MAP inference algorithms without approximation for collective graphical models on path graphs via discrete difference of convex algorithm
Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved variables under given observations is one of the essential operations in CGM. Because the MAP inference problem is known to be N...
Saved in:
| Published in | Machine learning Vol. 112; no. 1; pp. 99 - 129 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6125 1573-0565 1573-0565 |
| DOI | 10.1007/s10994-022-06275-9 |
Cover
| Abstract | Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved variables under given observations is one of the essential operations in CGM. Because the MAP inference problem is known to be NP-hard in general, the current mainstream approach is to solve an alternative problem obtained by approximating the objective function and applying continuous relaxation. However, this approach has two significant drawbacks. First, the quality of the solution deteriorates when the values in the count data are negligible due to the inaccuracy of Stirling’s approximation. Second, the application of continuous relaxation causes the violation of integrality constraints. This paper proposes novel algorithms for MAP inference in CGMs on path graphs to overcome these problems. Our method is based on the discrete difference of convex algorithm (DCA); DCA is a general framework to minimize the sum of a convex function and a concave function by repeatedly minimizing surrogate functions. Utilizing the particular structure of path graphs, we efficiently solve the surrogate function minimization by minimum convex cost flow algorithms. Furthermore, our approach also leads to a new method of solving another important task; MAP inference of the sample size in CGM on path graphs. Our method is naturally applicable to this task, allowing us to design very efficient algorithms. Experimental results on synthetic and real-world datasets show the effectiveness of the proposed algorithms. |
|---|---|
| AbstractList | Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved variables under given observations is one of the essential operations in CGM. Because the MAP inference problem is known to be NP-hard in general, the current mainstream approach is to solve an alternative problem obtained by approximating the objective function and applying continuous relaxation. However, this approach has two significant drawbacks. First, the quality of the solution deteriorates when the values in the count data are negligible due to the inaccuracy of Stirling’s approximation. Second, the application of continuous relaxation causes the violation of integrality constraints. This paper proposes novel algorithms for MAP inference in CGMs on path graphs to overcome these problems. Our method is based on the discrete difference of convex algorithm (DCA); DCA is a general framework to minimize the sum of a convex function and a concave function by repeatedly minimizing surrogate functions. Utilizing the particular structure of path graphs, we efficiently solve the surrogate function minimization by minimum convex cost flow algorithms. Furthermore, our approach also leads to a new method of solving another important task; MAP inference of the sample size in CGM on path graphs. Our method is naturally applicable to this task, allowing us to design very efficient algorithms. Experimental results on synthetic and real-world datasets show the effectiveness of the proposed algorithms. |
| Author | Kurashima, Takeshi Marumo, Naoki Toda, Hiroyuki Akagi, Yasunori Kim, Hideaki |
| Author_xml | – sequence: 1 givenname: Yasunori orcidid: 0000-0001-7205-1307 surname: Akagi fullname: Akagi, Yasunori email: yasunori.akagi.cu@hco.ntt.co.jp organization: NTT Human Informatics Laboratories, NTT Corporation – sequence: 2 givenname: Naoki surname: Marumo fullname: Marumo, Naoki organization: NTT Communication Science Laboratories, NTT Corporation – sequence: 3 givenname: Hideaki surname: Kim fullname: Kim, Hideaki organization: NTT Human Informatics Laboratories, NTT Corporation – sequence: 4 givenname: Takeshi surname: Kurashima fullname: Kurashima, Takeshi organization: NTT Human Informatics Laboratories, NTT Corporation – sequence: 5 givenname: Hiroyuki surname: Toda fullname: Toda, Hiroyuki organization: NTT Human Informatics Laboratories, NTT Corporation |
| BookMark | eNqNkMtOwzAQRS1UJErhB1hZYh0YO7GTLFHFSyqCBawtx7HbVKkd7PT1Cfw1hhSxQ6xmpLn3zsw5RSPrrEbogsAVAcivA4GyzBKgNAFOc5aUR2hMWJ4mwDgboTEUBUs4oewEnYawBADKCz5GH083L7ixRnttlcaynTvf9ItVwNtY3LrHsuu82zUr2TfOYuM8Vq5tteqbjcZzL7tFo2SLV67WbcBR0sl-MQwC3jQS101QXvc6NuZnjzMxxW707nfjGTo2sg36_FAn6O3u9nX6kMye7x-nN7NEpSTrkzTPucoyAJ3VTPKSQl2xDDLQBiqQhTIlqQykdaVYQQ2ruJFVnfOKklJCadIJSofcte3kfivbVnQ-vuf3goD4oikGmiLSFN80RRldl4Mrwnhf69CLpVt7Gw8VNOecFYywNKrooFLeheC1-V_04aAQxXau_W_0H65P5MWZUg |
| Cites_doi | 10.1109/CVPR.2017.454 10.1007/s10107-018-1235-y 10.1609/aaai.v31i1.10889 10.1609/aaai.v34i04.5713 10.1007/BF02579369 10.1609/aaai.v33i01.33013935 10.1007/s10107-014-0792-y 10.1007/BF02680565 10.24963/ijcai.2018/494 10.1007/s10994-014-5455-y 10.24963/ijcai.2018/457 10.1007/s10107-017-1139-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1007/s10994-022-06275-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Central Science Database (via ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 129 |
| ExternalDocumentID | 10.1007/s10994-022-06275-9 10_1007_s10994_022_06275_9 |
| GrantInformation_xml | – fundername: Nippon Telegraph and Telephone funderid: http://dx.doi.org/10.13039/501100004180 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c314t-3776c4400e4d5a6920db54040ef0b0a8cf91bf03dbc582f5b6fabd76b219a09f3 |
| IEDL.DBID | BENPR |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Tue Aug 19 19:20:54 EDT 2025 Fri Jul 25 02:14:51 EDT 2025 Wed Oct 01 01:04:00 EDT 2025 Fri Feb 21 02:45:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Network flow Collective graphical model Discrete difference of convex algorithm |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-3776c4400e4d5a6920db54040ef0b0a8cf91bf03dbc582f5b6fabd76b219a09f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7205-1307 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10994-022-06275-9 |
| PQID | 2766585153 |
| PQPubID | 54194 |
| PageCount | 31 |
| ParticipantIDs | unpaywall_primary_10_1007_s10994_022_06275_9 proquest_journals_2766585153 crossref_primary_10_1007_s10994_022_06275_9 springer_journals_10_1007_s10994_022_06275_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Zhang, S., Wu, G., Costeira, J.P., & Moura, J.M.F. (2017). Understanding traffic density from large-scale web camera data. In Proceedings of the 30th IEEE conference on computer vision and pattern recognition (pp. 5898–5907). ZhangYCharoenphakdeeNZhenguoWSugiyamaMLearning from aggregate observationsAdvances in Neural Information Processing Systems202033470478 AhujaRKMagnantiTLOrlinJBNetwork flows: Theory, algorithms, and applications1993Prentice-Hall Inc SheldonDSaleh ElmohamedMAKozenDCollective inference on Markov models for modeling bird migrationAdvances in Neural Information Processing Systems20072013211328 MaeharaTMurotaKA framework of discrete DC programming by discrete convex analysisMathematical Programming20151521–243546610.1007/s10107-014-0792-y Xu, H.-M., Xue, H., Chen, X.-H., & Wang, Y.-Y. (2017). Solving indefinite kernel support vector machine with difference of convex functions programming. In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 2782–2788). TanakaYTanakaTIwataTKurashimaTOkawaMAkagiYTodaHSpatially aggregated Gaussian processes with multivariate areal outputsAdvances in Neural Information Processing Systems20193230003031 Iwata, T., & Shimizu, H. (2019). Neural collective graphical models for estimating spatio-temporal population flow from aggregated data. In Proceedings of the 33rd AAAI conference on artificial intelligence (pp. 3935–3942). Sun, T., Sheldon, D., & Kumar, A. (2015). Message passing for collective graphical models. In Proceedings of the 32nd International Conference on Machine Learning, pages 853–861. Nguyen, T., Kumar, A., Lau, H.C., & Sheldon, D. (2016). Approximate inference using DC programming for collective graphical models. In Proceedings of the 19th international conference on artificial intelligence and statistics (pp. 685–693). Le ThiAHoaiLMinhHDinhTPFeature selection in machine learning: An exact penalty approach using a difference of convex function algorithmMachine Learning2015101116318610.1007/s10994-014-5455-y MorimuraTOsogamiTIdéTSolving inverse problem of Markov chain with partial observationsAdvances in neural information processing systems20132616551663 BishopCMNasrabadiNMPattern recognition and machine learning2006Springer Du, J., Kumar, A., & Varakantham, P. (2014). On understanding diffusion dynamics of patrons at a theme park. In Proceedings of the 13th international conference on autonomous agents and multiagent systems (pp. 1501–1502). Narasimhan, M., & Bilmes, J. (2005). A submodular-supermodular procedure with applications to discriminative structure learning. In Proceedings of the 21th conference on uncertainty in artificial intelligence (pp. 404–412). Vilnis, L., Belanger, D., Sheldon, D., & McCallum, A. (2015). Bethe projections for non-local inference. In Proceedings of the 31st conference on uncertainty in artificial intelligence (pp. 892–901). Akagi, Y., Marumo, N., Kim, H., Kurashima, T., & Toda H. (2021). Non-approximate inference for collective graphical models on path graphs via discrete difference of convex algorithm. Advances in Neural Information Processing Systems, 34. Le ThiHAPham DinhTDC programming and DCA: Thirty years of developmentsMathematical Programming2018169156810.1007/s10107-018-1235-y Iyer, R. & Bilmes, J. (2012). Algorithms for approximate minimization of the difference between submodular functions, with applications. In Proceedings of the 28th conference on uncertainty in artificial intelligence (pp. 407–417). Nitanda, A., & Suzuki, T. (2017). Stochastic difference of convex algorithm and its application to training deep Boltzmann machines. In Proceedings of the 20th international conference on artificial intelligence and statistics (pp. 470–478). Akagi, Y., Nishimura, T., Kurashima, T., & Toda, H. (2018). A fast and accurate method for estimating people flow from spatiotemporal population data. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3293–3300). PiotBGeistMPietquinODifference of convex functions programming for reinforcement learningAdvances in Neural Information Processing Systems20142725192527 Akagi, Y., Nishimura, T., Tanaka, Y., Kurashima, T., & Toda, H. (2020). Exact and efficient inference for collective flow diffusion model via minimum convex cost flow algorithm. In Proceedings of the 34th AAAI conference on artificial intelligence (pp. 3163–3170). TardosÉA strongly polynomial minimum cost circulation algorithmCombinatorica19855324725510.1007/BF02579369 Tanaka, Y., Iwata, T., Kurashima, T., Toda, H., & Ueda, N. (2018). Estimating latent people flow without tracking individuals. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3556–3563). SheldonDDietterichTGCollective graphical modelsAdvances in Neural Information Processing Systems20112411611169 SuzukiTYamashitaMTeradaMUsing mobile spatial statistics in field of disaster prevention planningNTT DOCOMO Technical Journal20131433745 MurotaKDiscrete convex analysisMathematical Programming199883131337110.1007/BF02680565 Yuille, A.L., & Rangarajan, A. (2001). The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems, 14. TeradaMNagataTKobayashiMPopulation estimation technology for mobile spatial statisticsNTT DOCOMO Technical Journal20131431015 Singh, R., Haasler, I., Zhang, Q., Karlsson, J., & Chen, Y. (2020). Inference with aggregate data: An optimal transport approach. CoRR. arXiv:abs/2003.13933. MaeharaTMarumoNMurotaKContinuous relaxation for discrete DC programmingMathematical Programming2018169119921910.1007/s10107-017-1139-2 Sheldon, D., Sun, T., Kumar, A., & Dietterich, T. (2013). Approximate inference in collective graphical models. In Proceedings of the 30th international conference on machine learning (pp. 1004–1012). A Le Thi (6275_CR10) 2015; 101 HA Le Thi (6275_CR9) 2018; 169 K Murota (6275_CR14) 1998; 83 CM Bishop (6275_CR5) 2006 B Piot (6275_CR18) 2014; 27 D Sheldon (6275_CR20) 2007; 20 6275_CR2 6275_CR3 6275_CR29 6275_CR22 6275_CR23 6275_CR25 T Morimura (6275_CR13) 2013; 26 6275_CR21 É Tardos (6275_CR27) 1985; 5 Y Tanaka (6275_CR26) 2019; 32 Y Zhang (6275_CR33) 2020; 33 D Sheldon (6275_CR19) 2011; 24 T Suzuki (6275_CR24) 2013; 14 6275_CR4 6275_CR6 6275_CR7 6275_CR8 RK Ahuja (6275_CR1) 1993 T Maehara (6275_CR12) 2018; 169 6275_CR15 M Terada (6275_CR28) 2013; 14 6275_CR16 6275_CR17 6275_CR30 T Maehara (6275_CR11) 2015; 152 6275_CR31 6275_CR32 |
| References_xml | – reference: Tanaka, Y., Iwata, T., Kurashima, T., Toda, H., & Ueda, N. (2018). Estimating latent people flow without tracking individuals. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3556–3563). – reference: TardosÉA strongly polynomial minimum cost circulation algorithmCombinatorica19855324725510.1007/BF02579369 – reference: SheldonDDietterichTGCollective graphical modelsAdvances in Neural Information Processing Systems20112411611169 – reference: Akagi, Y., Marumo, N., Kim, H., Kurashima, T., & Toda H. (2021). Non-approximate inference for collective graphical models on path graphs via discrete difference of convex algorithm. Advances in Neural Information Processing Systems, 34. – reference: AhujaRKMagnantiTLOrlinJBNetwork flows: Theory, algorithms, and applications1993Prentice-Hall Inc – reference: Le ThiAHoaiLMinhHDinhTPFeature selection in machine learning: An exact penalty approach using a difference of convex function algorithmMachine Learning2015101116318610.1007/s10994-014-5455-y – reference: Xu, H.-M., Xue, H., Chen, X.-H., & Wang, Y.-Y. (2017). Solving indefinite kernel support vector machine with difference of convex functions programming. In Proceedings of the 31st AAAI conference on artificial intelligence (pp. 2782–2788). – reference: Iyer, R. & Bilmes, J. (2012). Algorithms for approximate minimization of the difference between submodular functions, with applications. In Proceedings of the 28th conference on uncertainty in artificial intelligence (pp. 407–417). – reference: SheldonDSaleh ElmohamedMAKozenDCollective inference on Markov models for modeling bird migrationAdvances in Neural Information Processing Systems20072013211328 – reference: Akagi, Y., Nishimura, T., Tanaka, Y., Kurashima, T., & Toda, H. (2020). Exact and efficient inference for collective flow diffusion model via minimum convex cost flow algorithm. In Proceedings of the 34th AAAI conference on artificial intelligence (pp. 3163–3170). – reference: BishopCMNasrabadiNMPattern recognition and machine learning2006Springer – reference: MorimuraTOsogamiTIdéTSolving inverse problem of Markov chain with partial observationsAdvances in neural information processing systems20132616551663 – reference: Akagi, Y., Nishimura, T., Kurashima, T., & Toda, H. (2018). A fast and accurate method for estimating people flow from spatiotemporal population data. In Proceedings of the 27th international joint conference on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3293–3300). – reference: PiotBGeistMPietquinODifference of convex functions programming for reinforcement learningAdvances in Neural Information Processing Systems20142725192527 – reference: TeradaMNagataTKobayashiMPopulation estimation technology for mobile spatial statisticsNTT DOCOMO Technical Journal20131431015 – reference: Le ThiHAPham DinhTDC programming and DCA: Thirty years of developmentsMathematical Programming2018169156810.1007/s10107-018-1235-y – reference: MurotaKDiscrete convex analysisMathematical Programming199883131337110.1007/BF02680565 – reference: Iwata, T., & Shimizu, H. (2019). Neural collective graphical models for estimating spatio-temporal population flow from aggregated data. In Proceedings of the 33rd AAAI conference on artificial intelligence (pp. 3935–3942). – reference: Zhang, S., Wu, G., Costeira, J.P., & Moura, J.M.F. (2017). Understanding traffic density from large-scale web camera data. In Proceedings of the 30th IEEE conference on computer vision and pattern recognition (pp. 5898–5907). – reference: MaeharaTMarumoNMurotaKContinuous relaxation for discrete DC programmingMathematical Programming2018169119921910.1007/s10107-017-1139-2 – reference: TanakaYTanakaTIwataTKurashimaTOkawaMAkagiYTodaHSpatially aggregated Gaussian processes with multivariate areal outputsAdvances in Neural Information Processing Systems20193230003031 – reference: Nguyen, T., Kumar, A., Lau, H.C., & Sheldon, D. (2016). Approximate inference using DC programming for collective graphical models. In Proceedings of the 19th international conference on artificial intelligence and statistics (pp. 685–693). – reference: Nitanda, A., & Suzuki, T. (2017). Stochastic difference of convex algorithm and its application to training deep Boltzmann machines. In Proceedings of the 20th international conference on artificial intelligence and statistics (pp. 470–478). – reference: Vilnis, L., Belanger, D., Sheldon, D., & McCallum, A. (2015). Bethe projections for non-local inference. In Proceedings of the 31st conference on uncertainty in artificial intelligence (pp. 892–901). – reference: Sun, T., Sheldon, D., & Kumar, A. (2015). Message passing for collective graphical models. In Proceedings of the 32nd International Conference on Machine Learning, pages 853–861. – reference: SuzukiTYamashitaMTeradaMUsing mobile spatial statistics in field of disaster prevention planningNTT DOCOMO Technical Journal20131433745 – reference: MaeharaTMurotaKA framework of discrete DC programming by discrete convex analysisMathematical Programming20151521–243546610.1007/s10107-014-0792-y – reference: ZhangYCharoenphakdeeNZhenguoWSugiyamaMLearning from aggregate observationsAdvances in Neural Information Processing Systems202033470478 – reference: Narasimhan, M., & Bilmes, J. (2005). A submodular-supermodular procedure with applications to discriminative structure learning. In Proceedings of the 21th conference on uncertainty in artificial intelligence (pp. 404–412). – reference: Sheldon, D., Sun, T., Kumar, A., & Dietterich, T. (2013). Approximate inference in collective graphical models. In Proceedings of the 30th international conference on machine learning (pp. 1004–1012). – reference: Singh, R., Haasler, I., Zhang, Q., Karlsson, J., & Chen, Y. (2020). Inference with aggregate data: An optimal transport approach. CoRR. arXiv:abs/2003.13933. – reference: Du, J., Kumar, A., & Varakantham, P. (2014). On understanding diffusion dynamics of patrons at a theme park. In Proceedings of the 13th international conference on autonomous agents and multiagent systems (pp. 1501–1502). – reference: Yuille, A.L., & Rangarajan, A. (2001). The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems, 14. – volume-title: Network flows: Theory, algorithms, and applications year: 1993 ident: 6275_CR1 – ident: 6275_CR32 doi: 10.1109/CVPR.2017.454 – volume: 169 start-page: 5 issue: 1 year: 2018 ident: 6275_CR9 publication-title: Mathematical Programming doi: 10.1007/s10107-018-1235-y – ident: 6275_CR30 doi: 10.1609/aaai.v31i1.10889 – volume: 14 start-page: 37 issue: 3 year: 2013 ident: 6275_CR24 publication-title: NTT DOCOMO Technical Journal – volume-title: Pattern recognition and machine learning year: 2006 ident: 6275_CR5 – ident: 6275_CR23 – ident: 6275_CR21 – ident: 6275_CR3 doi: 10.1609/aaai.v34i04.5713 – volume: 5 start-page: 247 issue: 3 year: 1985 ident: 6275_CR27 publication-title: Combinatorica doi: 10.1007/BF02579369 – ident: 6275_CR16 – ident: 6275_CR7 doi: 10.1609/aaai.v33i01.33013935 – ident: 6275_CR31 – volume: 24 start-page: 1161 year: 2011 ident: 6275_CR19 publication-title: Advances in Neural Information Processing Systems – volume: 26 start-page: 1655 year: 2013 ident: 6275_CR13 publication-title: Advances in neural information processing systems – volume: 14 start-page: 10 issue: 3 year: 2013 ident: 6275_CR28 publication-title: NTT DOCOMO Technical Journal – volume: 152 start-page: 435 issue: 1–2 year: 2015 ident: 6275_CR11 publication-title: Mathematical Programming doi: 10.1007/s10107-014-0792-y – volume: 20 start-page: 1321 year: 2007 ident: 6275_CR20 publication-title: Advances in Neural Information Processing Systems – volume: 83 start-page: 313 issue: 1 year: 1998 ident: 6275_CR14 publication-title: Mathematical Programming doi: 10.1007/BF02680565 – volume: 27 start-page: 2519 year: 2014 ident: 6275_CR18 publication-title: Advances in Neural Information Processing Systems – ident: 6275_CR25 doi: 10.24963/ijcai.2018/494 – ident: 6275_CR29 – ident: 6275_CR22 – volume: 32 start-page: 3000 year: 2019 ident: 6275_CR26 publication-title: Advances in Neural Information Processing Systems – volume: 33 start-page: 470 year: 2020 ident: 6275_CR33 publication-title: Advances in Neural Information Processing Systems – volume: 101 start-page: 163 issue: 1 year: 2015 ident: 6275_CR10 publication-title: Machine Learning doi: 10.1007/s10994-014-5455-y – ident: 6275_CR6 – ident: 6275_CR15 – ident: 6275_CR2 doi: 10.24963/ijcai.2018/457 – ident: 6275_CR8 – volume: 169 start-page: 199 issue: 1 year: 2018 ident: 6275_CR12 publication-title: Mathematical Programming doi: 10.1007/s10107-017-1139-2 – ident: 6275_CR17 – ident: 6275_CR4 |
| SSID | ssj0002686 |
| Score | 2.3904583 |
| Snippet | Collective graphical model (CGM) is a probabilistic model that provides a framework for analyzing aggregated count data. Maximum a posteriori (MAP) inference... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 99 |
| SubjectTerms | Algorithms Approximation Artificial Intelligence Computer Science Continuity (mathematics) Control Graphs Inference Machine Learning Mechatronics Natural Language Processing (NLP) Probabilistic models Robotics Simulation and Modeling |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGH6jcFAP4mdE0fTgTUb21Y4diQGJBuNBEjwt7bYqEYGwoeg_8F_bdiugMUbOW9qtffv26cfzPADnsVj6czuKDSplAFzsMYMxjg1LqpmLZbPlcMkd7tySdte97uFeTgpL9G13fSSpMvUS2U3J2IrFk5LWNfx1KCq9rQIUG1cPN815BraJcngUAwgbcgbPyTK_l_J9QlqgzPnB6BZsTIdj-v5GB4OluadVgq7-6uzKyXNtmrJa-PFD0HHV39qB7RyMokYWPbuwFg_3oKSNHlA-7vfhs9O4Q31NDUR08Dia9NOnlwTJbdzRNEVKmnzWz3iQSABhJAMsS6ZIiWLLYEDKdydB4hXphJw9SNBrnyLJDp4IAI-0Y4uoZ8SRuhQ_W9R4AN1W8_6ybeQeDkboWG4q8pdHQlckitiNMCW-bUZMgETXjLnJTFoPuW8xbjoRC3Hd5pgRTlnkESYyKTV97hxCYTgaxkeAfM_HDqUOoQI0mRH3KbFlSolJZFlhxMtwoTsyGGdSHcFClFm2ciBaOVCtHPhlqOi-DvJhmwS2R4g8J8VOGaq6uxaP_yqtOo-Rf1R-vFrpJ7ApXe6znZ8KFNLJND4VWChlZ3nofwF5nABi priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60HsSDb7FSJQdvuu2-ku0eiw-KoHiwoKcl2SRarNvSbrX6D_zXJtlNW0VE8ZyQIcns5Mtmvm8ADoW6-kufC4dqGYAQR8xhTGLH02rm6trsBVJzhy-vSLsTXtzi2wU4tVwYk-1unyQLToNWacryxoDLxhzxzUjaqouUkdl14rpqXoQlghUir8BS5-q6dVcASOzoQ9zIpkY6VY3gkjvz_UCfz6cZ6Jy-k67A8jgb0NcX2uvNHUXnayDsJIoMlMf6OGf19O2LvuN_Z7kOqyVWRa3CuTZgQWSbsGbrQKAyLGzB-2XrGnUtcxDR3n1_2M0fnkZI_-Xtj3NklMsn3YImiRRORtr_iliLjGa29hVkyvKMkOqiCyUXDSP03KVIk4eHCt8jW9BF2elLZHLmJzOL29A5P7s5aTtliQcnDbwwV-EtImmo4ogIOaYk9l3OFIYMXSFd5tJmKmOPSTfgLMVNX2JGJGU8IkwFWurGMtiBStbPxC6gOIpxQGlAqMJULpcxJb6OOIJwz0u5rMKR3dhkUCh5JDPNZr3SiVrpxKx0ElehZvc-Kb_qUeJHhOhnVBxU4dhu36z5p9GOpz7zC-N7f-teg0o-HIt9hY5ydlA6_wdOrAnE priority: 102 providerName: Unpaywall |
| Title | MAP inference algorithms without approximation for collective graphical models on path graphs via discrete difference of convex algorithm |
| URI | https://link.springer.com/article/10.1007/s10994-022-06275-9 https://www.proquest.com/docview/2766585153 https://link.springer.com/content/pdf/10.1007/s10994-022-06275-9.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 112 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1573-0565 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AMVHM dateStart: 20080107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0565 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3ttgfgwDeisFQ-cGMj8mWnOSCUVu2uQBtViEq7p8iOY6hU2rJNYfkJ_GtmnLiBy4pLIsVRRsnzjMd25j2A1xVO_U2oK08SDUDME-UpZbgXEJs5TpuDyFDt8EUuzhfxh0t-eQS5q4Wh3ypdTLSBWm9KWiN_GyZC0BYWj95vv3ukGkW7q05CQ7bSCvqdpRg7hn5IzFg96I-n-fzTITaHwmo_omtxj8b2toymLaazNLk4ObPUvV7671DV5Z-HLdN7cGe_3spfP-Vq9deoNHsI99t0kmUN_o_gqFo_hgdOqoG1nvsEfl9kc7Z0xX1Mrr7gu9Vfv-0YLcRu9jWz5OI3y6aSkWEqy6iLNOGQWVprgpNZ5Zwdw1tIy7hp2LEfS8movvcaU3DmNFfQzsYw-1v7TWfxKSxm08-Tc69VYfDKKIhrjECJKGN09SrWXIo09LXCNC_2K-MrX45KkwbK-JFWJR-FhithpNKJUBgLpZ-a6Bn01pt19RxYmqQ8kjISEtMeX5tUipCCQiV0EJTaDOCN--DFtiHbKDpaZYKnQHgKC0-RDuDEYVK0jrcrum4ygFOHU9d829NOD1j-h_EXtxt_CXdJl75ZqzmBXn29r15h9lKrIRyPZmdD6Gez8Tin89nVx-mw7ajYOhETPC7CDK8t8nl29QfMW_RE |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxQxGH6DcEAP4hdxFbUHPcnEmc60Qw_EgEIWYTfEQMJtbKdT3WTdXZlZgZ_gn-K38bbT7uiFeOHcyTTp-9Hnbfs-D8DbCkt_Q3UVSUsDkLFcRUoZFiWWzRzL5iQ1tnd4MOT90-zLGTtbguvQC2OfVYac6BK1npb2jPwDzTm3V1gs_Tj7FVnVKHu7GiQ0pJdW0NuOYsw3dhxWVxdYwtXbB5_R3u8o3d87-dSPvMpAVKZJ1mCE5bzM0JWrTDPJBY21QhiTxZWJVSy3SiMSZeJUq5JtUcMUN1LpnCuMdRkLk-J_78FKlmYCi7-V3b3h8dfFXkC505rEUGaRxRK-bcc37zlaXiwGHVVwJP7dGju8u7iifQCr88lMXl3I8fivXXD_ETz08JXstP72GJaqyRNYC9IQxGeKp_BnsHNMRqGZkMjxd1zL5sfPmtiD3-m8IY7M_HLUdk4ShM7EumSbfomj0bbuQ5xST03wE6ud3A7U5PdIEttPfI6QnwSNF5xnaoh7Rn_ZzfgMTu_EHuuwPJlOqudARC5YKmXKJcKsWBshObVJqOI6SUptevA-LHgxa8k9io7G2ZqnQPMUzjyF6MFGsEnhA70uOrfswWawUzd82982F7b8j8lf3D75G1jtnwyOiqOD4eFLuE8RibXnRBuw3JzPq1eInBr12rsngW93HRE3fZ4qMw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qReKx4FnUKQW8gBWNmjix0ywQqihDS2nVBZW6C3Zsw0jTmaHJ9PEJ_BJfx71OPIFNxaZrR7mS78PHj3MuwGuLW3_HjY0UyQBkIteR1k5ECamZ47Y5SR1xhw8O5e5x9vlEnCzB78CFoWeVoSb6Qm2mFZ2Rb_JcSrrCEumm655FHO0M389-RtRBim5aQzuNNkT27dUFbt_qd3s76Os3nA8_fv2wG3UdBqIqTbIGsyuXVYZhbDMjlCx4bDRCmCy2Ltax2qpckWgXp0ZXYos7oaVT2uRSY56ruHAp_vcW3M5JxZ1Y6sNPi1WAS99lEpNYRIQiOsJOR9vzgry4DfQiwVHx76LYI93F5ex9uDufzNTVhRqP_1r_ho_gQQdc2XYbaY9hyU6ewMPQFIJ1NeIp_DrYPmKjQCNkavwdZ675cVozOvKdzhvmZcwvRy1nkiFoZhSMbeFlXkCbAof5Hj01w0-oa3I7ULPzkWLEJD5DsM9Cdxe0M3XMP6C_7C2uwPGNeOMZLE-mE7sKrMgLkSqVSoUAKzauUJJT-bHSJEll3ADehgkvZ62sR9kLOJN7SnRP6d1TFgNYDz4puxSvyz4gB7AR_NQPX_e3jYUv_8P42vXGX8EdzIPyy97h_nO4xxGCtQdE67DcnM3tC4RMjX7pY5PBt5tOhj9TRyfN |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60HsSDb7FSJQdvuu2-ku0eiw-KoHiwoKcl2SRarNvSbrX6D_zXJtlNW0VE8ZyQIcns5Mtmvm8ADoW6-kufC4dqGYAQR8xhTGLH02rm6trsBVJzhy-vSLsTXtzi2wU4tVwYk-1unyQLToNWacryxoDLxhzxzUjaqouUkdl14rpqXoQlghUir8BS5-q6dVcASOzoQ9zIpkY6VY3gkjvz_UCfz6cZ6Jy-k67A8jgb0NcX2uvNHUXnayDsJIoMlMf6OGf19O2LvuN_Z7kOqyVWRa3CuTZgQWSbsGbrQKAyLGzB-2XrGnUtcxDR3n1_2M0fnkZI_-Xtj3NklMsn3YImiRRORtr_iliLjGa29hVkyvKMkOqiCyUXDSP03KVIk4eHCt8jW9BF2elLZHLmJzOL29A5P7s5aTtliQcnDbwwV-EtImmo4ogIOaYk9l3OFIYMXSFd5tJmKmOPSTfgLMVNX2JGJGU8IkwFWurGMtiBStbPxC6gOIpxQGlAqMJULpcxJb6OOIJwz0u5rMKR3dhkUCh5JDPNZr3SiVrpxKx0ElehZvc-Kb_qUeJHhOhnVBxU4dhu36z5p9GOpz7zC-N7f-teg0o-HIt9hY5ydlA6_wdOrAnE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAP+inference+algorithms+without+approximation+for+collective+graphical+models+on+path+graphs+via+discrete+difference+of+convex+algorithm&rft.jtitle=Machine+learning&rft.au=Akagi%2C+Yasunori&rft.au=Marumo%2C+Naoki&rft.au=Kim%2C+Hideaki&rft.au=Kurashima%2C+Takeshi&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=112&rft.issue=1&rft.spage=99&rft.epage=129&rft_id=info:doi/10.1007%2Fs10994-022-06275-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |