OptiFeat: enhancing feature selection, a hybrid approach combining subject matter expertise and recursive feature elimination method
Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning...
Saved in:
| Published in | Discover Computing Vol. 27; no. 1; p. 44 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
12.11.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2948-2992 1386-4564 2948-2992 1573-7659 |
| DOI | 10.1007/s10791-024-09483-0 |
Cover
| Abstract | Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning JVMs, thereby enhancing their overall efficiency. This paper presents a novel hybrid approach that integrates both subject matter expertise and Recursive Feature Elimination (RFE) (Yin et al. in J Big Data 10(1):15, 2023) model to refine feature selection for JVM fine-tuning using machine learning techniques. Traditional feature selection methods often lack the ability to incorporate domain-specific knowledge, resulting in suboptimal selections (Khaire and Dhanalakshmi in J King Saud Univ Comput Inf Sci 34(4):1060–1073, 2022). In contrast, the hybrid approach leverages the expertise of JVM administrators or developers to guide the feature selection process. By integrating domain knowledge into the feature selection pipeline, ensure the inclusion of crucial JVM parameters that may not be captured by automated techniques alone. Furthermore, employed the RFE model, a powerful recursive feature elimination algorithm, to iteratively identify and eliminate irrelevant features from the initial feature set. This iterative process enhances the efficiency of feature selection by systematically pruning less influential parameters, thereby improving the overall performance of the JVM. To validate the effectiveness of the hybrid approach, conducted experiments using real-world JVM datasets and compare the performance of the method against existing feature selection techniques. The results demonstrate that the approach not only achieves superior performance in terms of JVM fine-tuning but also provides insights into the significance of domain expertise in optimizing JVM performance (Menéndez and Bartlett in
http://arxiv.org/abs/2310.16510
, 2023). It contributes to the field of JVM optimization by proposing a novel hybrid approach that combines subject matter expertise with machine learning-based feature selection techniques. By leveraging both domain knowledge and automated algorithms, the approach offers a comprehensive solution for enhancing feature selection in JVM fine-tuning, ultimately leading to improved performance and efficiency in Java application execution. |
|---|---|
| AbstractList | Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning JVMs, thereby enhancing their overall efficiency. This paper presents a novel hybrid approach that integrates both subject matter expertise and Recursive Feature Elimination (RFE) (Yin et al. in J Big Data 10(1):15, 2023) model to refine feature selection for JVM fine-tuning using machine learning techniques. Traditional feature selection methods often lack the ability to incorporate domain-specific knowledge, resulting in suboptimal selections (Khaire and Dhanalakshmi in J King Saud Univ Comput Inf Sci 34(4):1060–1073, 2022). In contrast, the hybrid approach leverages the expertise of JVM administrators or developers to guide the feature selection process. By integrating domain knowledge into the feature selection pipeline, ensure the inclusion of crucial JVM parameters that may not be captured by automated techniques alone. Furthermore, employed the RFE model, a powerful recursive feature elimination algorithm, to iteratively identify and eliminate irrelevant features from the initial feature set. This iterative process enhances the efficiency of feature selection by systematically pruning less influential parameters, thereby improving the overall performance of the JVM. To validate the effectiveness of the hybrid approach, conducted experiments using real-world JVM datasets and compare the performance of the method against existing feature selection techniques. The results demonstrate that the approach not only achieves superior performance in terms of JVM fine-tuning but also provides insights into the significance of domain expertise in optimizing JVM performance (Menéndez and Bartlett in
http://arxiv.org/abs/2310.16510
, 2023). It contributes to the field of JVM optimization by proposing a novel hybrid approach that combines subject matter expertise with machine learning-based feature selection techniques. By leveraging both domain knowledge and automated algorithms, the approach offers a comprehensive solution for enhancing feature selection in JVM fine-tuning, ultimately leading to improved performance and efficiency in Java application execution. Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving efficient execution of Java applications. Feature selection plays a pivotal role in identifying the most relevant parameters for fine-tuning JVMs, thereby enhancing their overall efficiency. This paper presents a novel hybrid approach that integrates both subject matter expertise and Recursive Feature Elimination (RFE) (Yin et al. in J Big Data 10(1):15, 2023) model to refine feature selection for JVM fine-tuning using machine learning techniques. Traditional feature selection methods often lack the ability to incorporate domain-specific knowledge, resulting in suboptimal selections (Khaire and Dhanalakshmi in J King Saud Univ Comput Inf Sci 34(4):1060–1073, 2022). In contrast, the hybrid approach leverages the expertise of JVM administrators or developers to guide the feature selection process. By integrating domain knowledge into the feature selection pipeline, ensure the inclusion of crucial JVM parameters that may not be captured by automated techniques alone. Furthermore, employed the RFE model, a powerful recursive feature elimination algorithm, to iteratively identify and eliminate irrelevant features from the initial feature set. This iterative process enhances the efficiency of feature selection by systematically pruning less influential parameters, thereby improving the overall performance of the JVM. To validate the effectiveness of the hybrid approach, conducted experiments using real-world JVM datasets and compare the performance of the method against existing feature selection techniques. The results demonstrate that the approach not only achieves superior performance in terms of JVM fine-tuning but also provides insights into the significance of domain expertise in optimizing JVM performance (Menéndez and Bartlett in http://arxiv.org/abs/2310.16510, 2023). It contributes to the field of JVM optimization by proposing a novel hybrid approach that combines subject matter expertise with machine learning-based feature selection techniques. By leveraging both domain knowledge and automated algorithms, the approach offers a comprehensive solution for enhancing feature selection in JVM fine-tuning, ultimately leading to improved performance and efficiency in Java application execution. |
| ArticleNumber | 44 |
| Author | Bharathi, R. K. Vijayakumar, G. |
| Author_xml | – sequence: 1 givenname: G. surname: Vijayakumar fullname: Vijayakumar, G. email: vijayakumar.gundappa@gmail.com organization: Department of Computer Applications, JSS Science and Technology University – sequence: 2 givenname: R. K. surname: Bharathi fullname: Bharathi, R. K. organization: Department of Computer Applications, JSS Science and Technology University |
| BookMark | eNqNkE1P3DAQhi0EEpTyBzhZ4kpg_LFxwq1alQ9pJS7cLceZsF4lTrAd2r33h9fLrmhPVU8eS8_7aOb9Qo796JGQSwY3DEDdRgaqZgVwWUAtK1HAETnjeSp4XfPjv-ZTchGja2AhlOAlwBn59Twld48m3VH0a-Ot86-0y_85II3Yo01u9NfU0PW2Ca6lZprCaOya2nFonN_hcW42maODSQkDxZ8ThuQiUuNbGtDOIbp3_LRi7wbnzc5LB0zrsf1KTjrTR7w4vOfk5f77y_KxWD0_PC2_rQormEyFbAWwrq0By4WSUlpbyaasgC2w44tSqKZsec1tzVApCbZrmDJWCVZZy1QtzonYa2c_me0P0_d6Cm4wYasZ6F2Vel-lzlXqjyo15NTVPpXvfpsxJr0Z5-DznlowriRTHKpM8T1lwxhjwO7_1IeFYob9K4Y_6n-kfgNL_5bT |
| Cites_doi | 10.1007/978-1-4842-9511-3_8 10.1016/j.jbi.2018.07.014 10.1109/ICST57152.2023.00019 10.1007/s00521-021-06553-y 10.1177/09726225211066220 10.3390/w15142572 10.1007/978-3-030-99527-0_27 10.1111/gean.12316 10.1007/s10796-023-10409-2 10.1080/01621459.2023.2277403 10.23919/MIPRO55190.2022.9803445 10.1109/BigDataCongress.2016.64 10.3758/s13428-023-02072-x 10.23919/INDIACom54597.2022.9763147 10.1007/s10639-023-12007-w 10.1007/978-3-319-27763-9_2 10.1109/ACCESS.2019.2953800 10.1186/s40537-014-0008-6 10.1080/15376494.2021.1917021 10.1016/j.eswa.2022.119225 10.1080/03461238.2021.1980430 10.1007/s10664-022-10247-x 10.1007/s10270-021-00937-3 10.1007/s42979-022-01607-x 10.1007/978-1-4842-9490-1 10.1109/ACCESS.2022.3213081 10.2478/amcs-2018-0058 10.1111/j.1469-8986.2003.00141.x 10.2139/ssrn.4658128 10.1007/s10766-024-00766-z 10.1016/j.ejor.2021.06.053 10.36227/techrxiv.170774641.17450763 10.1038/s41598-023-39374-1 10.1007/978-1-4842-9888-6_7 10.1007/s00366-020-01280-9 10.1109/CVPR52688.2022.01012 10.1007/978-3-031-55639-5_7 10.1007/978-1-4842-9172-6_9 10.1007/s11269-022-03341-8 10.1007/978-981-16-7952-0_23 10.1007/s42107-023-00833-9 10.1186/s40537-023-00694-8 10.1007/s12008-022-01003-y 10.1007/978-1-4842-9729-2 10.1007/978-1-4842-1830-3_15 10.1016/j.ijhydene.2024.01.284 10.1007/978-3-031-49559-5_4 10.1186/s12874-022-01774-8 10.1080/03772063.2020.1844082 10.1007/978-981-19-3311-0_39 10.1016/j.jksuci.2019.06.012 10.1007/s40314-023-02402-x 10.1145/581888.581892 10.1007/s11831-024-10110-w 10.1007/978-3-031-12382-5_105 10.1007/978-1-4842-9490-1_6 10.1007/s10489-022-04002-4 10.1109/CCICT53244.2021.00038 10.1109/ICERECT56837.2022.10060788 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Dec 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Dec 2024 |
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1007/s10791-024-09483-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering Library & Information Science |
| EISSN | 2948-2992 1573-7659 |
| ExternalDocumentID | 10.1007/s10791-024-09483-0 10_1007_s10791_024_09483_0 |
| GroupedDBID | AAJSJ AASML AAYZH ABDBE AEFQL ALMA_UNASSIGNED_HOLDINGS BGNMA C6C JZLTJ M4Y NU0 SOJ AAYXX CITATION EBLON .4I .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29I 2J2 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7SC 7WY 8FD 8TC 8UJ 95- 95. 95~ 96X AABHQ AAHNG AAIAL AAJKR AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACSTC ADHHG ADHIR ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBS EIOEI ELW ESBYG F5P FEDTE FERAY FFXSO FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HMJXF HQYDN HRMNR HVGLF I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~Z J-C J0Z JBSCW JCJTX JQ2 KDC KOV L7M LAK LLZTM L~C L~D M0C MA- NB0 NPVJJ NQJWS O93 O9J OAM P2P P9O PF0 PT5 QOS R89 R9I RNS RPX S16 S27 S3B SAP SCO SDH SHX SISQX SNE SNPRN SNX SOHCF SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ADTOC ROL UNPAY |
| ID | FETCH-LOGICAL-c314t-4d301fd90e657444cc84b68015ef25637b6d292c91e7740cfb17ac7318cc1793 |
| IEDL.DBID | UNPAY |
| ISSN | 2948-2992 1386-4564 |
| IngestDate | Sun Sep 07 10:57:17 EDT 2025 Mon Jun 30 07:22:20 EDT 2025 Wed Oct 01 03:08:27 EDT 2025 Mon Jul 21 06:09:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | JVM RFE Feature selection GC |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-4d301fd90e657444cc84b68015ef25637b6d292c91e7740cfb17ac7318cc1793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s10791-024-09483-0 |
| PQID | 3127417208 |
| PQPubID | 26106 |
| ParticipantIDs | unpaywall_primary_10_1007_s10791_024_09483_0 proquest_journals_3127417208 crossref_primary_10_1007_s10791_024_09483_0 springer_journals_10_1007_s10791_024_09483_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-12 |
| PublicationDateYYYYMMDD | 2024-11-12 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Discover Computing |
| PublicationTitleAbbrev | Discov Computing |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Asimit V, Badescu A, Zhou F. Efficient and proper generalised linear models with power link functions. 2024. https://www.researchgate.net/profile/Alexandru-Badescu-3/publication/376204024_Efficient_and_proper_Generalised_Linear_Models_with_power_link_functions/links/656e63f7eb682952273c777c/Efficient-and-proper-Generalised-Linear-Models-with-power-link-functions.pdf. Accessed 20 May 2024. HanCZhouGZhouYBinary symbiotic organism search algorithm for feature selection and analysisIEEE Access2019716683316685910.1109/ACCESS.2019.2953800 MazumderSBig data tools and platformsBig data concepts, theories, and applications2016ChamSpringer2912810.1007/978-3-319-27763-9_2 Evans BJ, Clark J, Flanagan D. Java in a Nutshell. O’Reilly Media, Inc., 2023. https://books.google.com/books?hl=en&lr=&id=K-GtEAAAQBAJ&oi=fnd&pg=PT11&dq=JVM+has+evolved+into+a+sophisticated+and+indispensable+component+of+the+Java+ecosystem&ots=KdTHMNxzjc&sig=GgAg8m_ubCbcg0GE22TjJFHtnnc. Accessed 17 May 2024. AustinAMUsing a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modelingBMC Med Res Methodol202222130010.1186/s12874-022-01774-8 KumarSMishraAKChoudharyBSPrediction of back break in blasting using random decision treesEng Comput202238S21185119110.1007/s00366-020-01280-9 MuesMHowarFFismanDRosuGGDart: an ensemble of tools for dynamic symbolic execution on the java virtual machine (competition contribution)Tools and algorithms for the construction and analysis of systems2022ChamSpringer International Publishing43543910.1007/978-3-030-99527-0_27 SivakumarKKalaivaniSVenkatesanDVetrivelVHuY-CTiwariSTrivediMCMishraKKAn empirical analysis data mining frameworks—an overviewAmbient communications and computer systems2022SingaporeSpringer Nature24325410.1007/978-981-16-7952-0_23 EldorEKafka troubleshooting in production: stabilizing kafka clusters in the cloud and on-premises2023BerkeleyApress10.1007/978-1-4842-9490-1 AlkawazANAbdellatifAKanesanJKhairuddinASMGheniHMDay-ahead electricity price forecasting based on hybrid regression modelIEEE Access20221010802110803310.1109/ACCESS.2022.3213081 AgrawalHKubernetes fundamentals: a step-by-step development and interview guide2023BerkeleyApress10.1007/978-1-4842-9729-2 ShatzIAssumption-checking rather than (just) testing: the importance of visualization and effect size in statistical diagnosticsBehav Res Methods202310.3758/s13428-023-02072-x LeTTA glass-box approach for predictive modeling based on experimental data for a waste biomass derived producer gas-powered dual-fuel engineInt J Hydrog Energy2024581122113710.1016/j.ijhydene.2024.01.284 Menéndez JM, Bartlett M. Performance best practices using Java and AWS Lambda. arXiv. 2023. http://arxiv.org/abs/2310.16510. Accessed 17 May 2024. Vyas S, Tyagi RK, Jain C, Sahu S. Literature review: a comparative study of real time streaming technologies and Apache Kafka. In: Proceedings—2021 4th international conference on computational intelligence and communication technologies, CCICT 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 146–53. https://doi.org/10.1109/CCICT53244.2021.00038. KowalMSkobelMNowickiNThe feature selection problem in computer-assisted cytologyInt J Appl Math Comput Sci2018284759770388986410.2478/amcs-2018-0058 Chowdhury S, Lin Y, Liaw B, Kerby L. Evaluation of tree based regression over multiple linear regression for non-normally distributed data in battery performance. In: 2022 international conference on intelligent data science technologies and applications (IDSTA). IEEE; 2022. p. 17–25. https://ieeexplore.ieee.org/abstract/document/9923169/?casa_token=7Ic5Un4Gp2IAAAAA:zt_yr6AkVVmwpVYQYxOEuNHTBuP0IhWWtc81J5nMh5A-EOJVHkfzZYWQbNNUtl3bZZl6ar2nQh8. Accessed 20 May 2024. KoyaBPAnejaSGuptaRValeoCComparative analysis of different machine learning algorithms to predict mechanical properties of concreteMech Adv Mater Struct202229254032404310.1080/15376494.2021.1917021 Mohtashami A, Jaggi M, Stich SU. Special properties of gradient descent with large learning rates. In: International conference on machine learning, PMLR. 2023. p. 25082–104. https://proceedings.mlr.press/v202/mohtashami23a.html. Accessed 20 May 2024. Polito G, Tesone P, Palumbo N, Ducasse S, Privat J. Heap fuzzing: automatic garbage collection testing with expert-guided random events. In: 2023 IEEE conference on software testing, verification and validation (ICST). IEEE; 2023. p. 107–16. https://ieeexplore.ieee.org/abstract/document/10132213/. Accessed 20 May 2024. TrainiLCortellessaVDi PompeoDTucciMTowards effective assessment of steady state performance in Java software: are we there yet?Empir Softw Eng20232811310.1007/s10664-022-10247-x Jia D, Wang L, Valencia N, Bhimani J, Sheng B, Mi N. Learning-based dynamic memory allocation schemes for apache spark data processing. IEEE Trans Cloud Comput. 2023. https://ieeexplore.ieee.org/abstract/document/10315019/?casa_token=RGJqjls30UsAAAAA:4YC9cdCvnw3YyP-MrX23Sfl7xKklEUwdaie5Va4_6GUE8bJheiuWoc064n7q12B1DEpHNUtHmI8. Accessed 17 May 2024. YinYIGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 datasetJ Big Data20231011510.1186/s40537-023-00694-8 Agarwal C, D’souza D, Hooker S. Estimating example difficulty using variance of gradients. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 10368–78. http://openaccess.thecvf.com/content/CVPR2022/html/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.html. Accessed 20 May 2024. BianKPriyadarshiRMachine learning optimization techniques: a survey, classification, challenges, and future research issuesArch Comput Methods Eng202410.1007/s11831-024-10110-w JVM logs. https://www.kaggle.com/datasets/vijayakumargundappa/jvm-logs. Accessed 20 May 2024. Gupta GK, Sharma DK. A review of overfitting solutions in smart depression detection models. In: 2022 9th international conference on computing for sustainable global development (INDIACom). IEEE; 2022. p. 145–51. https://ieeexplore.ieee.org/abstract/document/9763147/. Accessed 20 May 2024. Sahin S, Cao W, Zhang Q, Liu L. JVM configuration management and its performance impact for big data applications. In: Proc.—2016 IEEE Int. Congr. Big Data BigData Congr. 2016. p. 410–7. https://doi.org/10.1109/BigDataCongress.2016.64. Norman T, Weinberger N, Levy KY. Robust linear regression for general feature distribution. In: International conference on artificial intelligence and statistics, PMLR. 2023. p. 2405–35. https://proceedings.mlr.press/v206/norman23a.html. Accessed 20 May 2024. Singaravadivelan K. On BiasWrappers: new regularization techniques for machine learning regression. Authorea Prepr. 2024. https://doi.org/10.36227/techrxiv.170774641.17450763. Accessed 20 May 2024. MishraPAdvanced AWS servicesCloud computing with AWS2023BerkeleyApress24727710.1007/978-1-4842-9172-6_9 VohraDUsing the Amazon EC2Pro docker2016BerkeleyApress22925210.1007/978-1-4842-1830-3_15 HöppnerSKehrerTTichyMContrasting dedicated model transformation languages versus general purpose languages: a historical perspective on ATL versus Java based on complexity and sizeSoftw Syst Model202221280583710.1007/s10270-021-00937-3 KumarVKedamNSharmaKVMehtaDJCaloieroTAdvanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction modelsWater20231514257210.3390/w15142572 ComberAA route map for successful applications of geographically weighted regressionGeogr Anal202355115517810.1111/gean.12316 HazarikaBBGuptaDBorahPRobust support vector quantile regression with truncated pinball loss (RSVQR)Comput Appl Math2023426283462779110.1007/s40314-023-02402-x SahlaouiHAlaouiEAAAgoujilSNayyarAAn empirical assessment of smote variants techniques and interpretation methods in improving the accuracy and the interpretability of student performance modelsEduc Inf Technol20242955447548310.1007/s10639-023-12007-w UrbanowiczRJMeekerMLa CavaWOlsonRSMooreJHRelief-based feature selection: introduction and reviewJ Biomed Inform20188518920310.1016/j.jbi.2018.07.014 KumarASinhaSSauravSChauhanVBPrediction of unconfined compressive strength of cement–fly ash stabilized soil using support vector machinesAsian J Civ Eng20242521149116110.1007/s42107-023-00833-9 DemirbagaÜAujlaGSJindalAKalyonOBig data monitoringBig data analytics2024ChamSpringer Nature15517010.1007/978-3-031-55639-5_7 LiJPittDLiHDispersion modelling of mortality for both sexes with Tweedie distributionsScand Actuar J202220224356374441882210.1080/03461238.2021.1980430 VarmaAJAlshuridehMAl KurdiBHMasa’dehRAlzoubiHMSalloumSA roadmap for SMEs to adopt an AI based cyber threat intelligenceThe effect of information technology on business and marketing intelligence systems2023ChamSpringer International Publishing1903192610.1007/978-3-031-12382-5_105 Thampi A. Interpretable AI: building explainable machine learning systems. Simon and Schuster; 2022. https://books.google.com/books?hl=en&lr=&id=yTRxEAAAQBAJ&oi=fnd&pg=PR13&dq=High+interpretability,+low+predictive+power+on+complex+data+linear+regression&ots=rB2xE8F-q7&sig=LrGWS9Xr40Ip9i2KsIzd8lpitVQ. Accessed 20 May 2024. KuppanThirumalaiGCommon SSD firmware featuresA beginner’s guide to SSD firmware2023BerkeleyApress9311810.1007/978-1-4842-9888-6_7 Aggarwal S, Pandit S. Spring boot application using three layered architecture in Java. 2023. http://www.ir.juit.ac.in:8080/jspui/handle/123456789/10202. Accessed 18 May 2024. ShuklaSKumarSTowards non-linear regression-based prediction of use case point (UCP) metricAppl Intell2023539103261033910.1007/s10489-022-04002-4 VidyashreeKPRajendraABAn improvised sentiment analysis model on twitter data using stochastic gradient descent (SGD) optimization algorithm in stochastic gate neural network (SGNN)SN Comput Sci20234219010.1007/s42979-022-01607-x Karegowda A, Gowda Karegowda A, Manjunath AS. Comparative study of attribute selection using gain ratio and correl 9483_CR69 9483_CR26 A Kumar (9483_CR67) 2024; 25 BB Hazarika (9483_CR70) 2023; 42 AM Austin (9483_CR60) 2022; 22 P Mishra (9483_CR19) 2023 9483_CR61 9483_CR64 UM Khaire (9483_CR3) 2022; 34 9483_CR21 9483_CR65 A Shashi (9483_CR11) 2023 M Kowal (9483_CR24) 2018; 28 AN Alkawaz (9483_CR41) 2022; 10 G Calderon (9483_CR15) 2023 L Zhou (9483_CR51) 2023 S Shukla (9483_CR55) 2023; 53 H Sahlaoui (9483_CR45) 2024; 29 H Agrawal (9483_CR20) 2023 9483_CR12 D Vohra (9483_CR29) 2016 9483_CR13 G KuppanThirumalai (9483_CR18) 2023 9483_CR58 TT Le (9483_CR53) 2024; 58 D Singh (9483_CR32) 2015; 2 9483_CR50 9483_CR52 P Moreno (9483_CR14) 2024 9483_CR9 S Kumar (9483_CR57) 2022; 38 N Jain (9483_CR59) 2023; 213 G Chen (9483_CR23) 2002; 1 A Comber (9483_CR49) 2023; 55 E Eldor (9483_CR16) 2023 B Yarahmadi (9483_CR54) 2023; 13 AJ Varma (9483_CR35) 2023 P Chakraborty (9483_CR44) 2022 B Liu (9483_CR46) 2023; 1 9483_CR47 V Kumar (9483_CR66) 2023; 15 9483_CR48 9483_CR1 S Mazumder (9483_CR33) 2016 K Bian (9483_CR36) 2024 S Höppner (9483_CR8) 2022; 21 P Das (9483_CR68) 2022; 36 Ü Demirbaga (9483_CR22) 2024 9483_CR4 T Vijayan (9483_CR27) 2023; 69 9483_CR7 J Li (9483_CR62) 2022; 2022 9483_CR6 Y Yin (9483_CR2) 2023; 10 E Dumitrescu (9483_CR56) 2022; 297 E Eldor (9483_CR17) 2023 K Dey (9483_CR40) 2023; 17 I Shatz (9483_CR42) 2023 9483_CR37 9483_CR38 J Fumero (9483_CR31) 2024 9483_CR39 9483_CR71 KP Vidyashree (9483_CR63) 2023; 4 S Mehrotra (9483_CR73) 2022; 21 L Traini (9483_CR10) 2023; 28 C Han (9483_CR25) 2019; 7 M Sharma (9483_CR43) 2022; 34 M Mues (9483_CR5) 2022 CA Joyce (9483_CR34) 2004; 41 RJ Urbanowicz (9483_CR28) 2018; 85 K Sivakumar (9483_CR30) 2022 BP Koya (9483_CR72) 2022; 29 |
| References_xml | – reference: LiJPittDLiHDispersion modelling of mortality for both sexes with Tweedie distributionsScand Actuar J202220224356374441882210.1080/03461238.2021.1980430 – reference: Vijayakumar G, Bharathi RK. Predicting JVM parameters for performance tuning using different regression algorithms. In: 4th international conference on emerging research in electronics, computer science and technology, ICERECT 2022. Institute of Electrical and Electronics Engineers Inc.; 2022. https://doi.org/10.1109/ICERECT56837.2022.10060788. – reference: Menéndez JM, Bartlett M. Performance best practices using Java and AWS Lambda. arXiv. 2023. http://arxiv.org/abs/2310.16510. Accessed 17 May 2024. – reference: BianKPriyadarshiRMachine learning optimization techniques: a survey, classification, challenges, and future research issuesArch Comput Methods Eng202410.1007/s11831-024-10110-w – reference: KumarASinhaSSauravSChauhanVBPrediction of unconfined compressive strength of cement–fly ash stabilized soil using support vector machinesAsian J Civ Eng20242521149116110.1007/s42107-023-00833-9 – reference: ShashiATroubleshooting and optimizationDesigning applications for google cloud platform2023BerkeleyApress20723310.1007/978-1-4842-9511-3_8 – reference: KhaireUMDhanalakshmiRStability of feature selection algorithm: a reviewJ King Saud Univ Comput Inf Sci20223441060107310.1016/j.jksuci.2019.06.012 – reference: ChenGShettyRKandemirMVijaykrishnanNIrwinMJWolczkoMTuning garbage collection for reducing memory system energy in an embedded Java environmentACM Trans Embed Comput Syst200211275510.1145/581888.581892 – reference: KoyaBPAnejaSGuptaRValeoCComparative analysis of different machine learning algorithms to predict mechanical properties of concreteMech Adv Mater Struct202229254032404310.1080/15376494.2021.1917021 – reference: AgrawalHKubernetes fundamentals: a step-by-step development and interview guide2023BerkeleyApress10.1007/978-1-4842-9729-2 – reference: DasPSachindraDAChandaKMachine learning-based rainfall forecasting with multiple non-linear feature selection algorithmsWater Resour Manag202236156043607110.1007/s11269-022-03341-8 – reference: SivakumarKKalaivaniSVenkatesanDVetrivelVHuY-CTiwariSTrivediMCMishraKKAn empirical analysis data mining frameworks—an overviewAmbient communications and computer systems2022SingaporeSpringer Nature24325410.1007/978-981-16-7952-0_23 – reference: Vyas S, Tyagi RK, Jain C, Sahu S. Literature review: a comparative study of real time streaming technologies and Apache Kafka. In: Proceedings—2021 4th international conference on computational intelligence and communication technologies, CCICT 2021. Institute of Electrical and Electronics Engineers Inc.; 2021. p. 146–53. https://doi.org/10.1109/CCICT53244.2021.00038. – reference: HanCZhouGZhouYBinary symbiotic organism search algorithm for feature selection and analysisIEEE Access2019716683316685910.1109/ACCESS.2019.2953800 – reference: Polito G, Tesone P, Palumbo N, Ducasse S, Privat J. Heap fuzzing: automatic garbage collection testing with expert-guided random events. In: 2023 IEEE conference on software testing, verification and validation (ICST). IEEE; 2023. p. 107–16. https://ieeexplore.ieee.org/abstract/document/10132213/. Accessed 20 May 2024. – reference: DemirbagaÜAujlaGSJindalAKalyonOBig data monitoringBig data analytics2024ChamSpringer Nature15517010.1007/978-3-031-55639-5_7 – reference: JainNJanaPKLRF: a logically randomized forest algorithm for classification and regression problemsExpert Syst Appl202321310.1016/j.eswa.2022.119225 – reference: LeTTA glass-box approach for predictive modeling based on experimental data for a waste biomass derived producer gas-powered dual-fuel engineInt J Hydrog Energy2024581122113710.1016/j.ijhydene.2024.01.284 – reference: KumarVKedamNSharmaKVMehtaDJCaloieroTAdvanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction modelsWater20231514257210.3390/w15142572 – reference: VarmaAJAlshuridehMAl KurdiBHMasa’dehRAlzoubiHMSalloumSA roadmap for SMEs to adopt an AI based cyber threat intelligenceThe effect of information technology on business and marketing intelligence systems2023ChamSpringer International Publishing1903192610.1007/978-3-031-12382-5_105 – reference: LiuBBased on intelligent advertising recommendation and abnormal advertising monitoring system in the field of machine learningInt J Comput Sci Inf Technol2023111723 – reference: HazarikaBBGuptaDBorahPRobust support vector quantile regression with truncated pinball loss (RSVQR)Comput Appl Math2023426283462779110.1007/s40314-023-02402-x – reference: MishraPAdvanced AWS servicesCloud computing with AWS2023BerkeleyApress24727710.1007/978-1-4842-9172-6_9 – reference: YinYIGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 datasetJ Big Data20231011510.1186/s40537-023-00694-8 – reference: Karegowda A, Gowda Karegowda A, Manjunath AS. Comparative study of attribute selection using gain ratio and correlation based feature selection RASTA-center for road technology VOLVO construction equipment Campus comparative study of attribute selection using gain ratio and correlation based feature selection. 2010. https://www.researchgate.net/publication/228919572. – reference: TrainiLCortellessaVDi PompeoDTucciMTowards effective assessment of steady state performance in Java software: are we there yet?Empir Softw Eng20232811310.1007/s10664-022-10247-x – reference: MuesMHowarFFismanDRosuGGDart: an ensemble of tools for dynamic symbolic execution on the java virtual machine (competition contribution)Tools and algorithms for the construction and analysis of systems2022ChamSpringer International Publishing43543910.1007/978-3-030-99527-0_27 – reference: CalderonGdel CampoGSaavedraESantamaríaAMonitoring framework for the performance evaluation of an IoT platform with elasticsearch and apache kafkaInf Syst Front202310.1007/s10796-023-10409-2 – reference: VohraDUsing the Amazon EC2Pro docker2016BerkeleyApress22925210.1007/978-1-4842-1830-3_15 – reference: Chowdhury S, Lin Y, Liaw B, Kerby L. Evaluation of tree based regression over multiple linear regression for non-normally distributed data in battery performance. In: 2022 international conference on intelligent data science technologies and applications (IDSTA). IEEE; 2022. p. 17–25. https://ieeexplore.ieee.org/abstract/document/9923169/?casa_token=7Ic5Un4Gp2IAAAAA:zt_yr6AkVVmwpVYQYxOEuNHTBuP0IhWWtc81J5nMh5A-EOJVHkfzZYWQbNNUtl3bZZl6ar2nQh8. Accessed 20 May 2024. – reference: HöppnerSKehrerTTichyMContrasting dedicated model transformation languages versus general purpose languages: a historical perspective on ATL versus Java based on complexity and sizeSoftw Syst Model202221280583710.1007/s10270-021-00937-3 – reference: Mohtashami A, Jaggi M, Stich SU. Special properties of gradient descent with large learning rates. In: International conference on machine learning, PMLR. 2023. p. 25082–104. https://proceedings.mlr.press/v202/mohtashami23a.html. Accessed 20 May 2024. – reference: Evans BJ, Clark J, Flanagan D. Java in a Nutshell. O’Reilly Media, Inc., 2023. https://books.google.com/books?hl=en&lr=&id=K-GtEAAAQBAJ&oi=fnd&pg=PT11&dq=JVM+has+evolved+into+a+sophisticated+and+indispensable+component+of+the+Java+ecosystem&ots=KdTHMNxzjc&sig=GgAg8m_ubCbcg0GE22TjJFHtnnc. Accessed 17 May 2024. – reference: Beronic D, Novosel N, Mihaljevic B, Radovan A. Assessing contemporary automated memory management in Java—garbage first, Shenandoah, and Z garbage collectors comparison. In: 2022 45th Jubil. Int. Conv. Inf. Commun. Electron. Technol. MIPRO 2022—Proc. 2022. p. 1495–500. https://doi.org/10.23919/MIPRO55190.2022.9803445. – reference: ZhouLCookRDZouHEnveloped Huber regressionJ Am Stat Assoc202310.1080/01621459.2023.2277403 – reference: YarahmadiBHashemianzadehSMMilani HosseiniSM-RMachine-learning-based predictions of imprinting quality using ensemble and non-linear regression algorithmsSci Rep20231311211110.1038/s41598-023-39374-1 – reference: Gupta GK, Sharma DK. A review of overfitting solutions in smart depression detection models. In: 2022 9th international conference on computing for sustainable global development (INDIACom). IEEE; 2022. p. 145–51. https://ieeexplore.ieee.org/abstract/document/9763147/. Accessed 20 May 2024. – reference: ShatzIAssumption-checking rather than (just) testing: the importance of visualization and effect size in statistical diagnosticsBehav Res Methods202310.3758/s13428-023-02072-x – reference: MazumderSBig data tools and platformsBig data concepts, theories, and applications2016ChamSpringer2912810.1007/978-3-319-27763-9_2 – reference: DumitrescuEHuéSHurlinCTokpaviSMachine learning for credit scoring: improving logistic regression with non-linear decision-tree effectsEur J Oper Res2022297311781192433897010.1016/j.ejor.2021.06.053 – reference: AustinAMUsing a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modelingBMC Med Res Methodol202222130010.1186/s12874-022-01774-8 – reference: Dupuy C, Arava R, Gupta R, Rumshisky A. An efficient dp-sgd mechanism for large scale nlu models. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2022. p. 4118–22. https://ieeexplore.ieee.org/abstract/document/9746975/?casa_token=9cWhlsIUT0AAAAAA:-5W1kR5nwTll5w2S-GonAlALCRZmenPj1I1DUjeWawxvxaObzxhcV6K9bwrhB_KB30noh-1JEBM. Accessed 20 May 2024. – reference: Thampi A. Interpretable AI: building explainable machine learning systems. Simon and Schuster; 2022. https://books.google.com/books?hl=en&lr=&id=yTRxEAAAQBAJ&oi=fnd&pg=PR13&dq=High+interpretability,+low+predictive+power+on+complex+data+linear+regression&ots=rB2xE8F-q7&sig=LrGWS9Xr40Ip9i2KsIzd8lpitVQ. Accessed 20 May 2024. – reference: JoyceCAGorodnitskyIFKutasMAutomatic removal of eye movement and blink artifacts from EEG data using blind component separationPsychophysiology200441231332510.1111/j.1469-8986.2003.00141.x – reference: VidyashreeKPRajendraABAn improvised sentiment analysis model on twitter data using stochastic gradient descent (SGD) optimization algorithm in stochastic gate neural network (SGNN)SN Comput Sci20234219010.1007/s42979-022-01607-x – reference: Das P, Kumar S, Kalambukattu J, Ahmad T. A comparative study on the predictive ability of machine learning techniques for spatial mapping of soil properties in Indian Himalayan region. Available SSRN 4658128. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4658128. Accessed 20 May 2024. – reference: KuppanThirumalaiGCommon SSD firmware featuresA beginner’s guide to SSD firmware2023BerkeleyApress9311810.1007/978-1-4842-9888-6_7 – reference: JVM logs. https://www.kaggle.com/datasets/vijayakumargundappa/jvm-logs. Accessed 20 May 2024. – reference: ComberAA route map for successful applications of geographically weighted regressionGeogr Anal202355115517810.1111/gean.12316 – reference: Norman T, Weinberger N, Levy KY. Robust linear regression for general feature distribution. In: International conference on artificial intelligence and statistics, PMLR. 2023. p. 2405–35. https://proceedings.mlr.press/v206/norman23a.html. Accessed 20 May 2024. – reference: VijayanTSangeethaMKumaravelAKarthikBFeature selection for simple color histogram filter based on retinal fundus images for diabetic retinopathy recognitionIETE J Res202369298799410.1080/03772063.2020.1844082 – reference: DeyKKalitaKChakrabortySPrediction performance analysis of neural network models for an electrical discharge turning processInt J Interact Des Manuf202317282784510.1007/s12008-022-01003-y – reference: Sahith CSK, Muppidi S, Merugula S. Apache spark big data analysis, performance tuning, and spark application optimization. In: 2023 international conference on evolutionary algorithms and soft computing techniques (EASCT). IEEE; 2023. p. 1–8. https://ieeexplore.ieee.org/abstract/document/10393086/?casa_token=dMsy49T3yRwAAAAA:2VdB9-66jRgDS5gCRnkOOuW3PeVOkQcfJmKLcTiCujChisLzpZExxbRDK-ZcU8JnKLFLoy4aLjg. Accessed 17 May 2024. – reference: Asimit V, Badescu A, Zhou F. Efficient and proper generalised linear models with power link functions. 2024. https://www.researchgate.net/profile/Alexandru-Badescu-3/publication/376204024_Efficient_and_proper_Generalised_Linear_Models_with_power_link_functions/links/656e63f7eb682952273c777c/Efficient-and-proper-Generalised-Linear-Models-with-power-link-functions.pdf. Accessed 20 May 2024. – reference: ShuklaSKumarSTowards non-linear regression-based prediction of use case point (UCP) metricAppl Intell2023539103261033910.1007/s10489-022-04002-4 – reference: KumarSMishraAKChoudharyBSPrediction of back break in blasting using random decision treesEng Comput202238S21185119110.1007/s00366-020-01280-9 – reference: Aggarwal S, Pandit S. Spring boot application using three layered architecture in Java. 2023. http://www.ir.juit.ac.in:8080/jspui/handle/123456789/10202. Accessed 18 May 2024. – reference: EldorEKafka troubleshooting in production: stabilizing kafka clusters in the cloud and on-premises2023BerkeleyApress10.1007/978-1-4842-9490-1 – reference: ChakrabortyPRafiammalSSThariniCJamalDNAsokanRRuizDPBaigZAPiramuthuSInfluence of bias and variance in selection of machine learning classifiers for biomedical applicationsSmart data intelligence2022SingaporeSpringer Nature45947210.1007/978-981-19-3311-0_39 – reference: Sahin S, Cao W, Zhang Q, Liu L. JVM configuration management and its performance impact for big data applications. In: Proc.—2016 IEEE Int. Congr. Big Data BigData Congr. 2016. p. 410–7. https://doi.org/10.1109/BigDataCongress.2016.64. – reference: Singaravadivelan K. On BiasWrappers: new regularization techniques for machine learning regression. Authorea Prepr. 2024. https://doi.org/10.36227/techrxiv.170774641.17450763. Accessed 20 May 2024. – reference: MorenoPAreiasMRochaRSantosCostaVYet another lock-free atom table design for scalable symbol management in prologInt J Parallel Program202410.1007/s10766-024-00766-z – reference: Agarwal C, D’souza D, Hooker S. Estimating example difficulty using variance of gradients. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 10368–78. http://openaccess.thecvf.com/content/CVPR2022/html/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.html. Accessed 20 May 2024. – reference: KowalMSkobelMNowickiNThe feature selection problem in computer-assisted cytologyInt J Appl Math Comput Sci2018284759770388986410.2478/amcs-2018-0058 – reference: Jia D, Wang L, Valencia N, Bhimani J, Sheng B, Mi N. Learning-based dynamic memory allocation schemes for apache spark data processing. IEEE Trans Cloud Comput. 2023. https://ieeexplore.ieee.org/abstract/document/10315019/?casa_token=RGJqjls30UsAAAAA:4YC9cdCvnw3YyP-MrX23Sfl7xKklEUwdaie5Va4_6GUE8bJheiuWoc064n7q12B1DEpHNUtHmI8. Accessed 17 May 2024. – reference: SinghDReddyCKA survey on platforms for big data analyticsJ Big Data20152112010.1186/s40537-014-0008-6 – reference: SharmaMAgrawalHChoudharyBSMultivariate regression and genetic programming for prediction of backbreak in open-pit blastingNeural Comput Appl20223432103211410.1007/s00521-021-06553-y – reference: SahlaouiHAlaouiEAAAgoujilSNayyarAAn empirical assessment of smote variants techniques and interpretation methods in improving the accuracy and the interpretability of student performance modelsEduc Inf Technol20242955447548310.1007/s10639-023-12007-w – reference: AlkawazANAbdellatifAKanesanJKhairuddinASMGheniHMDay-ahead electricity price forecasting based on hybrid regression modelIEEE Access20221010802110803310.1109/ACCESS.2022.3213081 – reference: UrbanowiczRJMeekerMLa CavaWOlsonRSMooreJHRelief-based feature selection: introduction and reviewJ Biomed Inform20188518920310.1016/j.jbi.2018.07.014 – reference: MehrotraSKhannaARecruitment through AI in selected Indian companiesMetamorph J Manag Res2022211313910.1177/09726225211066220 – reference: EldorERAM allocation in kafka clusters: performance, stability, and optimization strategiesKafka troubleshooting in production2023BerkeleyApress638410.1007/978-1-4842-9490-1_6 – reference: FumeroJStratikopoulosAKotselidisCManaged runtime environmentsProgramming heterogeneous hardware via managed runtime systems2024ChamSpringer International Publishing577010.1007/978-3-031-49559-5_4 – start-page: 207 volume-title: Designing applications for google cloud platform year: 2023 ident: 9483_CR11 doi: 10.1007/978-1-4842-9511-3_8 – volume: 85 start-page: 189 year: 2018 ident: 9483_CR28 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.07.014 – ident: 9483_CR38 doi: 10.1109/ICST57152.2023.00019 – volume: 34 start-page: 2103 issue: 3 year: 2022 ident: 9483_CR43 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06553-y – volume: 21 start-page: 31 issue: 1 year: 2022 ident: 9483_CR73 publication-title: Metamorph J Manag Res doi: 10.1177/09726225211066220 – volume: 15 start-page: 2572 issue: 14 year: 2023 ident: 9483_CR66 publication-title: Water doi: 10.3390/w15142572 – start-page: 435 volume-title: Tools and algorithms for the construction and analysis of systems year: 2022 ident: 9483_CR5 doi: 10.1007/978-3-030-99527-0_27 – volume: 55 start-page: 155 issue: 1 year: 2023 ident: 9483_CR49 publication-title: Geogr Anal doi: 10.1111/gean.12316 – ident: 9483_CR9 – year: 2023 ident: 9483_CR15 publication-title: Inf Syst Front doi: 10.1007/s10796-023-10409-2 – year: 2023 ident: 9483_CR51 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2023.2277403 – ident: 9483_CR37 doi: 10.23919/MIPRO55190.2022.9803445 – ident: 9483_CR1 doi: 10.1109/BigDataCongress.2016.64 – year: 2023 ident: 9483_CR42 publication-title: Behav Res Methods doi: 10.3758/s13428-023-02072-x – ident: 9483_CR58 doi: 10.23919/INDIACom54597.2022.9763147 – volume: 29 start-page: 5447 issue: 5 year: 2024 ident: 9483_CR45 publication-title: Educ Inf Technol doi: 10.1007/s10639-023-12007-w – ident: 9483_CR4 – start-page: 29 volume-title: Big data concepts, theories, and applications year: 2016 ident: 9483_CR33 doi: 10.1007/978-3-319-27763-9_2 – volume: 7 start-page: 166833 year: 2019 ident: 9483_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953800 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 9483_CR32 publication-title: J Big Data doi: 10.1186/s40537-014-0008-6 – volume: 29 start-page: 4032 issue: 25 year: 2022 ident: 9483_CR72 publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2021.1917021 – volume: 213 year: 2023 ident: 9483_CR59 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119225 – volume: 2022 start-page: 356 issue: 4 year: 2022 ident: 9483_CR62 publication-title: Scand Actuar J doi: 10.1080/03461238.2021.1980430 – volume: 28 start-page: 13 issue: 1 year: 2023 ident: 9483_CR10 publication-title: Empir Softw Eng doi: 10.1007/s10664-022-10247-x – volume: 21 start-page: 805 issue: 2 year: 2022 ident: 9483_CR8 publication-title: Softw Syst Model doi: 10.1007/s10270-021-00937-3 – volume: 4 start-page: 190 issue: 2 year: 2023 ident: 9483_CR63 publication-title: SN Comput Sci doi: 10.1007/s42979-022-01607-x – volume-title: Kafka troubleshooting in production: stabilizing kafka clusters in the cloud and on-premises year: 2023 ident: 9483_CR16 doi: 10.1007/978-1-4842-9490-1 – volume: 10 start-page: 108021 year: 2022 ident: 9483_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3213081 – ident: 9483_CR39 – volume: 28 start-page: 759 issue: 4 year: 2018 ident: 9483_CR24 publication-title: Int J Appl Math Comput Sci doi: 10.2478/amcs-2018-0058 – volume: 41 start-page: 313 issue: 2 year: 2004 ident: 9483_CR34 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2003.00141.x – ident: 9483_CR52 – ident: 9483_CR71 doi: 10.2139/ssrn.4658128 – year: 2024 ident: 9483_CR14 publication-title: Int J Parallel Program doi: 10.1007/s10766-024-00766-z – volume: 297 start-page: 1178 issue: 3 year: 2022 ident: 9483_CR56 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2021.06.053 – ident: 9483_CR69 doi: 10.36227/techrxiv.170774641.17450763 – volume: 13 start-page: 12111 issue: 1 year: 2023 ident: 9483_CR54 publication-title: Sci Rep doi: 10.1038/s41598-023-39374-1 – start-page: 93 volume-title: A beginner’s guide to SSD firmware year: 2023 ident: 9483_CR18 doi: 10.1007/978-1-4842-9888-6_7 – volume: 38 start-page: 1185 issue: S2 year: 2022 ident: 9483_CR57 publication-title: Eng Comput doi: 10.1007/s00366-020-01280-9 – ident: 9483_CR48 doi: 10.1109/CVPR52688.2022.01012 – start-page: 155 volume-title: Big data analytics year: 2024 ident: 9483_CR22 doi: 10.1007/978-3-031-55639-5_7 – start-page: 247 volume-title: Cloud computing with AWS year: 2023 ident: 9483_CR19 doi: 10.1007/978-1-4842-9172-6_9 – volume: 36 start-page: 6043 issue: 15 year: 2022 ident: 9483_CR68 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03341-8 – ident: 9483_CR65 – start-page: 243 volume-title: Ambient communications and computer systems year: 2022 ident: 9483_CR30 doi: 10.1007/978-981-16-7952-0_23 – volume: 25 start-page: 1149 issue: 2 year: 2024 ident: 9483_CR67 publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00833-9 – volume: 10 start-page: 15 issue: 1 year: 2023 ident: 9483_CR2 publication-title: J Big Data doi: 10.1186/s40537-023-00694-8 – ident: 9483_CR7 – ident: 9483_CR13 – volume: 17 start-page: 827 issue: 2 year: 2023 ident: 9483_CR40 publication-title: Int J Interact Des Manuf doi: 10.1007/s12008-022-01003-y – volume-title: Kubernetes fundamentals: a step-by-step development and interview guide year: 2023 ident: 9483_CR20 doi: 10.1007/978-1-4842-9729-2 – start-page: 229 volume-title: Pro docker year: 2016 ident: 9483_CR29 doi: 10.1007/978-1-4842-1830-3_15 – volume: 58 start-page: 1122 year: 2024 ident: 9483_CR53 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2024.01.284 – start-page: 57 volume-title: Programming heterogeneous hardware via managed runtime systems year: 2024 ident: 9483_CR31 doi: 10.1007/978-3-031-49559-5_4 – volume: 22 start-page: 300 issue: 1 year: 2022 ident: 9483_CR60 publication-title: BMC Med Res Methodol doi: 10.1186/s12874-022-01774-8 – ident: 9483_CR61 – ident: 9483_CR26 – volume: 69 start-page: 987 issue: 2 year: 2023 ident: 9483_CR27 publication-title: IETE J Res doi: 10.1080/03772063.2020.1844082 – start-page: 459 volume-title: Smart data intelligence year: 2022 ident: 9483_CR44 doi: 10.1007/978-981-19-3311-0_39 – volume: 34 start-page: 1060 issue: 4 year: 2022 ident: 9483_CR3 publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2019.06.012 – volume: 42 start-page: 283 issue: 6 year: 2023 ident: 9483_CR70 publication-title: Comput Appl Math doi: 10.1007/s40314-023-02402-x – volume: 1 start-page: 27 issue: 1 year: 2002 ident: 9483_CR23 publication-title: ACM Trans Embed Comput Syst doi: 10.1145/581888.581892 – year: 2024 ident: 9483_CR36 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-024-10110-w – start-page: 1903 volume-title: The effect of information technology on business and marketing intelligence systems year: 2023 ident: 9483_CR35 doi: 10.1007/978-3-031-12382-5_105 – start-page: 63 volume-title: Kafka troubleshooting in production year: 2023 ident: 9483_CR17 doi: 10.1007/978-1-4842-9490-1_6 – ident: 9483_CR47 – ident: 9483_CR64 – ident: 9483_CR50 – volume: 53 start-page: 10326 issue: 9 year: 2023 ident: 9483_CR55 publication-title: Appl Intell doi: 10.1007/s10489-022-04002-4 – ident: 9483_CR21 doi: 10.1109/CCICT53244.2021.00038 – volume: 1 start-page: 17 issue: 1 year: 2023 ident: 9483_CR46 publication-title: Int J Comput Sci Inf Technol – ident: 9483_CR6 doi: 10.1109/ICERECT56837.2022.10060788 – ident: 9483_CR12 |
| SSID | ssib053732600 ssj0006449 |
| Score | 2.373167 |
| Snippet | Optimizing the performance of Java Virtual Machines (JVMs) (Sahin et al. in Proc IEEE Int Congr Big Data BigData Congr 410–417, 2016) is crucial for achieving... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 44 |
| SubjectTerms | Algorithms Automation Big Data Compilers Computer Science Data Mining and Knowledge Discovery Data Structures and Information Theory Efficiency Feature selection Information Storage and Retrieval Machine learning Natural Language Processing (NLP) Parameter identification Pattern Recognition Performance enhancement Process parameters Recursive functions Virtual environments |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYCBb0ShoBvYqKUkduKEDVWgCglYitQtsh2bDiVU_RDqzg_H5yYtIIRgjnJRfHe6Z5_vPUIuiig1UmWKhplNKbcZo8rhCMql4WlojZRekuX-Iek-8bt-3K9ocnAW5lv_HkfcBN7NiTh1G5GUUbc9X3dFKvGN2aRTx07MBEOu9Wou5udXv9aeFaBc9kC3yMasHMn5mxwOP5WZ212yXeFDuF44dI-smXKf7NTaC1Cl4gF5f3S5jvjtCkw5QNKM8hncT2NDACZe3MateBskDOY4lAU1eTi4EFNeFQImM4WnMPDiOTbBk_2jNjPIsoAxHsTj3falVTP0CmBoFxbC04ekd3vT63RppahANQv5lPLC5bMtssAkseCca51ylbgiFRvrsA8TKimiLNJZaBwsDLRVoZBauLzXGjP5iDTK19IcE9BGK8G4ZJGwPJVKJSYOmTOrhBXSxk1yWS91PlrwZuQrhmR0TO4ck3vH5EGTtGpv5FUOTXIWIrWOiIK0Sdq1h1aPf7PWXnrxDx8_-Z_1U7IZYUzhVcCoRRrT8cycOWAyVec-Ij8AYFbcBg priority: 102 providerName: Springer Nature |
| Title | OptiFeat: enhancing feature selection, a hybrid approach combining subject matter expertise and recursive feature elimination method |
| URI | https://link.springer.com/article/10.1007/s10791-024-09483-0 https://www.proquest.com/docview/3127417208 https://doi.org/10.1007/s10791-024-09483-0 |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2948-2992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006449 issn: 2948-2992 databaseCode: ABDBF dateStart: 20081001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2948-2992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006449 issn: 2948-2992 databaseCode: ADMLS dateStart: 20081001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2948-2992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006449 issn: 2948-2992 databaseCode: AFBBN dateStart: 19990401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2948-2992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib053732600 issn: 2948-2992 databaseCode: AAJSJ dateStart: 19990401 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2948-2992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006449 issn: 2948-2992 databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2948-2992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006449 issn: 2948-2992 databaseCode: U2A dateStart: 19990401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5B-zB4GKBtWhlUfuCNGjWOEyd7a6tVqBJl0kBiT5Ht2KtEyRBthcozP5y7NG0ZmhA85cHJJbq7nM_23fcBHOUicdqkhgepT7j0acgN5hFcaieTwDutS0qWs2F8eikHV9FVBZNDvTAvzu-pxU1RbY6QHBciSchxeV6PI8y7a1C_HP7s_Cb2OBzhGFdF1RXz_wf_nXnW6eTqBHQbPsyKWz2_1-Pxs0mmv7NgK5qU2IRUW3J9MpuaE_vwArnxbd-_Cx-rXJN1Fs6xBxuu-ASP5xgkKPH7zlwxIrSN4g9DbdFJApuUrDhoqhbTbDSnbi62RB1n6JumpJNgk5mh7Rt2U4JzspIlgEidmS5ydkc7-FQUv5LqxiV1GMllC8bqz3DR_3HRO-UVFQO3YSCnXOYYCHyetl0cKSmltYk0Mc5ukfOYNIXKxLlIhU0Dh_lk23oTKG0VBgxrKQR8gVrxt3BfgVlnjQqlDoXyMtHGxC4KQhRrlFfaRw04Xlopu10AbmRraGVSZobKzEplZu0GHCwNmVU_3yQLA8LkUaKdNKC1NO56-DVprZUDvOHl---7_RtsCfIDqiEUB1Cb3s3cIWY0U9OEeqcz-DWga7_bHTZhsxf3mpWDPwEdAPFL |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MHNCDv40oag_epAlbu3XzRowEEfAgJtyWtmvlgJMwiOHuH27f2AATY_S87C3r91772r73fQhdx26ghQwlcUITEGZCSqTNIwgTmgWO0UJkkiy9vt9-YZ2hN8ybwtKi2r24ksxm6o1mNw5VOi4jdksSUGI36mUosrLhWG42O8-dwo88yinwruc9Mj-__H0dWieXq_vQHVSZJxOx-BDj8caS09pHu3muiJtLcA_Qlk4O0V6hw4DzsDxCn0827iGXu8U6GQGBRvKK7QDA5QBOM6EbO_p1LPBoAQ1auCASx_bPZaYQgdO5hBMZ_JbxbeKM-B90mrFIYjyFQ3moc19Z1eNMDQzs4qUI9TEatO4Hd22SqysQRR02Iyy2sW3isKF9jzPGlAqY9O2C5Wlj8yDKpR-7oatCR9sUsaGMdLhQ3M4BSkFUn6BS8p7oU4SVVpJTJqjLDQuElL72HGrNSm64MF4V3RRDHU2WHBrRmi0ZgIksMFEGTNSoolqBRpTHUxpRB2h2uNsIqqheILR-_Ju1-grFP3z87H_Wr1ClPeh1o-5D__EcbbvgX1Ai6NZQaTad6wubsMzkZe6fX8BW5F8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSDwG3ohCAQ9s1GoTO3HChgpVeRWGInWLbMemQwlVH0Ld-eH43KQtEkIwRzlL_ny-s333fQidp36khYwl8WITEWZiSqTNIwgTmkWe0UI4SZbHVth8YXedoLPQxe-q3YsnyWlPA7A0ZaNqPzXVhcY3DhU7PiP2eBJRYg_tK8xGN9AwqIf1YkUFlFNgYM-7ZX7-9XtEmqeZs5fRDbQ2zvpi8iF6vYXg09hGm3nWiK-mMO-gJZ3toq1CkQHnDrqHPp_sDgBZ3SXWWReoNLJXbKcCngnw0EneWBwqWODuBFq1cEEpju0cSKcVgYdjCXcz-M0xb2InAQCKzVhkKR7A9TxUvM-s6p7TBQO7eCpHvY_ajZt2vUlynQWiqMdGhKXWy00a13QYcMaYUhGToQ1dgTY2I6Jchqkf-yr2tE0Wa8pIjwvF7W6gFPj3AVrO3jN9iLDSSnLKBPW5YZGQMtSBR61ZyQ0XJiihi2Kqk_6UTSOZ8yYDMIkFJnHAJLUSKhdoJLlnDRPqAeEO92tRCVUKhOaff7NWmaH4h8GP_mf9DK0-XzeSh9vW_TFa92F5Qa2gX0bLo8FYn9jMZSRP3eL8AvJo5zw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD-rBH6g4f5GDN5expmnTehuiDMHpwcE8lSRNHDjrWDdknv3Dfa_rNh0iek77WvJeX740730fIWcpj6zSsWZe7CImXOwzDTiCCWVF5DmrVCHJctsOWx1x0w26JU0O9sIsnd9ji5vE2hwuGGxEIp_B9nw1DAB3V8hqp33ffET1OBhhkFd52RXz843fV54FnJyfgG6QtXE2UJM31e9_WWSut6ZqRXnBTYi1Jc_18UjXzfsSc-Pf3n-bbJZYkzanwbFDVmy2Sz7uIEkg8LugNush20b2RGG28CSB5oUqDriqRhXtTbCbi85YxynEpi7kJGg-1vj7hr4U5Jy0UAlAUWeqspQO8Q8-FsXPrdp-IR2GdulUsXqPPFxfPVy2WCnFwIzviRETKSQCl8YNGwZSCGFMJHQIq1tgHYAmX-ow5TE3sWcBTzaM055URkLCMAZTwD6pZK-ZPSDUWKOlL5TPpROR0jq0geeDWS2dVC6okvOZl5LBlHAjWVAr42QmMJlJMZlJo0qOZ45Myo8vT3wPOXkkb0RVUps5dzH8m7XaPAD-8PDD_11-RNY5xgHWEPJjUhkNx_YEEM1In5ah_AmQCe1m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptiFeat%3A+enhancing+feature+selection%2C+a+hybrid+approach+combining+subject+matter+expertise+and+recursive+feature+elimination+method&rft.jtitle=Discover+Computing&rft.au=Vijayakumar%2C+G.&rft.au=Bharathi%2C+R.+K.&rft.date=2024-11-12&rft.issn=2948-2992&rft.eissn=2948-2992&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1007%2Fs10791-024-09483-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10791_024_09483_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2992&client=summon |