OptiFeat: enhancing feature selection, a hybrid approach combining subject matter expertise and recursive feature elimination method

Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning...

Full description

Saved in:
Bibliographic Details
Published inDiscover Computing Vol. 27; no. 1; p. 44
Main Authors Vijayakumar, G., Bharathi, R. K.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 12.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2948-2992
1386-4564
2948-2992
1573-7659
DOI10.1007/s10791-024-09483-0

Cover

Abstract Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning JVMs, thereby enhancing their overall efficiency. This paper presents a novel hybrid approach that integrates both subject matter expertise and Recursive Feature Elimination (RFE) (Yin et al. in J Big Data 10(1):15, 2023) model to refine feature selection for JVM fine-tuning using machine learning techniques. Traditional feature selection methods often lack the ability to incorporate domain-specific knowledge, resulting in suboptimal selections (Khaire and Dhanalakshmi in J King Saud Univ Comput Inf Sci 34(4):1060–1073, 2022). In contrast, the hybrid approach leverages the expertise of JVM administrators or developers to guide the feature selection process. By integrating domain knowledge into the feature selection pipeline, ensure the inclusion of crucial JVM parameters that may not be captured by automated techniques alone. Furthermore, employed the RFE model, a powerful recursive feature elimination algorithm, to iteratively identify and eliminate irrelevant features from the initial feature set. This iterative process enhances the efficiency of feature selection by systematically pruning less influential parameters, thereby improving the overall performance of the JVM. To validate the effectiveness of the hybrid approach, conducted experiments using real-world JVM datasets and compare the performance of the method against existing feature selection techniques. The results demonstrate that the approach not only achieves superior performance in terms of JVM fine-tuning but also provides insights into the significance of domain expertise in optimizing JVM performance (Menéndez and Bartlett in http://arxiv.org/abs/2310.16510 , 2023). It contributes to the field of JVM optimization by proposing a novel hybrid approach that combines subject matter expertise with machine learning-based feature selection techniques. By leveraging both domain knowledge and automated algorithms, the approach offers a comprehensive solution for enhancing feature selection in JVM fine-tuning, ultimately leading to improved performance and efficiency in Java application execution.
AbstractList Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning JVMs, thereby enhancing their overall efficiency. This paper presents a novel hybrid approach that integrates both subject matter expertise and Recursive Feature Elimination (RFE) (Yin et al. in J Big Data 10(1):15, 2023) model to refine feature selection for JVM fine-tuning using machine learning techniques. Traditional feature selection methods often lack the ability to incorporate domain-specific knowledge, resulting in suboptimal selections (Khaire and Dhanalakshmi in J King Saud Univ Comput Inf Sci 34(4):1060–1073, 2022). In contrast, the hybrid approach leverages the expertise of JVM administrators or developers to guide the feature selection process. By integrating domain knowledge into the feature selection pipeline, ensure the inclusion of crucial JVM parameters that may not be captured by automated techniques alone. Furthermore, employed the RFE model, a powerful recursive feature elimination algorithm, to iteratively identify and eliminate irrelevant features from the initial feature set. This iterative process enhances the efficiency of feature selection by systematically pruning less influential parameters, thereby improving the overall performance of the JVM. To validate the effectiveness of the hybrid approach, conducted experiments using real-world JVM datasets and compare the performance of the method against existing feature selection techniques. The results demonstrate that the approach not only achieves superior performance in terms of JVM fine-tuning but also provides insights into the significance of domain expertise in optimizing JVM performance (Menéndez and Bartlett in http://arxiv.org/abs/2310.16510 , 2023). It contributes to the field of JVM optimization by proposing a novel hybrid approach that combines subject matter expertise with machine learning-based feature selection techniques. By leveraging both domain knowledge and automated algorithms, the approach offers a comprehensive solution for enhancing feature selection in JVM fine-tuning, ultimately leading to improved performance and efficiency in Java application execution.
Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning JVMs, thereby enhancing their overall efficiency. This paper presents a novel hybrid approach that integrates both subject matter expertise and Recursive Feature Elimination (RFE) (Yin et al. in J Big Data 10(1):15, 2023) model to refine feature selection for JVM fine-tuning using machine learning techniques. Traditional feature selection methods often lack the ability to incorporate domain-specific knowledge, resulting in suboptimal selections (Khaire and Dhanalakshmi in J King Saud Univ Comput Inf Sci 34(4):1060–1073, 2022). In contrast, the hybrid approach leverages the expertise of JVM administrators or developers to guide the feature selection process. By integrating domain knowledge into the feature selection pipeline, ensure the inclusion of crucial JVM parameters that may not be captured by automated techniques alone. Furthermore, employed the RFE model, a powerful recursive feature elimination algorithm, to iteratively identify and eliminate irrelevant features from the initial feature set. This iterative process enhances the efficiency of feature selection by systematically pruning less influential parameters, thereby improving the overall performance of the JVM. To validate the effectiveness of the hybrid approach, conducted experiments using real-world JVM datasets and compare the performance of the method against existing feature selection techniques. The results demonstrate that the approach not only achieves superior performance in terms of JVM fine-tuning but also provides insights into the significance of domain expertise in optimizing JVM performance (Menéndez and Bartlett in http://arxiv.org/abs/2310.16510, 2023). It contributes to the field of JVM optimization by proposing a novel hybrid approach that combines subject matter expertise with machine learning-based feature selection techniques. By leveraging both domain knowledge and automated algorithms, the approach offers a comprehensive solution for enhancing feature selection in JVM fine-tuning, ultimately leading to improved performance and efficiency in Java application execution.
ArticleNumber 44
Author Bharathi, R. K.
Vijayakumar, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Vijayakumar
  fullname: Vijayakumar, G.
  email: vijayakumar.gundappa@gmail.com
  organization: Department of Computer Applications, JSS Science and Technology University
– sequence: 2
  givenname: R. K.
  surname: Bharathi
  fullname: Bharathi, R. K.
  organization: Department of Computer Applications, JSS Science and Technology University
BookMark eNqNkE1P3DAQhi0EEpTyBzhZ4kpg_LFxwq1alQ9pJS7cLceZsF4lTrAd2r33h9fLrmhPVU8eS8_7aOb9Qo796JGQSwY3DEDdRgaqZgVwWUAtK1HAETnjeSp4XfPjv-ZTchGja2AhlOAlwBn59Twld48m3VH0a-Ot86-0y_85II3Yo01u9NfU0PW2Ca6lZprCaOya2nFonN_hcW42maODSQkDxZ8ThuQiUuNbGtDOIbp3_LRi7wbnzc5LB0zrsf1KTjrTR7w4vOfk5f77y_KxWD0_PC2_rQormEyFbAWwrq0By4WSUlpbyaasgC2w44tSqKZsec1tzVApCbZrmDJWCVZZy1QtzonYa2c_me0P0_d6Cm4wYasZ6F2Vel-lzlXqjyo15NTVPpXvfpsxJr0Z5-DznlowriRTHKpM8T1lwxhjwO7_1IeFYob9K4Y_6n-kfgNL_5bT
Cites_doi 10.1007/978-1-4842-9511-3_8
10.1016/j.jbi.2018.07.014
10.1109/ICST57152.2023.00019
10.1007/s00521-021-06553-y
10.1177/09726225211066220
10.3390/w15142572
10.1007/978-3-030-99527-0_27
10.1111/gean.12316
10.1007/s10796-023-10409-2
10.1080/01621459.2023.2277403
10.23919/MIPRO55190.2022.9803445
10.1109/BigDataCongress.2016.64
10.3758/s13428-023-02072-x
10.23919/INDIACom54597.2022.9763147
10.1007/s10639-023-12007-w
10.1007/978-3-319-27763-9_2
10.1109/ACCESS.2019.2953800
10.1186/s40537-014-0008-6
10.1080/15376494.2021.1917021
10.1016/j.eswa.2022.119225
10.1080/03461238.2021.1980430
10.1007/s10664-022-10247-x
10.1007/s10270-021-00937-3
10.1007/s42979-022-01607-x
10.1007/978-1-4842-9490-1
10.1109/ACCESS.2022.3213081
10.2478/amcs-2018-0058
10.1111/j.1469-8986.2003.00141.x
10.2139/ssrn.4658128
10.1007/s10766-024-00766-z
10.1016/j.ejor.2021.06.053
10.36227/techrxiv.170774641.17450763
10.1038/s41598-023-39374-1
10.1007/978-1-4842-9888-6_7
10.1007/s00366-020-01280-9
10.1109/CVPR52688.2022.01012
10.1007/978-3-031-55639-5_7
10.1007/978-1-4842-9172-6_9
10.1007/s11269-022-03341-8
10.1007/978-981-16-7952-0_23
10.1007/s42107-023-00833-9
10.1186/s40537-023-00694-8
10.1007/s12008-022-01003-y
10.1007/978-1-4842-9729-2
10.1007/978-1-4842-1830-3_15
10.1016/j.ijhydene.2024.01.284
10.1007/978-3-031-49559-5_4
10.1186/s12874-022-01774-8
10.1080/03772063.2020.1844082
10.1007/978-981-19-3311-0_39
10.1016/j.jksuci.2019.06.012
10.1007/s40314-023-02402-x
10.1145/581888.581892
10.1007/s11831-024-10110-w
10.1007/978-3-031-12382-5_105
10.1007/978-1-4842-9490-1_6
10.1007/s10489-022-04002-4
10.1109/CCICT53244.2021.00038
10.1109/ICERECT56837.2022.10060788
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1007/s10791-024-09483-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
Library & Information Science
EISSN 2948-2992
1573-7659
ExternalDocumentID 10.1007/s10791-024-09483-0
10_1007_s10791_024_09483_0
GroupedDBID AAJSJ
AASML
AAYZH
ABDBE
AEFQL
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
JZLTJ
M4Y
NU0
SOJ
AAYXX
CITATION
EBLON
.4I
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29I
2J2
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7SC
7WY
8FD
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAHNG
AAIAL
AAJKR
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACSTC
ADHHG
ADHIR
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBS
EIOEI
ELW
ESBYG
F5P
FEDTE
FERAY
FFXSO
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
KDC
KOV
L7M
LAK
LLZTM
L~C
L~D
M0C
MA-
NB0
NPVJJ
NQJWS
O93
O9J
OAM
P2P
P9O
PF0
PT5
QOS
R89
R9I
RNS
RPX
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ADTOC
ROL
UNPAY
ID FETCH-LOGICAL-c314t-4d301fd90e657444cc84b68015ef25637b6d292c91e7740cfb17ac7318cc1793
IEDL.DBID UNPAY
ISSN 2948-2992
1386-4564
IngestDate Sun Sep 07 10:57:17 EDT 2025
Mon Jun 30 07:22:20 EDT 2025
Wed Oct 01 03:08:27 EDT 2025
Mon Jul 21 06:09:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords JVM
RFE
Feature selection
GC
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-4d301fd90e657444cc84b68015ef25637b6d292c91e7740cfb17ac7318cc1793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s10791-024-09483-0
PQID 3127417208
PQPubID 26106
ParticipantIDs unpaywall_primary_10_1007_s10791_024_09483_0
proquest_journals_3127417208
crossref_primary_10_1007_s10791_024_09483_0
springer_journals_10_1007_s10791_024_09483_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-12
PublicationDateYYYYMMDD 2024-11-12
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-12
  day: 12
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Discover Computing
PublicationTitleAbbrev Discov Computing
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Asimit V, Badescu A, Zhou F. Efficient and proper generalised linear models with power link functions. 2024. https://www.researchgate.net/profile/Alexandru-Badescu-3/publication/376204024_Efficient_and_proper_Generalised_Linear_Models_with_power_link_functions/links/656e63f7eb682952273c777c/Efficient-and-proper-Generalised-Linear-Models-with-power-link-functions.pdf. Accessed 20 May 2024.
HanCZhouGZhouYBinary symbiotic organism search algorithm for feature selection and analysisIEEE Access2019716683316685910.1109/ACCESS.2019.2953800
MazumderSBig data tools and platformsBig data concepts, theories, and applications2016ChamSpringer2912810.1007/978-3-319-27763-9_2
Evans BJ, Clark J, Flanagan D. Java in a Nutshell. O’Reilly Media, Inc., 2023. https://books.google.com/books?hl=en&lr=&id=K-GtEAAAQBAJ&oi=fnd&pg=PT11&dq=JVM+has+evolved+into+a+sophisticated+and+indispensable+component+of+the+Java+ecosystem&ots=KdTHMNxzjc&sig=GgAg8m_ubCbcg0GE22TjJFHtnnc. Accessed 17 May 2024.
AustinAMUsing a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modelingBMC Med Res Methodol202222130010.1186/s12874-022-01774-8
KumarSMishraAKChoudharyBSPrediction of back break in blasting using random decision treesEng Comput202238S21185119110.1007/s00366-020-01280-9
MuesMHowarFFismanDRosuGGDart: an ensemble of tools for dynamic symbolic execution on the java virtual machine (competition contribution)Tools and algorithms for the construction and analysis of systems2022ChamSpringer International Publishing43543910.1007/978-3-030-99527-0_27
SivakumarKKalaivaniSVenkatesanDVetrivelVHuY-CTiwariSTrivediMCMishraKKAn empirical analysis data mining frameworks—an overviewAmbient communications and computer systems2022SingaporeSpringer Nature24325410.1007/978-981-16-7952-0_23
EldorEKafka troubleshooting in production: stabilizing kafka clusters in the cloud and on-premises2023BerkeleyApress10.1007/978-1-4842-9490-1
AlkawazANAbdellatifAKanesanJKhairuddinASMGheniHMDay-ahead electricity price forecasting based on hybrid regression modelIEEE Access20221010802110803310.1109/ACCESS.2022.3213081
AgrawalHKubernetes fundamentals: a step-by-step development and interview guide2023BerkeleyApress10.1007/978-1-4842-9729-2
ShatzIAssumption-checking rather than (just) testing: the importance of visualization and effect size in statistical diagnosticsBehav Res Methods202310.3758/s13428-023-02072-x
LeTTA glass-box approach for predictive modeling based on experimental data for a waste biomass derived producer gas-powered dual-fuel engineInt J Hydrog Energy2024581122113710.1016/j.ijhydene.2024.01.284
Menéndez JM, Bartlett M. Performance best practices using Java and AWS Lambda. arXiv. 2023. http://arxiv.org/abs/2310.16510. Accessed 17 May 2024.
Vyas S, Tyagi RK, Jain C, Sahu S. Literature review: a comparative study of real time streaming technologies and Apache Kafka. In: Proceedings—2021 4th international conference on computational intelligence and communication technologies, CCICT 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 146–53. https://doi.org/10.1109/CCICT53244.2021.00038.
KowalMSkobelMNowickiNThe feature selection problem in computer-assisted cytologyInt J Appl Math Comput Sci2018284759770388986410.2478/amcs-2018-0058
Chowdhury S, Lin Y, Liaw B, Kerby L. Evaluation of tree based regression over multiple linear regression for non-normally distributed data in battery performance. In: 2022 international conference on intelligent data science technologies and applications (IDSTA). IEEE; 2022. p. 17–25. https://ieeexplore.ieee.org/abstract/document/9923169/?casa_token=7Ic5Un4Gp2IAAAAA:zt_yr6AkVVmwpVYQYxOEuNHTBuP0IhWWtc81J5nMh5A-EOJVHkfzZYWQbNNUtl3bZZl6ar2nQh8. Accessed 20 May 2024.
KoyaBPAnejaSGuptaRValeoCComparative analysis of different machine learning algorithms to predict mechanical properties of concreteMech Adv Mater Struct202229254032404310.1080/15376494.2021.1917021
Mohtashami A, Jaggi M, Stich SU. Special properties of gradient descent with large learning rates. In: International conference on machine learning, PMLR. 2023. p. 25082–104. https://proceedings.mlr.press/v202/mohtashami23a.html. Accessed 20 May 2024.
Polito G, Tesone P, Palumbo N, Ducasse S, Privat J. Heap fuzzing: automatic garbage collection testing with expert-guided random events. In: 2023 IEEE conference on software testing, verification and validation (ICST). IEEE; 2023. p. 107–16. https://ieeexplore.ieee.org/abstract/document/10132213/. Accessed 20 May 2024.
TrainiLCortellessaVDi PompeoDTucciMTowards effective assessment of steady state performance in Java software: are we there yet?Empir Softw Eng20232811310.1007/s10664-022-10247-x
Jia D, Wang L, Valencia N, Bhimani J, Sheng B, Mi N. Learning-based dynamic memory allocation schemes for apache spark data processing. IEEE Trans Cloud Comput. 2023. https://ieeexplore.ieee.org/abstract/document/10315019/?casa_token=RGJqjls30UsAAAAA:4YC9cdCvnw3YyP-MrX23Sfl7xKklEUwdaie5Va4_6GUE8bJheiuWoc064n7q12B1DEpHNUtHmI8. Accessed 17 May 2024.
YinYIGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 datasetJ Big Data20231011510.1186/s40537-023-00694-8
Agarwal C, D’souza D, Hooker S. Estimating example difficulty using variance of gradients. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 10368–78. http://openaccess.thecvf.com/content/CVPR2022/html/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.html. Accessed 20 May 2024.
BianKPriyadarshiRMachine learning optimization techniques: a survey, classification, challenges, and future research issuesArch Comput Methods Eng202410.1007/s11831-024-10110-w
JVM logs. https://www.kaggle.com/datasets/vijayakumargundappa/jvm-logs. Accessed 20 May 2024.
Gupta GK, Sharma DK. A review of overfitting solutions in smart depression detection models. In: 2022 9th international conference on computing for sustainable global development (INDIACom). IEEE; 2022. p. 145–51. https://ieeexplore.ieee.org/abstract/document/9763147/. Accessed 20 May 2024.
Sahin S, Cao W, Zhang Q, Liu L. JVM configuration management and its performance impact for big data applications. In: Proc.—2016 IEEE Int. Congr. Big Data BigData Congr. 2016. p. 410–7. https://doi.org/10.1109/BigDataCongress.2016.64.
Norman T, Weinberger N, Levy KY. Robust linear regression for general feature distribution. In: International conference on artificial intelligence and statistics, PMLR. 2023. p. 2405–35. https://proceedings.mlr.press/v206/norman23a.html. Accessed 20 May 2024.
Singaravadivelan K. On BiasWrappers: new regularization techniques for machine learning regression. Authorea Prepr. 2024. https://doi.org/10.36227/techrxiv.170774641.17450763. Accessed 20 May 2024.
MishraPAdvanced AWS servicesCloud computing with AWS2023BerkeleyApress24727710.1007/978-1-4842-9172-6_9
VohraDUsing the Amazon EC2Pro docker2016BerkeleyApress22925210.1007/978-1-4842-1830-3_15
HöppnerSKehrerTTichyMContrasting dedicated model transformation languages versus general purpose languages: a historical perspective on ATL versus Java based on complexity and sizeSoftw Syst Model202221280583710.1007/s10270-021-00937-3
KumarVKedamNSharmaKVMehtaDJCaloieroTAdvanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction modelsWater20231514257210.3390/w15142572
ComberAA route map for successful applications of geographically weighted regressionGeogr Anal202355115517810.1111/gean.12316
HazarikaBBGuptaDBorahPRobust support vector quantile regression with truncated pinball loss (RSVQR)Comput Appl Math2023426283462779110.1007/s40314-023-02402-x
SahlaouiHAlaouiEAAAgoujilSNayyarAAn empirical assessment of smote variants techniques and interpretation methods in improving the accuracy and the interpretability of student performance modelsEduc Inf Technol20242955447548310.1007/s10639-023-12007-w
UrbanowiczRJMeekerMLa CavaWOlsonRSMooreJHRelief-based feature selection: introduction and reviewJ Biomed Inform20188518920310.1016/j.jbi.2018.07.014
KumarASinhaSSauravSChauhanVBPrediction of unconfined compressive strength of cement–fly ash stabilized soil using support vector machinesAsian J Civ Eng20242521149116110.1007/s42107-023-00833-9
DemirbagaÜAujlaGSJindalAKalyonOBig data monitoringBig data analytics2024ChamSpringer Nature15517010.1007/978-3-031-55639-5_7
LiJPittDLiHDispersion modelling of mortality for both sexes with Tweedie distributionsScand Actuar J202220224356374441882210.1080/03461238.2021.1980430
VarmaAJAlshuridehMAl KurdiBHMasa’dehRAlzoubiHMSalloumSA roadmap for SMEs to adopt an AI based cyber threat intelligenceThe effect of information technology on business and marketing intelligence systems2023ChamSpringer International Publishing1903192610.1007/978-3-031-12382-5_105
Thampi A. Interpretable AI: building explainable machine learning systems. Simon and Schuster; 2022. https://books.google.com/books?hl=en&lr=&id=yTRxEAAAQBAJ&oi=fnd&pg=PR13&dq=High+interpretability,+low+predictive+power+on+complex+data+linear+regression&ots=rB2xE8F-q7&sig=LrGWS9Xr40Ip9i2KsIzd8lpitVQ. Accessed 20 May 2024.
KuppanThirumalaiGCommon SSD firmware featuresA beginner’s guide to SSD firmware2023BerkeleyApress9311810.1007/978-1-4842-9888-6_7
Aggarwal S, Pandit S. Spring boot application using three layered architecture in Java. 2023. http://www.ir.juit.ac.in:8080/jspui/handle/123456789/10202. Accessed 18 May 2024.
ShuklaSKumarSTowards non-linear regression-based prediction of use case point (UCP) metricAppl Intell2023539103261033910.1007/s10489-022-04002-4
VidyashreeKPRajendraABAn improvised sentiment analysis model on twitter data using stochastic gradient descent (SGD) optimization algorithm in stochastic gate neural network (SGNN)SN Comput Sci20234219010.1007/s42979-022-01607-x
Karegowda A, Gowda Karegowda A, Manjunath AS. Comparative study of attribute selection using gain ratio and correl
9483_CR69
9483_CR26
A Kumar (9483_CR67) 2024; 25
BB Hazarika (9483_CR70) 2023; 42
AM Austin (9483_CR60) 2022; 22
P Mishra (9483_CR19) 2023
9483_CR61
9483_CR64
UM Khaire (9483_CR3) 2022; 34
9483_CR21
9483_CR65
A Shashi (9483_CR11) 2023
M Kowal (9483_CR24) 2018; 28
AN Alkawaz (9483_CR41) 2022; 10
G Calderon (9483_CR15) 2023
L Zhou (9483_CR51) 2023
S Shukla (9483_CR55) 2023; 53
H Sahlaoui (9483_CR45) 2024; 29
H Agrawal (9483_CR20) 2023
9483_CR12
D Vohra (9483_CR29) 2016
9483_CR13
G KuppanThirumalai (9483_CR18) 2023
9483_CR58
TT Le (9483_CR53) 2024; 58
D Singh (9483_CR32) 2015; 2
9483_CR50
9483_CR52
P Moreno (9483_CR14) 2024
9483_CR9
S Kumar (9483_CR57) 2022; 38
N Jain (9483_CR59) 2023; 213
G Chen (9483_CR23) 2002; 1
A Comber (9483_CR49) 2023; 55
E Eldor (9483_CR16) 2023
B Yarahmadi (9483_CR54) 2023; 13
AJ Varma (9483_CR35) 2023
P Chakraborty (9483_CR44) 2022
B Liu (9483_CR46) 2023; 1
9483_CR47
V Kumar (9483_CR66) 2023; 15
9483_CR48
9483_CR1
S Mazumder (9483_CR33) 2016
K Bian (9483_CR36) 2024
S Höppner (9483_CR8) 2022; 21
P Das (9483_CR68) 2022; 36
Ü Demirbaga (9483_CR22) 2024
9483_CR4
T Vijayan (9483_CR27) 2023; 69
9483_CR7
J Li (9483_CR62) 2022; 2022
9483_CR6
Y Yin (9483_CR2) 2023; 10
E Dumitrescu (9483_CR56) 2022; 297
E Eldor (9483_CR17) 2023
K Dey (9483_CR40) 2023; 17
I Shatz (9483_CR42) 2023
9483_CR37
9483_CR38
J Fumero (9483_CR31) 2024
9483_CR39
9483_CR71
KP Vidyashree (9483_CR63) 2023; 4
S Mehrotra (9483_CR73) 2022; 21
L Traini (9483_CR10) 2023; 28
C Han (9483_CR25) 2019; 7
M Sharma (9483_CR43) 2022; 34
M Mues (9483_CR5) 2022
CA Joyce (9483_CR34) 2004; 41
RJ Urbanowicz (9483_CR28) 2018; 85
K Sivakumar (9483_CR30) 2022
BP Koya (9483_CR72) 2022; 29
References_xml – reference: LiJPittDLiHDispersion modelling of mortality for both sexes with Tweedie distributionsScand Actuar J202220224356374441882210.1080/03461238.2021.1980430
– reference: Vijayakumar G, Bharathi RK. Predicting JVM parameters for performance tuning using different regression algorithms. In: 4th international conference on emerging research in electronics, computer science and technology, ICERECT 2022. Institute of Electrical and Electronics Engineers Inc.; 2022. https://doi.org/10.1109/ICERECT56837.2022.10060788.
– reference: Menéndez JM, Bartlett M. Performance best practices using Java and AWS Lambda. arXiv. 2023. http://arxiv.org/abs/2310.16510. Accessed 17 May 2024.
– reference: BianKPriyadarshiRMachine learning optimization techniques: a survey, classification, challenges, and future research issuesArch Comput Methods Eng202410.1007/s11831-024-10110-w
– reference: KumarASinhaSSauravSChauhanVBPrediction of unconfined compressive strength of cement–fly ash stabilized soil using support vector machinesAsian J Civ Eng20242521149116110.1007/s42107-023-00833-9
– reference: ShashiATroubleshooting and optimizationDesigning applications for google cloud platform2023BerkeleyApress20723310.1007/978-1-4842-9511-3_8
– reference: KhaireUMDhanalakshmiRStability of feature selection algorithm: a reviewJ King Saud Univ Comput Inf Sci20223441060107310.1016/j.jksuci.2019.06.012
– reference: ChenGShettyRKandemirMVijaykrishnanNIrwinMJWolczkoMTuning garbage collection for reducing memory system energy in an embedded Java environmentACM Trans Embed Comput Syst200211275510.1145/581888.581892
– reference: KoyaBPAnejaSGuptaRValeoCComparative analysis of different machine learning algorithms to predict mechanical properties of concreteMech Adv Mater Struct202229254032404310.1080/15376494.2021.1917021
– reference: AgrawalHKubernetes fundamentals: a step-by-step development and interview guide2023BerkeleyApress10.1007/978-1-4842-9729-2
– reference: DasPSachindraDAChandaKMachine learning-based rainfall forecasting with multiple non-linear feature selection algorithmsWater Resour Manag202236156043607110.1007/s11269-022-03341-8
– reference: SivakumarKKalaivaniSVenkatesanDVetrivelVHuY-CTiwariSTrivediMCMishraKKAn empirical analysis data mining frameworks—an overviewAmbient communications and computer systems2022SingaporeSpringer Nature24325410.1007/978-981-16-7952-0_23
– reference: Vyas S, Tyagi RK, Jain C, Sahu S. Literature review: a comparative study of real time streaming technologies and Apache Kafka. In: Proceedings—2021 4th international conference on computational intelligence and communication technologies, CCICT 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 146–53. https://doi.org/10.1109/CCICT53244.2021.00038.
– reference: HanCZhouGZhouYBinary symbiotic organism search algorithm for feature selection and analysisIEEE Access2019716683316685910.1109/ACCESS.2019.2953800
– reference: Polito G, Tesone P, Palumbo N, Ducasse S, Privat J. Heap fuzzing: automatic garbage collection testing with expert-guided random events. In: 2023 IEEE conference on software testing, verification and validation (ICST). IEEE; 2023. p. 107–16. https://ieeexplore.ieee.org/abstract/document/10132213/. Accessed 20 May 2024.
– reference: DemirbagaÜAujlaGSJindalAKalyonOBig data monitoringBig data analytics2024ChamSpringer Nature15517010.1007/978-3-031-55639-5_7
– reference: JainNJanaPKLRF: a logically randomized forest algorithm for classification and regression problemsExpert Syst Appl202321310.1016/j.eswa.2022.119225
– reference: LeTTA glass-box approach for predictive modeling based on experimental data for a waste biomass derived producer gas-powered dual-fuel engineInt J Hydrog Energy2024581122113710.1016/j.ijhydene.2024.01.284
– reference: KumarVKedamNSharmaKVMehtaDJCaloieroTAdvanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction modelsWater20231514257210.3390/w15142572
– reference: VarmaAJAlshuridehMAl KurdiBHMasa’dehRAlzoubiHMSalloumSA roadmap for SMEs to adopt an AI based cyber threat intelligenceThe effect of information technology on business and marketing intelligence systems2023ChamSpringer International Publishing1903192610.1007/978-3-031-12382-5_105
– reference: LiuBBased on intelligent advertising recommendation and abnormal advertising monitoring system in the field of machine learningInt J Comput Sci Inf Technol2023111723
– reference: HazarikaBBGuptaDBorahPRobust support vector quantile regression with truncated pinball loss (RSVQR)Comput Appl Math2023426283462779110.1007/s40314-023-02402-x
– reference: MishraPAdvanced AWS servicesCloud computing with AWS2023BerkeleyApress24727710.1007/978-1-4842-9172-6_9
– reference: YinYIGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 datasetJ Big Data20231011510.1186/s40537-023-00694-8
– reference: Karegowda A, Gowda Karegowda A, Manjunath AS. Comparative study of attribute selection using gain ratio and correlation based feature selection RASTA-center for road technology VOLVO construction equipment Campus comparative study of attribute selection using gain ratio and correlation based feature selection. 2010. https://www.researchgate.net/publication/228919572.
– reference: TrainiLCortellessaVDi PompeoDTucciMTowards effective assessment of steady state performance in Java software: are we there yet?Empir Softw Eng20232811310.1007/s10664-022-10247-x
– reference: MuesMHowarFFismanDRosuGGDart: an ensemble of tools for dynamic symbolic execution on the java virtual machine (competition contribution)Tools and algorithms for the construction and analysis of systems2022ChamSpringer International Publishing43543910.1007/978-3-030-99527-0_27
– reference: CalderonGdel CampoGSaavedraESantamaríaAMonitoring framework for the performance evaluation of an IoT platform with elasticsearch and apache kafkaInf Syst Front202310.1007/s10796-023-10409-2
– reference: VohraDUsing the Amazon EC2Pro docker2016BerkeleyApress22925210.1007/978-1-4842-1830-3_15
– reference: Chowdhury S, Lin Y, Liaw B, Kerby L. Evaluation of tree based regression over multiple linear regression for non-normally distributed data in battery performance. In: 2022 international conference on intelligent data science technologies and applications (IDSTA). IEEE; 2022. p. 17–25. https://ieeexplore.ieee.org/abstract/document/9923169/?casa_token=7Ic5Un4Gp2IAAAAA:zt_yr6AkVVmwpVYQYxOEuNHTBuP0IhWWtc81J5nMh5A-EOJVHkfzZYWQbNNUtl3bZZl6ar2nQh8. Accessed 20 May 2024.
– reference: HöppnerSKehrerTTichyMContrasting dedicated model transformation languages versus general purpose languages: a historical perspective on ATL versus Java based on complexity and sizeSoftw Syst Model202221280583710.1007/s10270-021-00937-3
– reference: Mohtashami A, Jaggi M, Stich SU. Special properties of gradient descent with large learning rates. In: International conference on machine learning, PMLR. 2023. p. 25082–104. https://proceedings.mlr.press/v202/mohtashami23a.html. Accessed 20 May 2024.
– reference: Evans BJ, Clark J, Flanagan D. Java in a Nutshell. O’Reilly Media, Inc., 2023. https://books.google.com/books?hl=en&lr=&id=K-GtEAAAQBAJ&oi=fnd&pg=PT11&dq=JVM+has+evolved+into+a+sophisticated+and+indispensable+component+of+the+Java+ecosystem&ots=KdTHMNxzjc&sig=GgAg8m_ubCbcg0GE22TjJFHtnnc. Accessed 17 May 2024.
– reference: Beronic D, Novosel N, Mihaljevic B, Radovan A. Assessing contemporary automated memory management in Java—garbage first, Shenandoah, and Z garbage collectors comparison. In: 2022 45th Jubil. Int. Conv. Inf. Commun. Electron. Technol. MIPRO 2022—Proc. 2022. p. 1495–500. https://doi.org/10.23919/MIPRO55190.2022.9803445.
– reference: ZhouLCookRDZouHEnveloped Huber regressionJ Am Stat Assoc202310.1080/01621459.2023.2277403
– reference: YarahmadiBHashemianzadehSMMilani HosseiniSM-RMachine-learning-based predictions of imprinting quality using ensemble and non-linear regression algorithmsSci Rep20231311211110.1038/s41598-023-39374-1
– reference: Gupta GK, Sharma DK. A review of overfitting solutions in smart depression detection models. In: 2022 9th international conference on computing for sustainable global development (INDIACom). IEEE; 2022. p. 145–51. https://ieeexplore.ieee.org/abstract/document/9763147/. Accessed 20 May 2024.
– reference: ShatzIAssumption-checking rather than (just) testing: the importance of visualization and effect size in statistical diagnosticsBehav Res Methods202310.3758/s13428-023-02072-x
– reference: MazumderSBig data tools and platformsBig data concepts, theories, and applications2016ChamSpringer2912810.1007/978-3-319-27763-9_2
– reference: DumitrescuEHuéSHurlinCTokpaviSMachine learning for credit scoring: improving logistic regression with non-linear decision-tree effectsEur J Oper Res2022297311781192433897010.1016/j.ejor.2021.06.053
– reference: AustinAMUsing a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modelingBMC Med Res Methodol202222130010.1186/s12874-022-01774-8
– reference: Dupuy C, Arava R, Gupta R, Rumshisky A. An efficient dp-sgd mechanism for large scale nlu models. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2022. p. 4118–22. https://ieeexplore.ieee.org/abstract/document/9746975/?casa_token=9cWhlsIUT0AAAAAA:-5W1kR5nwTll5w2S-GonAlALCRZmenPj1I1DUjeWawxvxaObzxhcV6K9bwrhB_KB30noh-1JEBM. Accessed 20 May 2024.
– reference: Thampi A. Interpretable AI: building explainable machine learning systems. Simon and Schuster; 2022. https://books.google.com/books?hl=en&lr=&id=yTRxEAAAQBAJ&oi=fnd&pg=PR13&dq=High+interpretability,+low+predictive+power+on+complex+data+linear+regression&ots=rB2xE8F-q7&sig=LrGWS9Xr40Ip9i2KsIzd8lpitVQ. Accessed 20 May 2024.
– reference: JoyceCAGorodnitskyIFKutasMAutomatic removal of eye movement and blink artifacts from EEG data using blind component separationPsychophysiology200441231332510.1111/j.1469-8986.2003.00141.x
– reference: VidyashreeKPRajendraABAn improvised sentiment analysis model on twitter data using stochastic gradient descent (SGD) optimization algorithm in stochastic gate neural network (SGNN)SN Comput Sci20234219010.1007/s42979-022-01607-x
– reference: Das P, Kumar S, Kalambukattu J, Ahmad T. A comparative study on the predictive ability of machine learning techniques for spatial mapping of soil properties in Indian Himalayan region. Available SSRN 4658128. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4658128. Accessed 20 May 2024.
– reference: KuppanThirumalaiGCommon SSD firmware featuresA beginner’s guide to SSD firmware2023BerkeleyApress9311810.1007/978-1-4842-9888-6_7
– reference: JVM logs. https://www.kaggle.com/datasets/vijayakumargundappa/jvm-logs. Accessed 20 May 2024.
– reference: ComberAA route map for successful applications of geographically weighted regressionGeogr Anal202355115517810.1111/gean.12316
– reference: Norman T, Weinberger N, Levy KY. Robust linear regression for general feature distribution. In: International conference on artificial intelligence and statistics, PMLR. 2023. p. 2405–35. https://proceedings.mlr.press/v206/norman23a.html. Accessed 20 May 2024.
– reference: VijayanTSangeethaMKumaravelAKarthikBFeature selection for simple color histogram filter based on retinal fundus images for diabetic retinopathy recognitionIETE J Res202369298799410.1080/03772063.2020.1844082
– reference: DeyKKalitaKChakrabortySPrediction performance analysis of neural network models for an electrical discharge turning processInt J Interact Des Manuf202317282784510.1007/s12008-022-01003-y
– reference: Sahith CSK, Muppidi S, Merugula S. Apache spark big data analysis, performance tuning, and spark application optimization. In: 2023 international conference on evolutionary algorithms and soft computing techniques (EASCT). IEEE; 2023. p. 1–8. https://ieeexplore.ieee.org/abstract/document/10393086/?casa_token=dMsy49T3yRwAAAAA:2VdB9-66jRgDS5gCRnkOOuW3PeVOkQcfJmKLcTiCujChisLzpZExxbRDK-ZcU8JnKLFLoy4aLjg. Accessed 17 May 2024.
– reference: Asimit V, Badescu A, Zhou F. Efficient and proper generalised linear models with power link functions. 2024. https://www.researchgate.net/profile/Alexandru-Badescu-3/publication/376204024_Efficient_and_proper_Generalised_Linear_Models_with_power_link_functions/links/656e63f7eb682952273c777c/Efficient-and-proper-Generalised-Linear-Models-with-power-link-functions.pdf. Accessed 20 May 2024.
– reference: ShuklaSKumarSTowards non-linear regression-based prediction of use case point (UCP) metricAppl Intell2023539103261033910.1007/s10489-022-04002-4
– reference: KumarSMishraAKChoudharyBSPrediction of back break in blasting using random decision treesEng Comput202238S21185119110.1007/s00366-020-01280-9
– reference: Aggarwal S, Pandit S. Spring boot application using three layered architecture in Java. 2023. http://www.ir.juit.ac.in:8080/jspui/handle/123456789/10202. Accessed 18 May 2024.
– reference: EldorEKafka troubleshooting in production: stabilizing kafka clusters in the cloud and on-premises2023BerkeleyApress10.1007/978-1-4842-9490-1
– reference: ChakrabortyPRafiammalSSThariniCJamalDNAsokanRRuizDPBaigZAPiramuthuSInfluence of bias and variance in selection of machine learning classifiers for biomedical applicationsSmart data intelligence2022SingaporeSpringer Nature45947210.1007/978-981-19-3311-0_39
– reference: Sahin S, Cao W, Zhang Q, Liu L. JVM configuration management and its performance impact for big data applications. In: Proc.—2016 IEEE Int. Congr. Big Data BigData Congr. 2016. p. 410–7. https://doi.org/10.1109/BigDataCongress.2016.64.
– reference: Singaravadivelan K. On BiasWrappers: new regularization techniques for machine learning regression. Authorea Prepr. 2024. https://doi.org/10.36227/techrxiv.170774641.17450763. Accessed 20 May 2024.
– reference: MorenoPAreiasMRochaRSantosCostaVYet another lock-free atom table design for scalable symbol management in prologInt J Parallel Program202410.1007/s10766-024-00766-z
– reference: Agarwal C, D’souza D, Hooker S. Estimating example difficulty using variance of gradients. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 10368–78. http://openaccess.thecvf.com/content/CVPR2022/html/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.html. Accessed 20 May 2024.
– reference: KowalMSkobelMNowickiNThe feature selection problem in computer-assisted cytologyInt J Appl Math Comput Sci2018284759770388986410.2478/amcs-2018-0058
– reference: Jia D, Wang L, Valencia N, Bhimani J, Sheng B, Mi N. Learning-based dynamic memory allocation schemes for apache spark data processing. IEEE Trans Cloud Comput. 2023. https://ieeexplore.ieee.org/abstract/document/10315019/?casa_token=RGJqjls30UsAAAAA:4YC9cdCvnw3YyP-MrX23Sfl7xKklEUwdaie5Va4_6GUE8bJheiuWoc064n7q12B1DEpHNUtHmI8. Accessed 17 May 2024.
– reference: SinghDReddyCKA survey on platforms for big data analyticsJ Big Data20152112010.1186/s40537-014-0008-6
– reference: SharmaMAgrawalHChoudharyBSMultivariate regression and genetic programming for prediction of backbreak in open-pit blastingNeural Comput Appl20223432103211410.1007/s00521-021-06553-y
– reference: SahlaouiHAlaouiEAAAgoujilSNayyarAAn empirical assessment of smote variants techniques and interpretation methods in improving the accuracy and the interpretability of student performance modelsEduc Inf Technol20242955447548310.1007/s10639-023-12007-w
– reference: AlkawazANAbdellatifAKanesanJKhairuddinASMGheniHMDay-ahead electricity price forecasting based on hybrid regression modelIEEE Access20221010802110803310.1109/ACCESS.2022.3213081
– reference: UrbanowiczRJMeekerMLa CavaWOlsonRSMooreJHRelief-based feature selection: introduction and reviewJ Biomed Inform20188518920310.1016/j.jbi.2018.07.014
– reference: MehrotraSKhannaARecruitment through AI in selected Indian companiesMetamorph J Manag Res2022211313910.1177/09726225211066220
– reference: EldorERAM allocation in kafka clusters: performance, stability, and optimization strategiesKafka troubleshooting in production2023BerkeleyApress638410.1007/978-1-4842-9490-1_6
– reference: FumeroJStratikopoulosAKotselidisCManaged runtime environmentsProgramming heterogeneous hardware via managed runtime systems2024ChamSpringer International Publishing577010.1007/978-3-031-49559-5_4
– start-page: 207
  volume-title: Designing applications for google cloud platform
  year: 2023
  ident: 9483_CR11
  doi: 10.1007/978-1-4842-9511-3_8
– volume: 85
  start-page: 189
  year: 2018
  ident: 9483_CR28
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.07.014
– ident: 9483_CR38
  doi: 10.1109/ICST57152.2023.00019
– volume: 34
  start-page: 2103
  issue: 3
  year: 2022
  ident: 9483_CR43
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06553-y
– volume: 21
  start-page: 31
  issue: 1
  year: 2022
  ident: 9483_CR73
  publication-title: Metamorph J Manag Res
  doi: 10.1177/09726225211066220
– volume: 15
  start-page: 2572
  issue: 14
  year: 2023
  ident: 9483_CR66
  publication-title: Water
  doi: 10.3390/w15142572
– start-page: 435
  volume-title: Tools and algorithms for the construction and analysis of systems
  year: 2022
  ident: 9483_CR5
  doi: 10.1007/978-3-030-99527-0_27
– volume: 55
  start-page: 155
  issue: 1
  year: 2023
  ident: 9483_CR49
  publication-title: Geogr Anal
  doi: 10.1111/gean.12316
– ident: 9483_CR9
– year: 2023
  ident: 9483_CR15
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-023-10409-2
– year: 2023
  ident: 9483_CR51
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2023.2277403
– ident: 9483_CR37
  doi: 10.23919/MIPRO55190.2022.9803445
– ident: 9483_CR1
  doi: 10.1109/BigDataCongress.2016.64
– year: 2023
  ident: 9483_CR42
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-023-02072-x
– ident: 9483_CR58
  doi: 10.23919/INDIACom54597.2022.9763147
– volume: 29
  start-page: 5447
  issue: 5
  year: 2024
  ident: 9483_CR45
  publication-title: Educ Inf Technol
  doi: 10.1007/s10639-023-12007-w
– ident: 9483_CR4
– start-page: 29
  volume-title: Big data concepts, theories, and applications
  year: 2016
  ident: 9483_CR33
  doi: 10.1007/978-3-319-27763-9_2
– volume: 7
  start-page: 166833
  year: 2019
  ident: 9483_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953800
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 9483_CR32
  publication-title: J Big Data
  doi: 10.1186/s40537-014-0008-6
– volume: 29
  start-page: 4032
  issue: 25
  year: 2022
  ident: 9483_CR72
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2021.1917021
– volume: 213
  year: 2023
  ident: 9483_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119225
– volume: 2022
  start-page: 356
  issue: 4
  year: 2022
  ident: 9483_CR62
  publication-title: Scand Actuar J
  doi: 10.1080/03461238.2021.1980430
– volume: 28
  start-page: 13
  issue: 1
  year: 2023
  ident: 9483_CR10
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-022-10247-x
– volume: 21
  start-page: 805
  issue: 2
  year: 2022
  ident: 9483_CR8
  publication-title: Softw Syst Model
  doi: 10.1007/s10270-021-00937-3
– volume: 4
  start-page: 190
  issue: 2
  year: 2023
  ident: 9483_CR63
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-022-01607-x
– volume-title: Kafka troubleshooting in production: stabilizing kafka clusters in the cloud and on-premises
  year: 2023
  ident: 9483_CR16
  doi: 10.1007/978-1-4842-9490-1
– volume: 10
  start-page: 108021
  year: 2022
  ident: 9483_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3213081
– ident: 9483_CR39
– volume: 28
  start-page: 759
  issue: 4
  year: 2018
  ident: 9483_CR24
  publication-title: Int J Appl Math Comput Sci
  doi: 10.2478/amcs-2018-0058
– volume: 41
  start-page: 313
  issue: 2
  year: 2004
  ident: 9483_CR34
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2003.00141.x
– ident: 9483_CR52
– ident: 9483_CR71
  doi: 10.2139/ssrn.4658128
– year: 2024
  ident: 9483_CR14
  publication-title: Int J Parallel Program
  doi: 10.1007/s10766-024-00766-z
– volume: 297
  start-page: 1178
  issue: 3
  year: 2022
  ident: 9483_CR56
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.06.053
– ident: 9483_CR69
  doi: 10.36227/techrxiv.170774641.17450763
– volume: 13
  start-page: 12111
  issue: 1
  year: 2023
  ident: 9483_CR54
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-39374-1
– start-page: 93
  volume-title: A beginner’s guide to SSD firmware
  year: 2023
  ident: 9483_CR18
  doi: 10.1007/978-1-4842-9888-6_7
– volume: 38
  start-page: 1185
  issue: S2
  year: 2022
  ident: 9483_CR57
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01280-9
– ident: 9483_CR48
  doi: 10.1109/CVPR52688.2022.01012
– start-page: 155
  volume-title: Big data analytics
  year: 2024
  ident: 9483_CR22
  doi: 10.1007/978-3-031-55639-5_7
– start-page: 247
  volume-title: Cloud computing with AWS
  year: 2023
  ident: 9483_CR19
  doi: 10.1007/978-1-4842-9172-6_9
– volume: 36
  start-page: 6043
  issue: 15
  year: 2022
  ident: 9483_CR68
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03341-8
– ident: 9483_CR65
– start-page: 243
  volume-title: Ambient communications and computer systems
  year: 2022
  ident: 9483_CR30
  doi: 10.1007/978-981-16-7952-0_23
– volume: 25
  start-page: 1149
  issue: 2
  year: 2024
  ident: 9483_CR67
  publication-title: Asian J Civ Eng
  doi: 10.1007/s42107-023-00833-9
– volume: 10
  start-page: 15
  issue: 1
  year: 2023
  ident: 9483_CR2
  publication-title: J Big Data
  doi: 10.1186/s40537-023-00694-8
– ident: 9483_CR7
– ident: 9483_CR13
– volume: 17
  start-page: 827
  issue: 2
  year: 2023
  ident: 9483_CR40
  publication-title: Int J Interact Des Manuf
  doi: 10.1007/s12008-022-01003-y
– volume-title: Kubernetes fundamentals: a step-by-step development and interview guide
  year: 2023
  ident: 9483_CR20
  doi: 10.1007/978-1-4842-9729-2
– start-page: 229
  volume-title: Pro docker
  year: 2016
  ident: 9483_CR29
  doi: 10.1007/978-1-4842-1830-3_15
– volume: 58
  start-page: 1122
  year: 2024
  ident: 9483_CR53
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2024.01.284
– start-page: 57
  volume-title: Programming heterogeneous hardware via managed runtime systems
  year: 2024
  ident: 9483_CR31
  doi: 10.1007/978-3-031-49559-5_4
– volume: 22
  start-page: 300
  issue: 1
  year: 2022
  ident: 9483_CR60
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-022-01774-8
– ident: 9483_CR61
– ident: 9483_CR26
– volume: 69
  start-page: 987
  issue: 2
  year: 2023
  ident: 9483_CR27
  publication-title: IETE J Res
  doi: 10.1080/03772063.2020.1844082
– start-page: 459
  volume-title: Smart data intelligence
  year: 2022
  ident: 9483_CR44
  doi: 10.1007/978-981-19-3311-0_39
– volume: 34
  start-page: 1060
  issue: 4
  year: 2022
  ident: 9483_CR3
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2019.06.012
– volume: 42
  start-page: 283
  issue: 6
  year: 2023
  ident: 9483_CR70
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-023-02402-x
– volume: 1
  start-page: 27
  issue: 1
  year: 2002
  ident: 9483_CR23
  publication-title: ACM Trans Embed Comput Syst
  doi: 10.1145/581888.581892
– year: 2024
  ident: 9483_CR36
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-024-10110-w
– start-page: 1903
  volume-title: The effect of information technology on business and marketing intelligence systems
  year: 2023
  ident: 9483_CR35
  doi: 10.1007/978-3-031-12382-5_105
– start-page: 63
  volume-title: Kafka troubleshooting in production
  year: 2023
  ident: 9483_CR17
  doi: 10.1007/978-1-4842-9490-1_6
– ident: 9483_CR47
– ident: 9483_CR64
– ident: 9483_CR50
– volume: 53
  start-page: 10326
  issue: 9
  year: 2023
  ident: 9483_CR55
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-04002-4
– ident: 9483_CR21
  doi: 10.1109/CCICT53244.2021.00038
– volume: 1
  start-page: 17
  issue: 1
  year: 2023
  ident: 9483_CR46
  publication-title: Int J Comput Sci Inf Technol
– ident: 9483_CR6
  doi: 10.1109/ICERECT56837.2022.10060788
– ident: 9483_CR12
SSID ssib053732600
ssj0006449
Score 2.373167
Snippet Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 44
SubjectTerms Algorithms
Automation
Big Data
Compilers
Computer Science
Data Mining and Knowledge Discovery
Data Structures and Information Theory
Efficiency
Feature selection
Information Storage and Retrieval
Machine learning
Natural Language Processing (NLP)
Parameter identification
Pattern Recognition
Performance enhancement
Process parameters
Recursive functions
Virtual environments
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYCBb0ShoBvYqKUkduKEDVWgCglYitQtsh2bDiVU_RDqzg_H5yYtIIRgjnJRfHe6Z5_vPUIuiig1UmWKhplNKbcZo8rhCMql4WlojZRekuX-Iek-8bt-3K9ocnAW5lv_HkfcBN7NiTh1G5GUUbc9X3dFKvGN2aRTx07MBEOu9Wou5udXv9aeFaBc9kC3yMasHMn5mxwOP5WZ212yXeFDuF44dI-smXKf7NTaC1Cl4gF5f3S5jvjtCkw5QNKM8hncT2NDACZe3MateBskDOY4lAU1eTi4EFNeFQImM4WnMPDiOTbBk_2jNjPIsoAxHsTj3falVTP0CmBoFxbC04ekd3vT63RppahANQv5lPLC5bMtssAkseCca51ylbgiFRvrsA8TKimiLNJZaBwsDLRVoZBauLzXGjP5iDTK19IcE9BGK8G4ZJGwPJVKJSYOmTOrhBXSxk1yWS91PlrwZuQrhmR0TO4ck3vH5EGTtGpv5FUOTXIWIrWOiIK0Sdq1h1aPf7PWXnrxDx8_-Z_1U7IZYUzhVcCoRRrT8cycOWAyVec-Ij8AYFbcBg
  priority: 102
  providerName: Springer Nature
Title OptiFeat: enhancing feature selection, a hybrid approach combining subject matter expertise and recursive feature elimination method
URI https://link.springer.com/article/10.1007/s10791-024-09483-0
https://www.proquest.com/docview/3127417208
https://doi.org/10.1007/s10791-024-09483-0
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2948-2992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006449
  issn: 2948-2992
  databaseCode: ABDBF
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2948-2992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006449
  issn: 2948-2992
  databaseCode: ADMLS
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2948-2992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006449
  issn: 2948-2992
  databaseCode: AFBBN
  dateStart: 19990401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2948-2992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib053732600
  issn: 2948-2992
  databaseCode: AAJSJ
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2948-2992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006449
  issn: 2948-2992
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2948-2992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006449
  issn: 2948-2992
  databaseCode: U2A
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5B-zB4GKBtWhlUfuCNGjWOEyd7a6tVqBJl0kBiT5Ht2KtEyRBthcozP5y7NG0ZmhA85cHJJbq7nM_23fcBHOUicdqkhgepT7j0acgN5hFcaieTwDutS0qWs2F8eikHV9FVBZNDvTAvzu-pxU1RbY6QHBciSchxeV6PI8y7a1C_HP7s_Cb2OBzhGFdF1RXz_wf_nXnW6eTqBHQbPsyKWz2_1-Pxs0mmv7NgK5qU2IRUW3J9MpuaE_vwArnxbd-_Cx-rXJN1Fs6xBxuu-ASP5xgkKPH7zlwxIrSN4g9DbdFJApuUrDhoqhbTbDSnbi62RB1n6JumpJNgk5mh7Rt2U4JzspIlgEidmS5ydkc7-FQUv5LqxiV1GMllC8bqz3DR_3HRO-UVFQO3YSCnXOYYCHyetl0cKSmltYk0Mc5ukfOYNIXKxLlIhU0Dh_lk23oTKG0VBgxrKQR8gVrxt3BfgVlnjQqlDoXyMtHGxC4KQhRrlFfaRw04Xlopu10AbmRraGVSZobKzEplZu0GHCwNmVU_3yQLA8LkUaKdNKC1NO56-DVprZUDvOHl---7_RtsCfIDqiEUB1Cb3s3cIWY0U9OEeqcz-DWga7_bHTZhsxf3mpWDPwEdAPFL
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MHNCDv40oag_epAlbu3XzRowEEfAgJtyWtmvlgJMwiOHuH27f2AATY_S87C3r91772r73fQhdx26ghQwlcUITEGZCSqTNIwgTmgWO0UJkkiy9vt9-YZ2hN8ybwtKi2r24ksxm6o1mNw5VOi4jdksSUGI36mUosrLhWG42O8-dwo88yinwruc9Mj-__H0dWieXq_vQHVSZJxOx-BDj8caS09pHu3muiJtLcA_Qlk4O0V6hw4DzsDxCn0827iGXu8U6GQGBRvKK7QDA5QBOM6EbO_p1LPBoAQ1auCASx_bPZaYQgdO5hBMZ_JbxbeKM-B90mrFIYjyFQ3moc19Z1eNMDQzs4qUI9TEatO4Hd22SqysQRR02Iyy2sW3isKF9jzPGlAqY9O2C5Wlj8yDKpR-7oatCR9sUsaGMdLhQ3M4BSkFUn6BS8p7oU4SVVpJTJqjLDQuElL72HGrNSm64MF4V3RRDHU2WHBrRmi0ZgIksMFEGTNSoolqBRpTHUxpRB2h2uNsIqqheILR-_Ju1-grFP3z87H_Wr1ClPeh1o-5D__EcbbvgX1Ai6NZQaTad6wubsMzkZe6fX8BW5F8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSDwG3ohCAQ9s1GoTO3HChgpVeRWGInWLbMemQwlVH0Ld-eH43KQtEkIwRzlL_ny-s333fQidp36khYwl8WITEWZiSqTNIwgTmkWe0UI4SZbHVth8YXedoLPQxe-q3YsnyWlPA7A0ZaNqPzXVhcY3DhU7PiP2eBJRYg_tK8xGN9AwqIf1YkUFlFNgYM-7ZX7-9XtEmqeZs5fRDbQ2zvpi8iF6vYXg09hGm3nWiK-mMO-gJZ3toq1CkQHnDrqHPp_sDgBZ3SXWWReoNLJXbKcCngnw0EneWBwqWODuBFq1cEEpju0cSKcVgYdjCXcz-M0xb2InAQCKzVhkKR7A9TxUvM-s6p7TBQO7eCpHvY_ajZt2vUlynQWiqMdGhKXWy00a13QYcMaYUhGToQ1dgTY2I6Jchqkf-yr2tE0Wa8pIjwvF7W6gFPj3AVrO3jN9iLDSSnLKBPW5YZGQMtSBR61ZyQ0XJiihi2Kqk_6UTSOZ8yYDMIkFJnHAJLUSKhdoJLlnDRPqAeEO92tRCVUKhOaff7NWmaH4h8GP_mf9DK0-XzeSh9vW_TFa92F5Qa2gX0bLo8FYn9jMZSRP3eL8AvJo5zw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD-rBH6g4f5GDN5expmnTehuiDMHpwcE8lSRNHDjrWDdknv3Dfa_rNh0iek77WvJeX740730fIWcpj6zSsWZe7CImXOwzDTiCCWVF5DmrVCHJctsOWx1x0w26JU0O9sIsnd9ji5vE2hwuGGxEIp_B9nw1DAB3V8hqp33ffET1OBhhkFd52RXz843fV54FnJyfgG6QtXE2UJM31e9_WWSut6ZqRXnBTYi1Jc_18UjXzfsSc-Pf3n-bbJZYkzanwbFDVmy2Sz7uIEkg8LugNush20b2RGG28CSB5oUqDriqRhXtTbCbi85YxynEpi7kJGg-1vj7hr4U5Jy0UAlAUWeqspQO8Q8-FsXPrdp-IR2GdulUsXqPPFxfPVy2WCnFwIzviRETKSQCl8YNGwZSCGFMJHQIq1tgHYAmX-ow5TE3sWcBTzaM055URkLCMAZTwD6pZK-ZPSDUWKOlL5TPpROR0jq0geeDWS2dVC6okvOZl5LBlHAjWVAr42QmMJlJMZlJo0qOZ45Myo8vT3wPOXkkb0RVUps5dzH8m7XaPAD-8PDD_11-RNY5xgHWEPJjUhkNx_YEEM1In5ah_AmQCe1m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptiFeat%3A+enhancing+feature+selection%2C+a+hybrid+approach+combining+subject+matter+expertise+and+recursive+feature+elimination+method&rft.jtitle=Discover+Computing&rft.au=Vijayakumar%2C+G.&rft.au=Bharathi%2C+R.+K.&rft.date=2024-11-12&rft.issn=2948-2992&rft.eissn=2948-2992&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1007%2Fs10791-024-09483-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10791_024_09483_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2992&client=summon