradoFBouktirTRajaMAZNovel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity gridNeural Comput. Appl.Comput. Appl.202133137467749010.1007/s00521-020-05496-0
– reference: YousriDBabuTSMirjaliliSRajasekarNElazizMAA novel objective function with artificial ecosystem-based optimization for relieving the mismatching power loss of large-scale photovoltaic arrayEnergy Convers. Manage.202022511338510.1016/j.enconman.2020.113385
– reference: Joseph, S. B.; Dada, E. G.; Abidemi, A.; Oyewola, D. O.; Khammas, B. M.: Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon. (2022)
– reference: Manganiello, P.; Ricco, M.; Monmasson, E.; Petrone, G.; Spagnuolo, G.: On-line optimization of the P&O MPPT method by means of the system identification, In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 1786–1791, (2013). doi: https://doi.org/10.1109/IECON.2013.6699402.
– reference: SahlolATAbdElazizMTariq JamalADamaševičiusRFarouk HassanOA novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network featuresSymmetry2020127114610.3390/sym12071146
– reference: Niu, Y.; Yan, X.; Wang, Y.: An adaptive neighborhood-based search enhanced artificial ecosystem optimizer for UCAV path planning. (2022) doi: https://doi.org/10.1016/j.eswa.2022.118047
– reference: El-DabahMAEl-SehiemyRABecherifMEbrahimMAParameter estimation of triple diode photovoltaic model using an artificial ecosystem-based optimizerInt. Trans. Elect. Energy Syst.202110.1002/2050-7038.13043
– reference: ShaheenAElsayedAGinidiAEl-SehiemyRElattarEReconfiguration of electrical distribution network-based DG and capacitors allocations using artificial ecosystem optimizer: Practical case studyAlex. Eng. J.20226186105611810.1016/j.aej.2021.11.035
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFutur. Gener. Comput. Syst.. Gener. Comput. Syst.20199784987210.1016/j.future.2019.02.028
– reference: Guvenc, U.; Bakir, H.; Duman, S.: Optimal Coordination of Directional Overcurrent Relays Using Artificial Ecosystem-Based Optimization. pp. 150–164. (2021) doi: https://doi.org/10.1007/978-3-030-79357-9_15
– reference: Zaloğlu, M.; Şehmus F.; Erkan, E.: Meta Heuristik Optimizasyon Algoritmalarının Sistem Tanımlama Problemine Uygulanması ve Performans Karşılaştırması. In: International Conference on Engineering, Natural and Social Sciences, vol. 1, pp. 510- 515. (2023).
– reference: NiuYYanXWangYNiuYDynamic opposite learning enhanced artificial ecosystem optimizer for IIR system identificationJ. Supercomput.Supercomput.20227811130401308510.1007/s11227-022-04367-w
– reference: Zhang, W.; Pan, K.; Li, S.; Wang, Y.: Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math. Comput. Simul. (2023).
– reference: Al DuhayyimMMohamedHGAljebreenMNourMKMohamedAAbdelmageedAAYaseenIMohammedGPArtificial ecosystem-based optimization with an improved deep learning model for IoT-assisted sustainable waste managementSustainability202214181170410.3390/su141811704
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.Softw.201469466110.1016/j.advengsoft.2013.12.007
– reference: DivineGNortonHJHuntRDienemannJA review of analysis and sample size calculation considerations for Wilcoxon testsAnesth. Analg.2013117369971010.1213/ANE.0b013e31827f53d7
– reference: Devi, R. R.; Sethukarasi, T.: HIWAEO: Hybrid Improved Whale Artificial Ecosystem Optimization Algorithm based Energy-Efficient Routing Protocol for Wireless Sensor Network. (2021) Doi: https://doi.org/10.21203/rs.3.rs-305087/v1
– reference: NguyenTTA novel metaheuristic method based on artificial ecosystem-based optimization for optimization of network reconfiguration to reduce power lossSoft. Comput.Comput.20212523147291474010.1007/s00500-021-06346-4
– reference: MahdadBAdaptive split artificial ecosystem-based optimization to solving non-smooth economic dispatchTransactions of the Indian National Academy of Engineering20227387389510.1007/s41403-022-00334-2
– reference: CelikelRGundogduASystem identification-based MPPT algorithm for PV systems under variable atmosphere conditions using current sensorless approachInt. Trans. Elect. Energy Syst.202010.1002/2050-7038.12433
– reference: Van ThieuNBarmaSDVan LamTKisiOMaheshaAGroundwater level modeling using augmented artificial ecosystem optimizationJ. Hydrol.Hydrol.202361712903410.1016/j.jhydrol.2022.129034
– reference: EssaFAAbdElazizMElsheikhAHPrediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimizationProcess. Saf. Environ. Prot.Saf. Environ. Prot.202014432232910.1016/j.psep.2020.07.044
– reference: BaždarićRMatkoDLebanAVončinaDŠkrjancIFuzzy model predictive control of a DC-DC boost converter based on non-linear model identificationMath. Comput. Model. Dyn. Syst.Comput. Model. Dyn. Syst.2017232116134360445610.1080/13873954.2016.1232283
– reference: Rizk-AllahRMEl-FerganyAAArtificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells modelInt. J. Hydrogen Energy20214675376123762710.1016/j.ijhydene.2020.06.256
– reference: OmotosoHOAl-ShaalanAMFarhAl-Shamma’aHMHAATechno-economic evaluation of hybrid energy systems using artificial ecosystem-based optimization with demand side managementElectronics202211220410.3390/electronics11020204
– reference: Barto, A. G.: Reinforcement learning. In Neural systems for control. pp. 7–30. Academic Press. (1997)
– reference: SultanHMMenesyASKamelSKorashyAAlmohaimeedSAAbdel-AkherMAn improved artificial ecosystem optimization algorithm for optimal configuration of a hybrid PV/WT/FC energy systemAlex. Eng. J.20216011001102510.1016/j.aej.2020.10.027
– reference: ElkholyMMEl-HameedMAEl-FerganyAAArtificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validationsIET Renew. Power Gener.Gener.202115370171510.1049/rpg2.12059
– reference: Ruisheng, L.; Armstrong, M.; Gadoue, S.; Wang, C.: On-line parameter estimation of non-minimum phase switch mode power DC-DC boost converters, In: IET Conference Proceedings, 2016, pp. 6-6. doi: https://doi.org/10.1049/cp.2016.0172 IET Digital Library.
– reference: SonmezYDumanSKahramanHTKatiMArasSGuvencUFitness-distance balance based artificial ecosystem optimisation to solve transient stability constrained optimal power flow problemJ. Exp. Theor. Artif. Intelli.202210.1080/0952813X.2022.2104388
– reference: Fidan, Ş.; Sevim, D.; Erkan, E.: System Identification and Control of High Voltage Boost Converter, In: 2022 Global Energy Conference (GEC), Batman, Turkey, pp. 25-31. (2022)1 doi: https://doi.org/10.1109/GEC55014.2022.9986621
– reference: MouassaSTostado-VélizMJuradoFEfficient power scheduling in smart homes using a novel artificial ecosystem optimization technique considering two pricing schemesInt. J. Emerg. Electr. Power Syst.Emerg. Electr. Power Syst.202122664366010.1515/ijeeps-2021-0104
– reference: EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problemsComput. Struct.. Struct.201211015116610.1016/j.compstruc.2012.07.010
– reference: DiabAAZEzzatARafaatAEDenisKAAbdelsalamHAAbdelhamidAMOptimal identification of model parameters for PVs using equilibrium, coot bird and artificial ecosystem optimisation algorithmsIET Renew. Power Gener.Gener.202216102172219010.1049/rpg2.12510
– reference: VillaseñorCArana-DanielNAlanisAYLópez-FrancoCHernandez-VargasEAGerminal center optimization algorithmInt. J. Comput. Intell. Syst.2018121132710.2991/ijcis.2018.25905179
– reference: Zadeh, L. A.: The role of fuzzy logic in modeling, identification and control. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh. pp. 783–795. (1996).
– reference: NguyenTTNguyenTTTranTNParameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimizationNeural Comput. Appl.Comput. Appl.20223415128191284410.1007/s00521-022-07142-3
– reference: HassanMHKamelSSalihSQKhurshaidTEbeedMDeveloping chaotic artificial ecosystem-based optimization algorithm for combined economic emission dispatchIEEE Access20219511465116510.1109/ACCESS.2021.3066914
– reference: ZhaoWWangLZhangZArtificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithmNeural Comput. Appl.Comput. Appl.202032139383942510.1007/s00521-019-04452-x
– reference: BoothSKnoxWBShahJNiekumSStonePAllieviAThe perils of trial-and-error reward design: misdesign through overfitting and invalid task specificationsProce. AAAI Conf. Artif. Intell.202337559205929
– reference: EweesAAAbualigahLYousriDSahlolATAl-qanessMAAAlshathriSElazizMAModified artificial ecosystem-based optimization for multilevel thresholding image segmentationMathematics2021919236310.3390/math9192363
– reference: GoudHSwarnkarPInvestigations on metaheuristic algorithm for designing adaptive PID controller for continuous stirred tank reactorMapan201934111311910.1007/s12647-018-00300-w
– reference: BarshandehSPiriFSanganiSRHMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problemsEng. Comput.Comput.20223821581162510.1007/s00366-020-01120-w
– ident: 8841_CR49
  doi: 10.1155/2014/425853
– volume: 171
  start-page: 2040
  year: 2020
  ident: 8841_CR56
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.04.219
– year: 2022
  ident: 8841_CR39
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13836-6
– volume: 8
  start-page: 31892
  year: 2020
  ident: 8841_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973351
– volume: 44
  start-page: 11302
  issue: 14
  year: 2020
  ident: 8841_CR34
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5747
– year: 2021
  ident: 8841_CR31
  publication-title: Int. Trans. Elect. Energy Syst.
  doi: 10.1002/2050-7038.13043
– year: 2022
  ident: 8841_CR43
  publication-title: J. Exp. Theor. Artif. Intelli.
  doi: 10.1080/0952813X.2022.2104388
– year: 2020
  ident: 8841_CR5
  publication-title: Int. Trans. Elect. Energy Syst.
  doi: 10.1002/2050-7038.12433
– volume: 11
  start-page: 204
  issue: 2
  year: 2022
  ident: 8841_CR11
  publication-title: Electronics
  doi: 10.3390/electronics11020204
– volume: 33
  start-page: 7467
  issue: 13
  year: 2021
  ident: 8841_CR28
  publication-title: Neural Comput. Appl.Comput. Appl.
  doi: 10.1007/s00521-020-05496-0
– volume: 139
  start-page: 102871
  year: 2023
  ident: 8841_CR45
  publication-title: J. Syst. Architect.
  doi: 10.1016/j.sysarc.2023.102871
– volume: 8
  start-page: 178493
  year: 2020
  ident: 8841_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027654
– volume: 110
  start-page: 151
  year: 2012
  ident: 8841_CR58
  publication-title: Comput. Struct.. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 78
  start-page: 13040
  issue: 11
  year: 2022
  ident: 8841_CR23
  publication-title: J. Supercomput.Supercomput.
  doi: 10.1007/s11227-022-04367-w
– volume: 97
  start-page: 849
  year: 2019
  ident: 8841_CR61
  publication-title: Futur. Gener. Comput. Syst.. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 12
  start-page: 1146
  issue: 7
  year: 2020
  ident: 8841_CR36
  publication-title: Symmetry
  doi: 10.3390/sym12071146
– volume: 117
  start-page: 699
  issue: 3
  year: 2013
  ident: 8841_CR63
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0b013e31827f53d7
– ident: 8841_CR4
  doi: 10.1049/cp.2016.0172
– volume: 7
  start-page: 873
  issue: 3
  year: 2022
  ident: 8841_CR12
  publication-title: Transactions of the Indian National Academy of Engineering
  doi: 10.1007/s41403-022-00334-2
– ident: 8841_CR1
  doi: 10.1142/9789814261302_0041
– ident: 8841_CR27
  doi: 10.1007/978-3-030-12127-3_12
– ident: 8841_CR54
  doi: 10.1016/j.heliyon.2022.e09399
– ident: 8841_CR8
  doi: 10.1109/GEC55014.2022.9986621
– volume: 22
  start-page: 643
  issue: 6
  year: 2021
  ident: 8841_CR22
  publication-title: Int. J. Emerg. Electr. Power Syst.Emerg. Electr. Power Syst.
  doi: 10.1515/ijeeps-2021-0104
– volume: 16
  start-page: 2172
  issue: 10
  year: 2022
  ident: 8841_CR30
  publication-title: IET Renew. Power Gener.Gener.
  doi: 10.1049/rpg2.12510
– volume: 83
  start-page: 80
  year: 2015
  ident: 8841_CR62
  publication-title: Adv. Eng. Softw.Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 14
  start-page: 11704
  issue: 18
  year: 2022
  ident: 8841_CR38
  publication-title: Sustainability
  doi: 10.3390/su141811704
– volume: 32
  start-page: 9383
  issue: 13
  year: 2020
  ident: 8841_CR9
  publication-title: Neural Comput. Appl.Comput. Appl.
  doi: 10.1007/s00521-019-04452-x
– ident: 8841_CR2
  doi: 10.1109/IECON.2013.6699402
– volume: 25
  start-page: 14729
  issue: 23
  year: 2021
  ident: 8841_CR15
  publication-title: Soft. Comput.Comput.
  doi: 10.1007/s00500-021-06346-4
– volume: 61
  start-page: 2030
  issue: 3
  year: 2022
  ident: 8841_CR16
  publication-title: Alex. Eng. J.
  doi: 10.1016/J.AEJ.2021.07.037
– volume: 34
  start-page: 113
  issue: 1
  year: 2019
  ident: 8841_CR55
  publication-title: Mapan
  doi: 10.1007/s12647-018-00300-w
– volume: 38
  start-page: 1581
  issue: 2
  year: 2022
  ident: 8841_CR35
  publication-title: Eng. Comput.Comput.
  doi: 10.1007/s00366-020-01120-w
– ident: 8841_CR19
  doi: 10.1007/978-3-030-79357-9_15
– ident: 8841_CR20
  doi: 10.1109/ICAACCA51523.2021.9465189
– volume: 23
  start-page: 116
  issue: 2
  year: 2017
  ident: 8841_CR3
  publication-title: Math. Comput. Model. Dyn. Syst.Comput. Model. Dyn. Syst.
  doi: 10.1080/13873954.2016.1232283
– ident: 8841_CR53
  doi: 10.1016/B978-012526430-3/50003-9
– volume: 34
  start-page: e6639
  issue: 4
  year: 2022
  ident: 8841_CR14
  publication-title: Concurren. Comput. Practice Exper.
  doi: 10.1002/cpe.6639
– ident: 8841_CR18
  doi: 10.1007/978-981-16-9416-5_55
– ident: 8841_CR41
  doi: 10.1016/j.eswa.2022.118047
– volume: 128
  start-page: 109478
  year: 2022
  ident: 8841_CR47
  publication-title: Appl. Soft Comput.Comput.
  doi: 10.1016/j.asoc.2022.109478
– ident: 8841_CR7
  doi: 10.59287/icras.697
– volume: 37
  start-page: 5920
  issue: 5
  year: 2023
  ident: 8841_CR52
  publication-title: Proce. AAAI Conf. Artif. Intell.
– volume: 15
  start-page: 701
  issue: 3
  year: 2021
  ident: 8841_CR29
  publication-title: IET Renew. Power Gener.Gener.
  doi: 10.1049/rpg2.12059
– volume: 34
  start-page: 12819
  issue: 15
  year: 2022
  ident: 8841_CR32
  publication-title: Neural Comput. Appl.Comput. Appl.
  doi: 10.1007/s00521-022-07142-3
– ident: 8841_CR17
  doi: 10.1177/0020720920940605
– ident: 8841_CR50
  doi: 10.1007/s10845-021-01817-9
– volume: 225
  start-page: 113385
  year: 2020
  ident: 8841_CR33
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113385
– volume: 61
  start-page: 6105
  issue: 8
  year: 2022
  ident: 8841_CR21
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.11.035
– volume: 3
  start-page: 597
  issue: 6
  year: 2010
  ident: 8841_CR46
  publication-title: Int. J. Eng.
– ident: 8841_CR48
  doi: 10.1016/j.matcom.2023.06.015
– volume: 144
  start-page: 322
  year: 2020
  ident: 8841_CR40
  publication-title: Process. Saf. Environ. Prot.Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.07.044
– volume: 12
  start-page: 13
  issue: 1
  year: 2018
  ident: 8841_CR59
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.2018.25905179
– volume: 33
  start-page: 101647
  year: 2021
  ident: 8841_CR57
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101647
– volume: 60
  start-page: 1001
  issue: 1
  year: 2021
  ident: 8841_CR25
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.10.027
– volume: 46
  start-page: 37612
  issue: 75
  year: 2021
  ident: 8841_CR42
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.256
– volume: 9
  start-page: 2363
  issue: 19
  year: 2021
  ident: 8841_CR37
  publication-title: Mathematics
  doi: 10.3390/math9192363
– volume: 617
  start-page: 129034
  year: 2023
  ident: 8841_CR44
  publication-title: J. Hydrol.Hydrol.
  doi: 10.1016/j.jhydrol.2022.129034
– ident: 8841_CR6
– volume: 91
  start-page: 1615
  issue: S8
  year: 2001
  ident: 8841_CR51
  publication-title: Cancer: Interdiscip. Inte. J. Am. Cancer Soci.
  doi: 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L
– ident: 8841_CR13
  doi: 10.21203/rs.3.rs-305087/v1
– volume: 9
  start-page: 51146
  year: 2021
  ident: 8841_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3066914
– volume: 69
  start-page: 46
  year: 2014
  ident: 8841_CR60
  publication-title: Adv. Eng. Softw.Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.3318672
Snippet This study delves into the realm of system identification, a crucial sub-field in control engineering, aimed at constructing mathematical models of systems...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16083
SubjectTerms Algorithms
Energy flow
Engineering
Heuristic methods
Humanities and Social Sciences
multidisciplinary
Parameter identification
Performance evaluation
Research Article-Electrical Engineering
Science
System identification
Transfer functions
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB74EO0KhQqH3oDL2s7sZMjH4sAqZQDKy2nyI5tCQFhxWa1Yn99J-tkQytUFXFL5Ggiz9iZ53jeM8CPJBe-h7ia5pidcIESe2q84lSLyMikEghRFTn556U8G0QXw3i4BCcNF2Ze7d5sSQZOQ6XSVJQHI-sPWuKbEDKlmF8ozpKI0WkXmz_AsowRkXdgeXB5dXhTnSuHyxGKCJuFa0FjqYY1d-Z1Q3_mpxZ0LvZJP8HKpBjp56m-v3-Rik7XwDWdCBUod91Jabr57C99x_f2ch1Wa6xKDsPg2oAlV2zCTXUbZCdIP38MStDkF355Hm5n7okeYVq0JAihk0AD9vV_QaILS87LMblq2Qqkv5Ab_wyD0_718Rmtz2eguWBRSSPvUmOc09pyH2vPueEYWwRR3sTMGGUtN9ImCFES65lRnqe5kqmKDevlPSu-QKd4LNxXIAKzIuOKRToVkdBSu0TL2HjNZKUYF23BXhOVbBRkOLJWcLlyU4ZuyuZuyqZbsNMELqun5DgTiCxxNa44GttvfN82_8va_iLg__Hy7bc9_g0-8irC8wqZHeiUTxO3izinNN_rYfwbCdP0dg
  priority: 102
  providerName: Unpaywall
Title Artificial Ecosystem Optimizer-Based System Identification and Its Performance Evaluation
URI https://link.springer.com/article/10.1007/s13369-024-08841-w
https://www.proquest.com/docview/3112837724
https://link.springer.com/content/pdf/10.1007/s13369-024-08841-w.pdf
UnpaywallVersion publishedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2191-4281
  databaseCode: AFBBN
  dateStart: 20110101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 2193-567X
  databaseCode: U2A
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAGB20PWgP4oprmYM3HewsmUmOrbQuYPVgIT2FmSQDQo1iU4r-er9sTRURveSQgS_w5pu8N8v3BqFTN-S2A7qahMBOMEFxLDFWMaK5MNLNDEJUVpx8N5TXI3HrO35pk5PVwnzbv7-YwhxKegSYhMB4EJTMV1ETSErmG7PyssodAUQP2oHX6yuge1h-gSyMSU4cqfyyZubnsF95qRabi_3RFlqbJa_6fa4nkyUKGmyijVI74m7R2VtoJU62UWvJUXAHjbPGwhQC98OXwqcZ38N_4fnpI34jPSCtCBc25bgo0rXlqh3WSYRv0il-qGsJcH9hBr6LRoP-4-U1KW9PICGnIiXCxp4xcax1xKyjLWOGAfIgcaxxqDEqipiRkQsCwo0sNcoyL1TSU46hnbAT8T3USF6SeB9hDpxFmaJCe1xwLXXsaukYq6nM_NzEATqrsAteC5OMoLZDzpAOAOkgRzqYH6DjCt6gHDDTgIPug7myYhDsvIK8bv4t2vmiW_7w8cP_RT9C6yxLkvz8yjFqpG-z-ARUSGraqNkd9HrDdp6G8LzyKbwbDR-6409gzNR3
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsABsYqy-sCNWtRL7OQIVasWaOFApXKK7CSWkEqo2lQVfD2TrQGEEJwtTaRnj98bO_OM0LkbcNsAXU0CYCcoUBxLjFWMaC6MdFODEJU2J_f6sjMQN0NnWNjkpL0w3-7vL6dQQ0mPAJMQyAdByXwZrQrqumkSNmWzXDsCiB60A6_OV0D3sOwBWchJThyphkXPzM9hv_JSJTYX96MbaG0Wj_XbXI9GnyiovYU2C-2Ir_LJ3kZLUbyDNj45Cu6ip3QwN4XAreA192nG97AvvDy_RxNyDaQV4tymHOdNurY4tcM6DnE3meKHqpcAtxZm4Hto0G49NjukeD2BBJyKhAgbecZEkdYhs462jBkGyIPEscahxqgwZEaGLggIN7TUKMu8QElPOYY2gkbI99FK_BpHBwhz4CzKFBXa44JrqSNXS8dYTWXq5yZq6KLEzh_nJhl-ZYecIu0D0n6GtD-voeMSXr9ImKnPQfdBrawYBKuXkFfDv0WrL6blDx8__F_0M7TWeezd-Xfd_u0RWmfpgsn-ZTlGK8lkFp2AIknMabYUPwBAs9NJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aweUgrlitmoM3DTbLJDNHrS3uelCopyGZTECoY7EjRX-9b7ZOBRE9B97Ay8t8X5bvewgd-BF3beDVJAJ0gg2K54hxihHNhZF-ZhCiMnHyza08fxSXfa8_peLPX7tXV5KFpiFzaUrS46F1x7XwjXMZEMAXAqtEUDKeRXMC0C3rYdCRnaqiBMA_MApen7oAG2J5W1lYqZx4UvVLJc3PYb-jVU1BJ7emS2jhPRnqj7EeDKaAqbeClktGiU-KElhFM3GyhpamfAbX0VM2WFhF4G70Wrg34zv4W7w8f8Zv5BSgzOLCvBwX0l1XnuVhnVh8kY7wfa0wwN2JRfgGeux1HzrnpOypQCJORUqEiwNj4lhry5ynHWOGwXwA8XHGo8Yoa5mR1gda4VtHjXIsiJQMlGdoO2pbvokayWsSbyHMAckoU1TogAuupY59LT3jNJWZy5toosMqd-GwsM4Ia5PkLNMhZDrMMx2Om6hVpTcsl9Eo5MAGYQetGAQ7qlJeD_8W7WgyLX_4-Pb_ou-j-fuzXnh9cXu1gxZZVi_5A5cWaqRv7_Eu0JTU7OWV-AWjx9uQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB74EO0KhQqH3oDL2s7sZMjH4sAqZQDKy2nyI5tCQFhxWa1Yn99J-tkQytUFXFL5Ggiz9iZ53jeM8CPJBe-h7ia5pidcIESe2q84lSLyMikEghRFTn556U8G0QXw3i4BCcNF2Ze7d5sSQZOQ6XSVJQHI-sPWuKbEDKlmF8ozpKI0WkXmz_AsowRkXdgeXB5dXhTnSuHyxGKCJuFa0FjqYY1d-Z1Q3_mpxZ0LvZJP8HKpBjp56m-v3-Rik7XwDWdCBUod91Jabr57C99x_f2ch1Wa6xKDsPg2oAlV2zCTXUbZCdIP38MStDkF355Hm5n7okeYVq0JAihk0AD9vV_QaILS87LMblq2Qqkv5Ab_wyD0_718Rmtz2eguWBRSSPvUmOc09pyH2vPueEYWwRR3sTMGGUtN9ImCFES65lRnqe5kqmKDevlPSu-QKd4LNxXIAKzIuOKRToVkdBSu0TL2HjNZKUYF23BXhOVbBRkOLJWcLlyU4ZuyuZuyqZbsNMELqun5DgTiCxxNa44GttvfN82_8va_iLg__Hy7bc9_g0-8irC8wqZHeiUTxO3izinNN_rYfwbCdP0dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Ecosystem+Optimizer-Based+System+Identification+and+Its+Performance+Evaluation&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Fidan%2C+%C5%9Eehmus&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=49&rft.issue=12&rft.spage=16083&rft.epage=16106&rft_id=info:doi/10.1007%2Fs13369-024-08841-w&rft.externalDocID=10_1007_s13369_024_08841_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon