MAP inference algorithms without approximation for collective graphical models on path graphs via discrete difference of convex algorithm

Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved variables under given observations is one of the essential operations in CGM. Because the MAP inference problem is known to be N...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 112; no. 1; pp. 99 - 129
Main Authors Akagi, Yasunori, Marumo, Naoki, Kim, Hideaki, Kurashima, Takeshi, Toda, Hiroyuki
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-022-06275-9

Cover

Abstract Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved variables under given observations is one of the essential operations in CGM. Because the MAP inference problem is known to be NP-hard in general, the current mainstream approach is to solve an alternative problem obtained by approximating the objective function and applying continuous relaxation. However, this approach has two significant drawbacks. First, the quality of the solution deteriorates when the values in the count data are negligible due to the inaccuracy of Stirling’s approximation. Second, the application of continuous relaxation causes the violation of integrality constraints. This paper proposes novel algorithms for MAP inference in CGMs on path graphs to overcome these problems. Our method is based on the discrete difference of convex algorithm (DCA); DCA is a general framework to minimize the sum of a convex function and a concave function by repeatedly minimizing surrogate functions. Utilizing the particular structure of path graphs, we efficiently solve the surrogate function minimization by minimum convex cost flow algorithms. Furthermore, our approach also leads to a new method of solving another important task; MAP inference of the sample size in CGM on path graphs. Our method is naturally applicable to this task, allowing us to design very efficient algorithms. Experimental results on synthetic and real-world datasets show the effectiveness of the proposed algorithms.
AbstractList Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved variables under given observations is one of the essential operations in CGM. Because the MAP inference problem is known to be NP-hard in general, the current mainstream approach is to solve an alternative problem obtained by approximating the objective function and applying continuous relaxation. However, this approach has two significant drawbacks. First, the quality of the solution deteriorates when the values in the count data are negligible due to the inaccuracy of Stirling’s approximation. Second, the application of continuous relaxation causes the violation of integrality constraints. This paper proposes novel algorithms for MAP inference in CGMs on path graphs to overcome these problems. Our method is based on the discrete difference of convex algorithm (DCA); DCA is a general framework to minimize the sum of a convex function and a concave function by repeatedly minimizing surrogate functions. Utilizing the particular structure of path graphs, we efficiently solve the surrogate function minimization by minimum convex cost flow algorithms. Furthermore, our approach also leads to a new method of solving another important task; MAP inference of the sample size in CGM on path graphs. Our method is naturally applicable to this task, allowing us to design very efficient algorithms. Experimental results on synthetic and real-world datasets show the effectiveness of the proposed algorithms.
Author Kurashima, Takeshi
Marumo, Naoki
Toda, Hiroyuki
Akagi, Yasunori
Kim, Hideaki
Author_xml – sequence: 1
  givenname: Yasunori
  orcidid: 0000-0001-7205-1307
  surname: Akagi
  fullname: Akagi, Yasunori
  email: yasunori.akagi.cu@hco.ntt.co.jp
  organization: NTT Human Informatics Laboratories, NTT Corporation
– sequence: 2
  givenname: Naoki
  surname: Marumo
  fullname: Marumo, Naoki
  organization: NTT Communication Science Laboratories, NTT Corporation
– sequence: 3
  givenname: Hideaki
  surname: Kim
  fullname: Kim, Hideaki
  organization: NTT Human Informatics Laboratories, NTT Corporation
– sequence: 4
  givenname: Takeshi
  surname: Kurashima
  fullname: Kurashima, Takeshi
  organization: NTT Human Informatics Laboratories, NTT Corporation
– sequence: 5
  givenname: Hiroyuki
  surname: Toda
  fullname: Toda, Hiroyuki
  organization: NTT Human Informatics Laboratories, NTT Corporation
BookMark eNqNkMtOwzAQRS1UJErhB1hZYh0YO7GTLFHFSyqCBawtx7HbVKkd7PT1Cfw1hhSxQ6xmpLn3zsw5RSPrrEbogsAVAcivA4GyzBKgNAFOc5aUR2hMWJ4mwDgboTEUBUs4oewEnYawBADKCz5GH083L7ixRnttlcaynTvf9ItVwNtY3LrHsuu82zUr2TfOYuM8Vq5tteqbjcZzL7tFo2SLV67WbcBR0sl-MQwC3jQS101QXvc6NuZnjzMxxW707nfjGTo2sg36_FAn6O3u9nX6kMye7x-nN7NEpSTrkzTPucoyAJ3VTPKSQl2xDDLQBiqQhTIlqQykdaVYQQ2ruJFVnfOKklJCadIJSofcte3kfivbVnQ-vuf3goD4oikGmiLSFN80RRldl4Mrwnhf69CLpVt7Gw8VNOecFYywNKrooFLeheC1-V_04aAQxXau_W_0H65P5MWZUg
Cites_doi 10.1109/CVPR.2017.454
10.1007/s10107-018-1235-y
10.1609/aaai.v31i1.10889
10.1609/aaai.v34i04.5713
10.1007/BF02579369
10.1609/aaai.v33i01.33013935
10.1007/s10107-014-0792-y
10.1007/BF02680565
10.24963/ijcai.2018/494
10.1007/s10994-014-5455-y
10.24963/ijcai.2018/457
10.1007/s10107-017-1139-2
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1007/s10994-022-06275-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Central Science Database (via ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 129
ExternalDocumentID 10.1007/s10994-022-06275-9
10_1007_s10994_022_06275_9
GrantInformation_xml – fundername: Nippon Telegraph and Telephone
  funderid: http://dx.doi.org/10.13039/501100004180
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-3776c4400e4d5a6920db54040ef0b0a8cf91bf03dbc582f5b6fabd76b219a09f3
IEDL.DBID BENPR
ISSN 0885-6125
1573-0565
IngestDate Tue Aug 19 19:20:54 EDT 2025
Fri Jul 25 02:14:51 EDT 2025
Wed Oct 01 01:04:00 EDT 2025
Fri Feb 21 02:45:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Network flow
Collective graphical model
Discrete difference of convex algorithm
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-3776c4400e4d5a6920db54040ef0b0a8cf91bf03dbc582f5b6fabd76b219a09f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7205-1307
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10994-022-06275-9
PQID 2766585153
PQPubID 54194
PageCount 31
ParticipantIDs unpaywall_primary_10_1007_s10994_022_06275_9
proquest_journals_2766585153
crossref_primary_10_1007_s10994_022_06275_9
springer_journals_10_1007_s10994_022_06275_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhang, S., Wu, G., Costeira, J.P., & Moura, J.M.F. (2017). Understanding traffic density from large-scale web camera data. In Proceedings of the 30th IEEE conference on computer vision and pattern recognition (pp. 5898–5907).
ZhangYCharoenphakdeeNZhenguoWSugiyamaMLearning from aggregate observationsAdvances in Neural Information Processing Systems202033470478
AhujaRKMagnantiTLOrlinJBNetwork flows: Theory, algorithms, and applications1993Prentice-Hall Inc
SheldonDSaleh ElmohamedMAKozenDCollective inference on Markov models for modeling bird migrationAdvances in Neural Information Processing Systems20072013211328
MaeharaTMurotaKA framework of discrete DC programming by discrete convex analysisMathematical Programming20151521–243546610.1007/s10107-014-0792-y
Xu, H.-M., Xue, H., Chen, X.-H., & Wang, Y.-Y. (2017). Solving indefinite kernel support vector machine with difference of convex functions programming. In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 2782–2788).
TanakaYTanakaTIwataTKurashimaTOkawaMAkagiYTodaHSpatially aggregated Gaussian processes with multivariate areal outputsAdvances in Neural Information Processing Systems20193230003031
Iwata, T., & Shimizu, H. (2019). Neural collective graphical models for estimating spatio-temporal population flow from aggregated data. In Proceedings of the 33rd AAAI conference on artificial intelligence (pp. 3935–3942).
Sun, T., Sheldon, D., & Kumar, A. (2015). Message passing for collective graphical models. In Proceedings of the 32nd International Conference on Machine Learning, pages 853–861.
Nguyen, T., Kumar, A., Lau, H.C., & Sheldon, D. (2016). Approximate inference using DC programming for collective graphical models. In Proceedings of the 19th international conference on artificial intelligence and statistics (pp. 685–693).
Le ThiAHoaiLMinhHDinhTPFeature selection in machine learning: An exact penalty approach using a difference of convex function algorithmMachine Learning2015101116318610.1007/s10994-014-5455-y
MorimuraTOsogamiTIdéTSolving inverse problem of Markov chain with partial observationsAdvances in neural information processing systems20132616551663
BishopCMNasrabadiNMPattern recognition and machine learning2006Springer
Du, J., Kumar, A., & Varakantham, P. (2014). On understanding diffusion dynamics of patrons at a theme park. In Proceedings of the 13th international conference on autonomous agents and multiagent systems (pp. 1501–1502).
Narasimhan, M., & Bilmes, J. (2005). A submodular-supermodular procedure with applications to discriminative structure learning. In Proceedings of the 21th conference on uncertainty in artificial intelligence (pp. 404–412).
Vilnis, L., Belanger, D., Sheldon, D., & McCallum, A. (2015). Bethe projections for non-local inference. In Proceedings of the 31st conference on uncertainty in artificial intelligence (pp. 892–901).
Akagi, Y., Marumo, N., Kim, H., Kurashima, T., & Toda H. (2021). Non-approximate inference for collective graphical models on path graphs via discrete difference of convex algorithm. Advances in Neural Information Processing Systems, 34.
Le ThiHAPham DinhTDC programming and DCA: Thirty years of developmentsMathematical Programming2018169156810.1007/s10107-018-1235-y
Iyer, R. & Bilmes, J. (2012). Algorithms for approximate minimization of the difference between submodular functions, with applications. In Proceedings of the 28th conference on uncertainty in artificial intelligence (pp. 407–417).
Nitanda, A., & Suzuki, T. (2017). Stochastic difference of convex algorithm and its application to training deep Boltzmann machines. In Proceedings of the 20th international conference on artificial intelligence and statistics (pp. 470–478).
Akagi, Y., Nishimura, T., Kurashima, T., & Toda, H. (2018). A fast and accurate method for estimating people flow from spatiotemporal population data. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3293–3300).
PiotBGeistMPietquinODifference of convex functions programming for reinforcement learningAdvances in Neural Information Processing Systems20142725192527
Akagi, Y., Nishimura, T., Tanaka, Y., Kurashima, T., & Toda, H. (2020). Exact and efficient inference for collective flow diffusion model via minimum convex cost flow algorithm. In Proceedings of the 34th AAAI conference on artificial intelligence (pp. 3163–3170).
TardosÉA strongly polynomial minimum cost circulation algorithmCombinatorica19855324725510.1007/BF02579369
Tanaka, Y., Iwata, T., Kurashima, T., Toda, H., & Ueda, N. (2018). Estimating latent people flow without tracking individuals. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3556–3563).
SheldonDDietterichTGCollective graphical modelsAdvances in Neural Information Processing Systems20112411611169
SuzukiTYamashitaMTeradaMUsing mobile spatial statistics in field of disaster prevention planningNTT DOCOMO Technical Journal20131433745
MurotaKDiscrete convex analysisMathematical Programming199883131337110.1007/BF02680565
Yuille, A.L., & Rangarajan, A. (2001). The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems, 14.
TeradaMNagataTKobayashiMPopulation estimation technology for mobile spatial statisticsNTT DOCOMO Technical Journal20131431015
Singh, R., Haasler, I., Zhang, Q., Karlsson, J., & Chen, Y. (2020). Inference with aggregate data: An optimal transport approach. CoRR. arXiv:abs/2003.13933.
MaeharaTMarumoNMurotaKContinuous relaxation for discrete DC programmingMathematical Programming2018169119921910.1007/s10107-017-1139-2
Sheldon, D., Sun, T., Kumar, A., & Dietterich, T. (2013). Approximate inference in collective graphical models. In Proceedings of the 30th international conference on machine learning (pp. 1004–1012).
A Le Thi (6275_CR10) 2015; 101
HA Le Thi (6275_CR9) 2018; 169
K Murota (6275_CR14) 1998; 83
CM Bishop (6275_CR5) 2006
B Piot (6275_CR18) 2014; 27
D Sheldon (6275_CR20) 2007; 20
6275_CR2
6275_CR3
6275_CR29
6275_CR22
6275_CR23
6275_CR25
T Morimura (6275_CR13) 2013; 26
6275_CR21
É Tardos (6275_CR27) 1985; 5
Y Tanaka (6275_CR26) 2019; 32
Y Zhang (6275_CR33) 2020; 33
D Sheldon (6275_CR19) 2011; 24
T Suzuki (6275_CR24) 2013; 14
6275_CR4
6275_CR6
6275_CR7
6275_CR8
RK Ahuja (6275_CR1) 1993
T Maehara (6275_CR12) 2018; 169
6275_CR15
M Terada (6275_CR28) 2013; 14
6275_CR16
6275_CR17
6275_CR30
T Maehara (6275_CR11) 2015; 152
6275_CR31
6275_CR32
References_xml – reference: Tanaka, Y., Iwata, T., Kurashima, T., Toda, H., & Ueda, N. (2018). Estimating latent people flow without tracking individuals. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3556–3563).
– reference: TardosÉA strongly polynomial minimum cost circulation algorithmCombinatorica19855324725510.1007/BF02579369
– reference: SheldonDDietterichTGCollective graphical modelsAdvances in Neural Information Processing Systems20112411611169
– reference: Akagi, Y., Marumo, N., Kim, H., Kurashima, T., & Toda H. (2021). Non-approximate inference for collective graphical models on path graphs via discrete difference of convex algorithm. Advances in Neural Information Processing Systems, 34.
– reference: AhujaRKMagnantiTLOrlinJBNetwork flows: Theory, algorithms, and applications1993Prentice-Hall Inc
– reference: Le ThiAHoaiLMinhHDinhTPFeature selection in machine learning: An exact penalty approach using a difference of convex function algorithmMachine Learning2015101116318610.1007/s10994-014-5455-y
– reference: Xu, H.-M., Xue, H., Chen, X.-H., & Wang, Y.-Y. (2017). Solving indefinite kernel support vector machine with difference of convex functions programming. In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 2782–2788).
– reference: Iyer, R. & Bilmes, J. (2012). Algorithms for approximate minimization of the difference between submodular functions, with applications. In Proceedings of the 28th conference on uncertainty in artificial intelligence (pp. 407–417).
– reference: SheldonDSaleh ElmohamedMAKozenDCollective inference on Markov models for modeling bird migrationAdvances in Neural Information Processing Systems20072013211328
– reference: Akagi, Y., Nishimura, T., Tanaka, Y., Kurashima, T., & Toda, H. (2020). Exact and efficient inference for collective flow diffusion model via minimum convex cost flow algorithm. In Proceedings of the 34th AAAI conference on artificial intelligence (pp. 3163–3170).
– reference: BishopCMNasrabadiNMPattern recognition and machine learning2006Springer
– reference: MorimuraTOsogamiTIdéTSolving inverse problem of Markov chain with partial observationsAdvances in neural information processing systems20132616551663
– reference: Akagi, Y., Nishimura, T., Kurashima, T., & Toda, H. (2018). A fast and accurate method for estimating people flow from spatiotemporal population data. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3293–3300).
– reference: PiotBGeistMPietquinODifference of convex functions programming for reinforcement learningAdvances in Neural Information Processing Systems20142725192527
– reference: TeradaMNagataTKobayashiMPopulation estimation technology for mobile spatial statisticsNTT DOCOMO Technical Journal20131431015
– reference: Le ThiHAPham DinhTDC programming and DCA: Thirty years of developmentsMathematical Programming2018169156810.1007/s10107-018-1235-y
– reference: MurotaKDiscrete convex analysisMathematical Programming199883131337110.1007/BF02680565
– reference: Iwata, T., & Shimizu, H. (2019). Neural collective graphical models for estimating spatio-temporal population flow from aggregated data. In Proceedings of the 33rd AAAI conference on artificial intelligence (pp. 3935–3942).
– reference: Zhang, S., Wu, G., Costeira, J.P., & Moura, J.M.F. (2017). Understanding traffic density from large-scale web camera data. In Proceedings of the 30th IEEE conference on computer vision and pattern recognition (pp. 5898–5907).
– reference: MaeharaTMarumoNMurotaKContinuous relaxation for discrete DC programmingMathematical Programming2018169119921910.1007/s10107-017-1139-2
– reference: TanakaYTanakaTIwataTKurashimaTOkawaMAkagiYTodaHSpatially aggregated Gaussian processes with multivariate areal outputsAdvances in Neural Information Processing Systems20193230003031
– reference: Nguyen, T., Kumar, A., Lau, H.C., & Sheldon, D. (2016). Approximate inference using DC programming for collective graphical models. In Proceedings of the 19th international conference on artificial intelligence and statistics (pp. 685–693).
– reference: Nitanda, A., & Suzuki, T. (2017). Stochastic difference of convex algorithm and its application to training deep Boltzmann machines. In Proceedings of the 20th international conference on artificial intelligence and statistics (pp. 470–478).
– reference: Vilnis, L., Belanger, D., Sheldon, D., & McCallum, A. (2015). Bethe projections for non-local inference. In Proceedings of the 31st conference on uncertainty in artificial intelligence (pp. 892–901).
– reference: Sun, T., Sheldon, D., & Kumar, A. (2015). Message passing for collective graphical models. In Proceedings of the 32nd International Conference on Machine Learning, pages 853–861.
– reference: SuzukiTYamashitaMTeradaMUsing mobile spatial statistics in field of disaster prevention planningNTT DOCOMO Technical Journal20131433745
– reference: MaeharaTMurotaKA framework of discrete DC programming by discrete convex analysisMathematical Programming20151521–243546610.1007/s10107-014-0792-y
– reference: ZhangYCharoenphakdeeNZhenguoWSugiyamaMLearning from aggregate observationsAdvances in Neural Information Processing Systems202033470478
– reference: Narasimhan, M., & Bilmes, J. (2005). A submodular-supermodular procedure with applications to discriminative structure learning. In Proceedings of the 21th conference on uncertainty in artificial intelligence (pp. 404–412).
– reference: Sheldon, D., Sun, T., Kumar, A., & Dietterich, T. (2013). Approximate inference in collective graphical models. In Proceedings of the 30th international conference on machine learning (pp. 1004–1012).
– reference: Singh, R., Haasler, I., Zhang, Q., Karlsson, J., & Chen, Y. (2020). Inference with aggregate data: An optimal transport approach. CoRR. arXiv:abs/2003.13933.
– reference: Du, J., Kumar, A., & Varakantham, P. (2014). On understanding diffusion dynamics of patrons at a theme park. In Proceedings of the 13th international conference on autonomous agents and multiagent systems (pp. 1501–1502).
– reference: Yuille, A.L., & Rangarajan, A. (2001). The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems, 14.
– volume-title: Network flows: Theory, algorithms, and applications
  year: 1993
  ident: 6275_CR1
– ident: 6275_CR32
  doi: 10.1109/CVPR.2017.454
– volume: 169
  start-page: 5
  issue: 1
  year: 2018
  ident: 6275_CR9
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-018-1235-y
– ident: 6275_CR30
  doi: 10.1609/aaai.v31i1.10889
– volume: 14
  start-page: 37
  issue: 3
  year: 2013
  ident: 6275_CR24
  publication-title: NTT DOCOMO Technical Journal
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 6275_CR5
– ident: 6275_CR23
– ident: 6275_CR21
– ident: 6275_CR3
  doi: 10.1609/aaai.v34i04.5713
– volume: 5
  start-page: 247
  issue: 3
  year: 1985
  ident: 6275_CR27
  publication-title: Combinatorica
  doi: 10.1007/BF02579369
– ident: 6275_CR16
– ident: 6275_CR7
  doi: 10.1609/aaai.v33i01.33013935
– ident: 6275_CR31
– volume: 24
  start-page: 1161
  year: 2011
  ident: 6275_CR19
  publication-title: Advances in Neural Information Processing Systems
– volume: 26
  start-page: 1655
  year: 2013
  ident: 6275_CR13
  publication-title: Advances in neural information processing systems
– volume: 14
  start-page: 10
  issue: 3
  year: 2013
  ident: 6275_CR28
  publication-title: NTT DOCOMO Technical Journal
– volume: 152
  start-page: 435
  issue: 1–2
  year: 2015
  ident: 6275_CR11
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-014-0792-y
– volume: 20
  start-page: 1321
  year: 2007
  ident: 6275_CR20
  publication-title: Advances in Neural Information Processing Systems
– volume: 83
  start-page: 313
  issue: 1
  year: 1998
  ident: 6275_CR14
  publication-title: Mathematical Programming
  doi: 10.1007/BF02680565
– volume: 27
  start-page: 2519
  year: 2014
  ident: 6275_CR18
  publication-title: Advances in Neural Information Processing Systems
– ident: 6275_CR25
  doi: 10.24963/ijcai.2018/494
– ident: 6275_CR29
– ident: 6275_CR22
– volume: 32
  start-page: 3000
  year: 2019
  ident: 6275_CR26
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 470
  year: 2020
  ident: 6275_CR33
  publication-title: Advances in Neural Information Processing Systems
– volume: 101
  start-page: 163
  issue: 1
  year: 2015
  ident: 6275_CR10
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5455-y
– ident: 6275_CR6
– ident: 6275_CR15
– ident: 6275_CR2
  doi: 10.24963/ijcai.2018/457
– ident: 6275_CR8
– volume: 169
  start-page: 199
  issue: 1
  year: 2018
  ident: 6275_CR12
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-017-1139-2
– ident: 6275_CR17
– ident: 6275_CR4
SSID ssj0002686
Score 2.3904583
Snippet Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 99
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Computer Science
Continuity (mathematics)
Control
Graphs
Inference
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Probabilistic models
Robotics
Simulation and Modeling
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGH6jcFAP4mdE0fTgTUb21Y4diQGJBuNBEjwt7bYqEYGwoeg_8F_bdiugMUbOW9qtffv26cfzPADnsVj6czuKDSplAFzsMYMxjg1LqpmLZbPlcMkd7tySdte97uFeTgpL9G13fSSpMvUS2U3J2IrFk5LWNfx1KCq9rQIUG1cPN815BraJcngUAwgbcgbPyTK_l_J9QlqgzPnB6BZsTIdj-v5GB4OluadVgq7-6uzKyXNtmrJa-PFD0HHV39qB7RyMokYWPbuwFg_3oKSNHlA-7vfhs9O4Q31NDUR08Dia9NOnlwTJbdzRNEVKmnzWz3iQSABhJAMsS6ZIiWLLYEDKdydB4hXphJw9SNBrnyLJDp4IAI-0Y4uoZ8SRuhQ_W9R4AN1W8_6ybeQeDkboWG4q8pdHQlckitiNMCW-bUZMgETXjLnJTFoPuW8xbjoRC3Hd5pgRTlnkESYyKTV97hxCYTgaxkeAfM_HDqUOoQI0mRH3KbFlSolJZFlhxMtwoTsyGGdSHcFClFm2ciBaOVCtHPhlqOi-DvJhmwS2R4g8J8VOGaq6uxaP_yqtOo-Rf1R-vFrpJ7ApXe6znZ8KFNLJND4VWChlZ3nofwF5nABi
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60HsSDb7FSJQdvuu2-ku0eiw-KoHiwoKcl2SRarNvSbrX6D_zXJtlNW0VE8ZyQIcns5Mtmvm8ADoW6-kufC4dqGYAQR8xhTGLH02rm6trsBVJzhy-vSLsTXtzi2wU4tVwYk-1unyQLToNWacryxoDLxhzxzUjaqouUkdl14rpqXoQlghUir8BS5-q6dVcASOzoQ9zIpkY6VY3gkjvz_UCfz6cZ6Jy-k67A8jgb0NcX2uvNHUXnayDsJIoMlMf6OGf19O2LvuN_Z7kOqyVWRa3CuTZgQWSbsGbrQKAyLGzB-2XrGnUtcxDR3n1_2M0fnkZI_-Xtj3NklMsn3YImiRRORtr_iliLjGa29hVkyvKMkOqiCyUXDSP03KVIk4eHCt8jW9BF2elLZHLmJzOL29A5P7s5aTtliQcnDbwwV-EtImmo4ogIOaYk9l3OFIYMXSFd5tJmKmOPSTfgLMVNX2JGJGU8IkwFWurGMtiBStbPxC6gOIpxQGlAqMJULpcxJb6OOIJwz0u5rMKR3dhkUCh5JDPNZr3SiVrpxKx0ElehZvc-Kb_qUeJHhOhnVBxU4dhu36z5p9GOpz7zC-N7f-teg0o-HIt9hY5ydlA6_wdOrAnE
  priority: 102
  providerName: Unpaywall
Title MAP inference algorithms without approximation for collective graphical models on path graphs via discrete difference of convex algorithm
URI https://link.springer.com/article/10.1007/s10994-022-06275-9
https://www.proquest.com/docview/2766585153
https://link.springer.com/content/pdf/10.1007/s10994-022-06275-9.pdf
UnpaywallVersion publishedVersion
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AMVHM
  dateStart: 20080107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3ttgfgwDeisFQ-cGMj8mWnOSCUVu2uQBtViEq7p8iOY6hU2rJNYfkJ_GtmnLiBy4pLIsVRRsnzjMd25j2A1xVO_U2oK08SDUDME-UpZbgXEJs5TpuDyFDt8EUuzhfxh0t-eQS5q4Wh3ypdTLSBWm9KWiN_GyZC0BYWj95vv3ukGkW7q05CQ7bSCvqdpRg7hn5IzFg96I-n-fzTITaHwmo_omtxj8b2toymLaazNLk4ObPUvV7671DV5Z-HLdN7cGe_3spfP-Vq9deoNHsI99t0kmUN_o_gqFo_hgdOqoG1nvsEfl9kc7Z0xX1Mrr7gu9Vfv-0YLcRu9jWz5OI3y6aSkWEqy6iLNOGQWVprgpNZ5Zwdw1tIy7hp2LEfS8movvcaU3DmNFfQzsYw-1v7TWfxKSxm08-Tc69VYfDKKIhrjECJKGN09SrWXIo09LXCNC_2K-MrX45KkwbK-JFWJR-FhithpNKJUBgLpZ-a6Bn01pt19RxYmqQ8kjISEtMeX5tUipCCQiV0EJTaDOCN--DFtiHbKDpaZYKnQHgKC0-RDuDEYVK0jrcrum4ygFOHU9d829NOD1j-h_EXtxt_CXdJl75ZqzmBXn29r15h9lKrIRyPZmdD6Gez8Tin89nVx-mw7ajYOhETPC7CDK8t8nl29QfMW_RE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxQxGH6DcEAP4hdxFbUHPcnEmc60Qw_EgEIWYTfEQMJtbKdT3WTdXZlZgZ_gn-K38bbT7uiFeOHcyTTp-9Hnbfs-D8DbCkt_Q3UVSUsDkLFcRUoZFiWWzRzL5iQ1tnd4MOT90-zLGTtbguvQC2OfVYac6BK1npb2jPwDzTm3V1gs_Tj7FVnVKHu7GiQ0pJdW0NuOYsw3dhxWVxdYwtXbB5_R3u8o3d87-dSPvMpAVKZJ1mCE5bzM0JWrTDPJBY21QhiTxZWJVSy3SiMSZeJUq5JtUcMUN1LpnCuMdRkLk-J_78FKlmYCi7-V3b3h8dfFXkC505rEUGaRxRK-bcc37zlaXiwGHVVwJP7dGju8u7iifQCr88lMXl3I8fivXXD_ETz08JXstP72GJaqyRNYC9IQxGeKp_BnsHNMRqGZkMjxd1zL5sfPmtiD3-m8IY7M_HLUdk4ShM7EumSbfomj0bbuQ5xST03wE6ud3A7U5PdIEttPfI6QnwSNF5xnaoh7Rn_ZzfgMTu_EHuuwPJlOqudARC5YKmXKJcKsWBshObVJqOI6SUptevA-LHgxa8k9io7G2ZqnQPMUzjyF6MFGsEnhA70uOrfswWawUzd82982F7b8j8lf3D75G1jtnwyOiqOD4eFLuE8RibXnRBuw3JzPq1eInBr12rsngW93HRE3fZ4qMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qReKx4FnUKQW8gBWNmjix0ywQqihDS2nVBZW6C3Zsw0jTmaHJ9PEJ_BJfx71OPIFNxaZrR7mS78PHj3MuwGuLW3_HjY0UyQBkIteR1k5ECamZ47Y5SR1xhw8O5e5x9vlEnCzB78CFoWeVoSb6Qm2mFZ2Rb_JcSrrCEumm655FHO0M389-RtRBim5aQzuNNkT27dUFbt_qd3s76Os3nA8_fv2wG3UdBqIqTbIGsyuXVYZhbDMjlCx4bDRCmCy2Ltax2qpckWgXp0ZXYos7oaVT2uRSY56ruHAp_vcW3M5JxZ1Y6sNPi1WAS99lEpNYRIQiOsJOR9vzgry4DfQiwVHx76LYI93F5ex9uDufzNTVhRqP_1r_ho_gQQdc2XYbaY9hyU6ewMPQFIJ1NeIp_DrYPmKjQCNkavwdZ675cVozOvKdzhvmZcwvRy1nkiFoZhSMbeFlXkCbAof5Hj01w0-oa3I7ULPzkWLEJD5DsM9Cdxe0M3XMP6C_7C2uwPGNeOMZLE-mE7sKrMgLkSqVSoUAKzauUJJT-bHSJEll3ADehgkvZ62sR9kLOJN7SnRP6d1TFgNYDz4puxSvyz4gB7AR_NQPX_e3jYUv_8P42vXGX8EdzIPyy97h_nO4xxGCtQdE67DcnM3tC4RMjX7pY5PBt5tOhj9TRyfN
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60HsSDb7FSJQdvuu2-ku0eiw-KoHiwoKcl2SRarNvSbrX6D_zXJtlNW0VE8ZyQIcns5Mtmvm8ADoW6-kufC4dqGYAQR8xhTGLH02rm6trsBVJzhy-vSLsTXtzi2wU4tVwYk-1unyQLToNWacryxoDLxhzxzUjaqouUkdl14rpqXoQlghUir8BS5-q6dVcASOzoQ9zIpkY6VY3gkjvz_UCfz6cZ6Jy-k67A8jgb0NcX2uvNHUXnayDsJIoMlMf6OGf19O2LvuN_Z7kOqyVWRa3CuTZgQWSbsGbrQKAyLGzB-2XrGnUtcxDR3n1_2M0fnkZI_-Xtj3NklMsn3YImiRRORtr_iliLjGa29hVkyvKMkOqiCyUXDSP03KVIk4eHCt8jW9BF2elLZHLmJzOL29A5P7s5aTtliQcnDbwwV-EtImmo4ogIOaYk9l3OFIYMXSFd5tJmKmOPSTfgLMVNX2JGJGU8IkwFWurGMtiBStbPxC6gOIpxQGlAqMJULpcxJb6OOIJwz0u5rMKR3dhkUCh5JDPNZr3SiVrpxKx0ElehZvc-Kb_qUeJHhOhnVBxU4dhu36z5p9GOpz7zC-N7f-teg0o-HIt9hY5ydlA6_wdOrAnE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAP+inference+algorithms+without+approximation+for+collective+graphical+models+on+path+graphs+via+discrete+difference+of+convex+algorithm&rft.jtitle=Machine+learning&rft.au=Akagi%2C+Yasunori&rft.au=Marumo%2C+Naoki&rft.au=Kim%2C+Hideaki&rft.au=Kurashima%2C+Takeshi&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=112&rft.issue=1&rft.spage=99&rft.epage=129&rft_id=info:doi/10.1007%2Fs10994-022-06275-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon