Distributed design optimization of multi-component systems using meta models and topology optimization

Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distrib...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 67; no. 9; p. 160
Main Authors Krischer, Lukas, Endress, Felix, Wanninger, Tobias, Zimmermann, Markus
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-147X
1615-1488
1615-1488
DOI10.1007/s00158-024-03836-5

Cover

Abstract Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distributed optimization architecture was previously proposed that does not require coordination. This so-called Informed Decomposition is based on two types of optimization problems: (1) one for system optimization to produce stiffness requirements on components using pre-trained meta models and (2) one for the optimization of components with two interfaces to produce detailed geometries that satisfy the stiffness requirements. Each component optimization problem can be carried out independently and in parallel. This paper extends the approach to three-dimensional structures consisting of components with six degrees of freedom per interface, thus significantly increasing the applicability to practical problems. For this, an 8-dimensional representation of the general 12 x 12 interface stiffness matrix for components is derived. Meta models for mass estimation and physical feasibility of stiffness targets are trained using an active-learning strategy. A simple two-component structure and a large robot structure consisting of four components subject to constraints for 100 different loading scenarios are optimized. The example results are at most 12.9% heavier than those of a monolithic optimization.
AbstractList Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distributed optimization architecture was previously proposed that does not require coordination. This so-called Informed Decomposition is based on two types of optimization problems: (1) one for system optimization to produce stiffness requirements on components using pre-trained meta models and (2) one for the optimization of components with two interfaces to produce detailed geometries that satisfy the stiffness requirements. Each component optimization problem can be carried out independently and in parallel. This paper extends the approach to three-dimensional structures consisting of components with six degrees of freedom per interface, thus significantly increasing the applicability to practical problems. For this, an 8-dimensional representation of the general 12 x 12 interface stiffness matrix for components is derived. Meta models for mass estimation and physical feasibility of stiffness targets are trained using an active-learning strategy. A simple two-component structure and a large robot structure consisting of four components subject to constraints for 100 different loading scenarios are optimized. The example results are at most 12.9% heavier than those of a monolithic optimization.
Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distributed optimization architecture was previously proposed that does not require coordination. This so-called Informed Decomposition is based on two types of optimization problems: (1) one for system optimization to produce stiffness requirements on components using pre-trained meta models and (2) one for the optimization of components with two interfaces to produce detailed geometries that satisfy the stiffness requirements. Each component optimization problem can be carried out independently and in parallel. This paper extends the approach to three-dimensional structures consisting of components with six degrees of freedom per interface, thus significantly increasing the applicability to practical problems. For this, an 8-dimensional representation of the general 12 x 12 interface stiffness matrix for components is derived. Meta models for mass estimation and physical feasibility of stiffness targets are trained using an active-learning strategy. A simple two-component structure and a large robot structure consisting of four components subject to constraints for 100 different loading scenarios are optimized. The example results are at most 12.9% heavier than those of a monolithic optimization.
ArticleNumber 160
Author Krischer, Lukas
Zimmermann, Markus
Endress, Felix
Wanninger, Tobias
Author_xml – sequence: 1
  givenname: Lukas
  surname: Krischer
  fullname: Krischer, Lukas
  organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich
– sequence: 2
  givenname: Felix
  surname: Endress
  fullname: Endress, Felix
  organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich
– sequence: 3
  givenname: Tobias
  surname: Wanninger
  fullname: Wanninger, Tobias
  organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich
– sequence: 4
  givenname: Markus
  orcidid: 0000-0002-6666-3291
  surname: Zimmermann
  fullname: Zimmermann, Markus
  email: zimmermann@tum.de
  organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich
BookMark eNqNUMtKxDAUDTKCM6M_4CrgOnrT9LmU8QmCGwV3IW2SkqFNapMi9euNzqC4EVf3wXlxVmhhnVUInVI4pwDFhQegWUkgSQmwkuUkO0BLmtOM0LQsF9978XKEVt5vAaCEtFoifWV8GE09BSWxVN60FrshmN68i2BcPDTupy4Y0rh-iKY2YD_7oHqPJ29si3sVBO6dVJ3Hwkoc3OA6186_ZI7RoRadVyf7uUbPN9dPmzvy8Hh7v7l8IA2jaSCM1iALoaWUgqWNloqCqMpKa9E0QkGWVE1BGVMyfhRVOoOmACbrROVVImu2RmynO9lBzG-i6_gwml6MM6fAP6viu6p4rIp_VcWzyDrbsYbRvU7KB75102hjUM4oMMghekZUskM1o_N-VPp_0vtAPoJtq8Yf6T9YH-Jwjnk
Cites_doi 10.1007/s11044-010-9198-7
10.1115/DETC2022-91344
10.1023/B:OPTE.0000048534.58121.93
10.1007/BF01197554
10.1007/s10470-010-9476-6
10.1016/j.engstruct.2016.04.016
10.1016/j.commatsci.2018.10.017
10.1109/70.843170
10.1080/09544828.2017.1303664
10.1017/pds.2022.165
10.1007/s00158-022-03369-9
10.1115/1.1582501
10.1115/1.2804743
10.1016/j.cma.2014.12.018
10.1007/978-3-662-05086-6
10.1007/s10845-019-01463-2
10.1115/1.2829309
10.2514/3.2874
10.2514/6.1996-4018
10.1002/nme.4450
10.1002/nme.1620240207
10.1002/j.2334-5837.1991.tb01484.x
10.1115/1.4043787
10.1007/s00158-022-03347-1
10.2514/2.1889
10.1007/s10107-002-0304-3
10.1007/s00158-021-02881-8
10.2514/1.J051895
10.1007/BF01214002
10.1007/s12541-012-0096-1
10.1109/ICVD.2005.47
10.1016/j.cma.2018.11.003
10.1007/s00158-021-02993-1
10.1007/s00158-008-0347-z
10.1016/j.mechmachtheory.2022.104964
10.2514/1.J052375
10.2140/memocs.2017.5.95
10.1007/s11831-021-09544-3
10.1016/S0045-7825(97)00215-6
10.2514/2.937
10.1016/j.cma.2018.09.007
10.1016/j.mechmachtheory.2018.10.015
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1007/s00158-024-03836-5
DatabaseName (Open Access) Springer Nature eJournals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (via ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10.1007/s00158-024-03836-5
10_1007_s00158_024_03836_5
GrantInformation_xml – fundername: Technische Universität München (1025)
– fundername: Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie
  grantid: 07 02/683 57/98/20 252/22 253/23 254/24
  funderid: http://dx.doi.org/10.13039/501100020639
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-31b0d7afddda34cfde10a989ffaccae0529c7133edffae1ef50c703db2e692db3
IEDL.DBID BENPR
ISSN 1615-147X
1615-1488
IngestDate Sun Sep 07 11:25:44 EDT 2025
Sat Oct 25 08:17:51 EDT 2025
Wed Oct 01 02:17:30 EDT 2025
Fri Feb 21 02:37:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Distributed design optimization
Topology optimization
Machine learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-31b0d7afddda34cfde10a989ffaccae0529c7133edffae1ef50c703db2e692db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6666-3291
OpenAccessLink https://doi.org/10.1007/s00158-024-03836-5
PQID 3103060133
PQPubID 2043658
ParticipantIDs unpaywall_primary_10_1007_s00158_024_03836_5
proquest_journals_3103060133
crossref_primary_10_1007_s00158_024_03836_5
springer_journals_10_1007_s00158_024_03836_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HeirmanGHKDesmetWInterface reduction of flexible bodies for efficient modeling of body flexibility in multibody dynamicsMultibody Syst Dyn2010242219234
ZimmermannMKönigsSNiemeyerCFenderJZeherbauerCVitaleRWahleMOn the design of large systems subject to uncertaintyJ Eng Des2017284233254
Sobieszczanski-SobieskiJAgteJSanduskyRRBilevel integrated system synthesisAIAA J2000381164172
WangLTaoSZhuPChenWData-driven topology optimization with multiclass microstructures using latent variable gaussian processJ Mech Des20211433296
MiltonGHarutyunyanDBrianeMTowards a complete characterization of the effective elasticity tensors of mixtures of an elastic phase and an almost rigid phaseMath Mech Complex Syst201751951133677944
WangXZhangDZhaoCZhangPZhangYCaiYOptimal design of lightweight serial robots by integrating topology optimization and parametric system optimizationMech Mach Theory20191324865
MiltonGCherkaevAVWhich elasticity tensors are realizable?J Eng Mater Technol19951174483493
PapadrakakisMLagarosNDTsompanakisYStructural optimization using evolution strategies and neural networksComput Methods Appl Mech Eng19981561–4309333
CoutinhoCPBaptistaAJDias RodriguesJReduced scale models based on similitude theory: a review up to 2015Eng Struct20161198194
SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Optim1998166875
BoolchandaniDAhmedASahulaVEfficient kernel functions for support vector machine regression model for analog circuits’ performance evaluationAnalog Integr Circ Sig Process2011661117128
SvanbergKThe method of moving asymptotes—a new method for structural optimizationInt J Numer Meth Eng1987242359373875307
Regenwetter L, Ahmed F (2022) Design target achievement index: a differentiable metric to enhance deep generative models in multi-objective inverse design. Volume 3B: 48th Design Automation Conference (DAC)(9)
Krischer L (2023) Informed Decomposition: Distributed design optimization of mechanical multi-component systems. PhD thesis, Technische Universität München
Braun R (1996) Collaborative optimization: an architecture for large-scale distributed design: Ph.D. thesis
KimHMMichelenaNFPapalambrosPYJiangTTarget cascading in optimal system designJ Mech Des20031253474480
GuyanRJReduction of stiffness and mass matricesAIAA J196532380
VianaFACSimpsonTWBalabanovVToropovVSpecial section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come?AIAA J2014524670690
WuJSigmundOGroenJPTopology optimization of multi-scale structures: a reviewStruct Multidisc Optim2021633145514804233690
EckertCClarksonJClarksonJEckertCThe reality of designDesign process improvement, SpringerLink Bücher2005LondonSpringer129
CasaburoAPetroneGFrancoFde RosaSA review of similitude methods for structural engineeringAppl Mech Rev2019713030802
AndersenLNielsenSRElastic beams in three dimensions: textbook200823AalborgAalborg University
JungJYoonJIParkS-JKangJ-YKimGLSongYHParkSTOhKWKimHSModelling feasibility constraints for materials design: application to inverse crystallographic texture problemComput Mater Sci2019156361367
HaftkaRTWatsonLTMultidisciplinary design optimization with quasi-separable subsystemsOptim Eng2005619202122423
Sobieszczanski-SobieskiJHaftkaRTMultidisciplinary aerospace design optimization: survey of recent developmentsStruct Multidisc Optim1997141123
TosseramsSEtmanLFPRoodaJEA classification of methods for distributed system optimization based on formulation structureStruct Multidisc Optim20093955035172551070
AlexandrovNMHussainiMYMultidisciplinary design optimization: state-of-the-art1997PhiladelphiaSociety for Industrial and Applied Mathematics SIAM
WangLChanY-CAhmedFLiuZZhuPChenWDeep generative modeling for mechanistic-based learning and design of metamaterial systemsComput Methods Appl Mech Eng20203724146801
HuangSSchimmelsJMThe Eigen screw decomposition of spatial stiffness matricesIEEE Trans Robot Autom2000162146156
BendsøeMPSigmundOTopology Optimization: Theory, Methods, and Applications20042Berlin and HeidelbergSpringer
Ding M, Vemur RI (2005) An active learning scheme using support vector machines for analog circuit feasibility classification. In: Proceedings of the 18th international conference on VLSI design, pp 528–534
WangMSongYLianBWangPChenKSunTDimensional parameters and structural topology integrated design method of a planar 5r parallel machining robotMech Mach Theory2022175
Kulick J, Lang T, Toussaint M, Lopes M (2013) Active learning for teaching a robot grounded relational symbols. In: International joint conference on artificial intelligence
XiaLBreitkopfPMultiscale structural topology optimization with an approximate constitutive model for local material microstructureComput Methods Appl Mech Eng20152861471673315071
KrischerLSureshbabuAVZimmermannMActive-learning combined with topology optimization for top-down design of multi-component systemsProc Des Soc2022216291638
HouLJiaoRJData-informed inverse design by product usage information: a review, framework and outlookJ Intell Manuf2020313529552
MeyerCDMatrix analysis and applied linear algebra2008PhiladelphiaSociety for Industrial and Applied Mathematics
HuangSSchimmelsJMAchieving an arbitrary spatial stiffness with springs connected in parallelJ Mech Des19981204520526
MartinsJRRANingAEngineering design optimization2022CambridgeCambridge University Press
Sobieszczanski-SobieskiJAltusTDPhillipsMSanduskyRRBilevel integrated system synthesis for concurrent and distributed processingAIAA J2003411019962003
ZimmermannMvon HoessleJEComputing solution spaces for robust designInt J Numer Meth Eng2013943290307
ConejoAJNogalesFJPrietoFJA decomposition procedure based on approximate newton directionsMath Program20029334955151953258
MukherjeeSLuDRaghavanBBreitkopfPDuttaSXiaoMZhangWAccelerating large-scale topology optimization: state-of-the-art and challengesArch Comput Methods Eng2021287454945714338497
MartinsJRRALambeABMultidisciplinary design optimization: a survey of architecturesAIAA J201351920492075
JeongS-HChoiD-HJeongMFeasibility classification of new design points using support vector machine trained by reduced datasetInt J Precis Eng Manuf2012135739746
WuZXiaLWangSShiTTopology optimization of hierarchical lattice structures with substructuringComput Methods Appl Mech Eng201934526026173883256
ForsbergKMoozHThe relationship of system engineering to the project cycleINCOSE Int Symp1991115765
LiuG-RQuekSSThe finite element method: a practical course20132OxfordButterworth-Heinemann
QiuCHanYShanmugamLZhaoYDongSDuSYangJA deep learning-based composite design strategy for efficient selection of material and layup sequences from a given databaseCompos Sci Technol2021230
KennedyJEberhartRParticle swarm optimizationProceedings/ 1995 IEEE international conference on neural networks1995IEEEPiscataway19421948
WoldsethRVAageNBærentzenJASigmundOOn the use of artificial neural networks in topology optimisationStruct Multidisc Optim20226510294
KrischerLZimmermannMDecomposition and optimization of linear structures using meta modelsStruct Multidisc Optim20216423932407
UlrichKTEppingerSDProduct design and development2003McGraw-Hill
WhiteDAArrighiWJKudoJWattsSEMultiscale topology optimization using neural network surrogate modelsComput Methods Appl Mech Eng2019346111811353913008
RamuPThananjayanPAcarEBayrakGParkJWLeeIA survey of machine learning techniques in structural and multidisciplinary optimizationStruct Multidisc Optim2022659266
KollmannHTAbueiddaDWKoricSGuleryuzESobhNADeep learning for topology optimization of 2d metamaterialsMater Des20201964
GHK Heirman (3836_CR14) 2010; 24
3836_CR23
CD Meyer (3836_CR30) 2008
NM Alexandrov (3836_CR1) 1997
3836_CR5
RT Haftka (3836_CR13) 2005; 6
3836_CR26
KT Ulrich (3836_CR44) 2003
AJ Conejo (3836_CR7) 2002; 93
FAC Viana (3836_CR45) 2014; 52
3836_CR9
M Wang (3836_CR48) 2022; 175
G-R Liu (3836_CR27) 2013
RV Woldseth (3836_CR51) 2022; 65
J Sobieszczanski-Sobieski (3836_CR40) 2003; 41
L Xia (3836_CR54) 2015; 286
G Milton (3836_CR31) 1995; 117
A Casaburo (3836_CR6) 2019; 71
L Wang (3836_CR47) 2021; 143
3836_CR37
L Wang (3836_CR46) 2020; 372
G Milton (3836_CR32) 2017; 5
L Hou (3836_CR15) 2020; 31
JRRA Martins (3836_CR28) 2013; 51
CP Coutinho (3836_CR8) 2016; 119
M Zimmermann (3836_CR56) 2013; 94
P Ramu (3836_CR36) 2022; 65
JRRA Martins (3836_CR29) 2022
J Jung (3836_CR19) 2019; 156
O Sigmund (3836_CR38) 1998; 16
S Tosserams (3836_CR43) 2009; 39
X Wang (3836_CR49) 2019; 132
S Huang (3836_CR17) 2000; 16
S Huang (3836_CR16) 1998; 120
J Sobieszczanski-Sobieski (3836_CR41) 1997; 14
MP Bendsøe (3836_CR3) 2004
K Forsberg (3836_CR11) 1991; 1
RJ Guyan (3836_CR12) 1965; 3
L Andersen (3836_CR2) 2008
M Zimmermann (3836_CR55) 2017; 28
L Krischer (3836_CR25) 2021; 64
K Svanberg (3836_CR42) 1987; 24
Z Wu (3836_CR53) 2019; 345
J Kennedy (3836_CR20) 1995
C Qiu (3836_CR35) 2021; 230
C Eckert (3836_CR10) 2005
J Sobieszczanski-Sobieski (3836_CR39) 2000; 38
S-H Jeong (3836_CR18) 2012; 13
S Mukherjee (3836_CR33) 2021; 28
HT Kollmann (3836_CR22) 2020; 196
J Wu (3836_CR52) 2021; 63
DA White (3836_CR50) 2019; 346
L Krischer (3836_CR24) 2022; 2
D Boolchandani (3836_CR4) 2011; 66
M Papadrakakis (3836_CR34) 1998; 156
HM Kim (3836_CR21) 2003; 125
References_xml – reference: MeyerCDMatrix analysis and applied linear algebra2008PhiladelphiaSociety for Industrial and Applied Mathematics
– reference: WuJSigmundOGroenJPTopology optimization of multi-scale structures: a reviewStruct Multidisc Optim2021633145514804233690
– reference: AlexandrovNMHussainiMYMultidisciplinary design optimization: state-of-the-art1997PhiladelphiaSociety for Industrial and Applied Mathematics SIAM
– reference: Sobieszczanski-SobieskiJHaftkaRTMultidisciplinary aerospace design optimization: survey of recent developmentsStruct Multidisc Optim1997141123
– reference: MartinsJRRALambeABMultidisciplinary design optimization: a survey of architecturesAIAA J201351920492075
– reference: JungJYoonJIParkS-JKangJ-YKimGLSongYHParkSTOhKWKimHSModelling feasibility constraints for materials design: application to inverse crystallographic texture problemComput Mater Sci2019156361367
– reference: Krischer L (2023) Informed Decomposition: Distributed design optimization of mechanical multi-component systems. PhD thesis, Technische Universität München
– reference: CoutinhoCPBaptistaAJDias RodriguesJReduced scale models based on similitude theory: a review up to 2015Eng Struct20161198194
– reference: GuyanRJReduction of stiffness and mass matricesAIAA J196532380
– reference: Kulick J, Lang T, Toussaint M, Lopes M (2013) Active learning for teaching a robot grounded relational symbols. In: International joint conference on artificial intelligence
– reference: WhiteDAArrighiWJKudoJWattsSEMultiscale topology optimization using neural network surrogate modelsComput Methods Appl Mech Eng2019346111811353913008
– reference: KollmannHTAbueiddaDWKoricSGuleryuzESobhNADeep learning for topology optimization of 2d metamaterialsMater Des20201964
– reference: HouLJiaoRJData-informed inverse design by product usage information: a review, framework and outlookJ Intell Manuf2020313529552
– reference: HuangSSchimmelsJMAchieving an arbitrary spatial stiffness with springs connected in parallelJ Mech Des19981204520526
– reference: MiltonGCherkaevAVWhich elasticity tensors are realizable?J Eng Mater Technol19951174483493
– reference: MiltonGHarutyunyanDBrianeMTowards a complete characterization of the effective elasticity tensors of mixtures of an elastic phase and an almost rigid phaseMath Mech Complex Syst201751951133677944
– reference: WoldsethRVAageNBærentzenJASigmundOOn the use of artificial neural networks in topology optimisationStruct Multidisc Optim20226510294
– reference: MartinsJRRANingAEngineering design optimization2022CambridgeCambridge University Press
– reference: WangLTaoSZhuPChenWData-driven topology optimization with multiclass microstructures using latent variable gaussian processJ Mech Des20211433296
– reference: PapadrakakisMLagarosNDTsompanakisYStructural optimization using evolution strategies and neural networksComput Methods Appl Mech Eng19981561–4309333
– reference: XiaLBreitkopfPMultiscale structural topology optimization with an approximate constitutive model for local material microstructureComput Methods Appl Mech Eng20152861471673315071
– reference: WuZXiaLWangSShiTTopology optimization of hierarchical lattice structures with substructuringComput Methods Appl Mech Eng201934526026173883256
– reference: BoolchandaniDAhmedASahulaVEfficient kernel functions for support vector machine regression model for analog circuits’ performance evaluationAnalog Integr Circ Sig Process2011661117128
– reference: RamuPThananjayanPAcarEBayrakGParkJWLeeIA survey of machine learning techniques in structural and multidisciplinary optimizationStruct Multidisc Optim2022659266
– reference: Sobieszczanski-SobieskiJAltusTDPhillipsMSanduskyRRBilevel integrated system synthesis for concurrent and distributed processingAIAA J2003411019962003
– reference: KrischerLZimmermannMDecomposition and optimization of linear structures using meta modelsStruct Multidisc Optim20216423932407
– reference: QiuCHanYShanmugamLZhaoYDongSDuSYangJA deep learning-based composite design strategy for efficient selection of material and layup sequences from a given databaseCompos Sci Technol2021230
– reference: HuangSSchimmelsJMThe Eigen screw decomposition of spatial stiffness matricesIEEE Trans Robot Autom2000162146156
– reference: MukherjeeSLuDRaghavanBBreitkopfPDuttaSXiaoMZhangWAccelerating large-scale topology optimization: state-of-the-art and challengesArch Comput Methods Eng2021287454945714338497
– reference: BendsøeMPSigmundOTopology Optimization: Theory, Methods, and Applications20042Berlin and HeidelbergSpringer
– reference: KennedyJEberhartRParticle swarm optimizationProceedings/ 1995 IEEE international conference on neural networks1995IEEEPiscataway19421948
– reference: WangLChanY-CAhmedFLiuZZhuPChenWDeep generative modeling for mechanistic-based learning and design of metamaterial systemsComput Methods Appl Mech Eng20203724146801
– reference: VianaFACSimpsonTWBalabanovVToropovVSpecial section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come?AIAA J2014524670690
– reference: Braun R (1996) Collaborative optimization: an architecture for large-scale distributed design: Ph.D. thesis
– reference: ConejoAJNogalesFJPrietoFJA decomposition procedure based on approximate newton directionsMath Program20029334955151953258
– reference: Ding M, Vemur RI (2005) An active learning scheme using support vector machines for analog circuit feasibility classification. In: Proceedings of the 18th international conference on VLSI design, pp 528–534
– reference: Regenwetter L, Ahmed F (2022) Design target achievement index: a differentiable metric to enhance deep generative models in multi-objective inverse design. Volume 3B: 48th Design Automation Conference (DAC)(9)
– reference: SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Optim1998166875
– reference: LiuG-RQuekSSThe finite element method: a practical course20132OxfordButterworth-Heinemann
– reference: TosseramsSEtmanLFPRoodaJEA classification of methods for distributed system optimization based on formulation structureStruct Multidisc Optim20093955035172551070
– reference: Sobieszczanski-SobieskiJAgteJSanduskyRRBilevel integrated system synthesisAIAA J2000381164172
– reference: JeongS-HChoiD-HJeongMFeasibility classification of new design points using support vector machine trained by reduced datasetInt J Precis Eng Manuf2012135739746
– reference: ZimmermannMvon HoessleJEComputing solution spaces for robust designInt J Numer Meth Eng2013943290307
– reference: KrischerLSureshbabuAVZimmermannMActive-learning combined with topology optimization for top-down design of multi-component systemsProc Des Soc2022216291638
– reference: WangMSongYLianBWangPChenKSunTDimensional parameters and structural topology integrated design method of a planar 5r parallel machining robotMech Mach Theory2022175
– reference: SvanbergKThe method of moving asymptotes—a new method for structural optimizationInt J Numer Meth Eng1987242359373875307
– reference: AndersenLNielsenSRElastic beams in three dimensions: textbook200823AalborgAalborg University
– reference: HeirmanGHKDesmetWInterface reduction of flexible bodies for efficient modeling of body flexibility in multibody dynamicsMultibody Syst Dyn2010242219234
– reference: ZimmermannMKönigsSNiemeyerCFenderJZeherbauerCVitaleRWahleMOn the design of large systems subject to uncertaintyJ Eng Des2017284233254
– reference: ForsbergKMoozHThe relationship of system engineering to the project cycleINCOSE Int Symp1991115765
– reference: EckertCClarksonJClarksonJEckertCThe reality of designDesign process improvement, SpringerLink Bücher2005LondonSpringer129
– reference: WangXZhangDZhaoCZhangPZhangYCaiYOptimal design of lightweight serial robots by integrating topology optimization and parametric system optimizationMech Mach Theory20191324865
– reference: CasaburoAPetroneGFrancoFde RosaSA review of similitude methods for structural engineeringAppl Mech Rev2019713030802
– reference: HaftkaRTWatsonLTMultidisciplinary design optimization with quasi-separable subsystemsOptim Eng2005619202122423
– reference: KimHMMichelenaNFPapalambrosPYJiangTTarget cascading in optimal system designJ Mech Des20031253474480
– reference: UlrichKTEppingerSDProduct design and development2003McGraw-Hill
– volume-title: Multidisciplinary design optimization: state-of-the-art
  year: 1997
  ident: 3836_CR1
– volume: 24
  start-page: 219
  issue: 2
  year: 2010
  ident: 3836_CR14
  publication-title: Multibody Syst Dyn
  doi: 10.1007/s11044-010-9198-7
– ident: 3836_CR37
  doi: 10.1115/DETC2022-91344
– volume: 6
  start-page: 9
  issue: 1
  year: 2005
  ident: 3836_CR13
  publication-title: Optim Eng
  doi: 10.1023/B:OPTE.0000048534.58121.93
– volume-title: The finite element method: a practical course
  year: 2013
  ident: 3836_CR27
– volume: 14
  start-page: 1
  issue: 1
  year: 1997
  ident: 3836_CR41
  publication-title: Struct Multidisc Optim
  doi: 10.1007/BF01197554
– volume: 66
  start-page: 117
  issue: 1
  year: 2011
  ident: 3836_CR4
  publication-title: Analog Integr Circ Sig Process
  doi: 10.1007/s10470-010-9476-6
– volume: 119
  start-page: 81
  year: 2016
  ident: 3836_CR8
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.04.016
– volume: 156
  start-page: 361
  year: 2019
  ident: 3836_CR19
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2018.10.017
– volume: 16
  start-page: 146
  issue: 2
  year: 2000
  ident: 3836_CR17
  publication-title: IEEE Trans Robot Autom
  doi: 10.1109/70.843170
– volume: 28
  start-page: 233
  issue: 4
  year: 2017
  ident: 3836_CR55
  publication-title: J Eng Des
  doi: 10.1080/09544828.2017.1303664
– volume: 2
  start-page: 1629
  year: 2022
  ident: 3836_CR24
  publication-title: Proc Des Soc
  doi: 10.1017/pds.2022.165
– volume: 143
  start-page: 296
  issue: 3
  year: 2021
  ident: 3836_CR47
  publication-title: J Mech Des
– volume: 65
  start-page: 266
  issue: 9
  year: 2022
  ident: 3836_CR36
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-022-03369-9
– volume: 125
  start-page: 474
  issue: 3
  year: 2003
  ident: 3836_CR21
  publication-title: J Mech Des
  doi: 10.1115/1.1582501
– volume: 117
  start-page: 483
  issue: 4
  year: 1995
  ident: 3836_CR31
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.2804743
– volume: 286
  start-page: 147
  year: 2015
  ident: 3836_CR54
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.12.018
– volume-title: Engineering design optimization
  year: 2022
  ident: 3836_CR29
– volume-title: Topology Optimization: Theory, Methods, and Applications
  year: 2004
  ident: 3836_CR3
  doi: 10.1007/978-3-662-05086-6
– volume: 31
  start-page: 529
  issue: 3
  year: 2020
  ident: 3836_CR15
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-019-01463-2
– volume: 196
  issue: 4
  year: 2020
  ident: 3836_CR22
  publication-title: Mater Des
– start-page: 1
  volume-title: Design process improvement, SpringerLink Bücher
  year: 2005
  ident: 3836_CR10
– volume: 120
  start-page: 520
  issue: 4
  year: 1998
  ident: 3836_CR16
  publication-title: J Mech Des
  doi: 10.1115/1.2829309
– volume: 3
  start-page: 380
  issue: 2
  year: 1965
  ident: 3836_CR12
  publication-title: AIAA J
  doi: 10.2514/3.2874
– ident: 3836_CR5
  doi: 10.2514/6.1996-4018
– volume: 94
  start-page: 290
  issue: 3
  year: 2013
  ident: 3836_CR56
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.4450
– volume-title: Matrix analysis and applied linear algebra
  year: 2008
  ident: 3836_CR30
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 3836_CR42
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620240207
– volume: 1
  start-page: 57
  issue: 1
  year: 1991
  ident: 3836_CR11
  publication-title: INCOSE Int Symp
  doi: 10.1002/j.2334-5837.1991.tb01484.x
– volume: 71
  start-page: 030802
  issue: 3
  year: 2019
  ident: 3836_CR6
  publication-title: Appl Mech Rev
  doi: 10.1115/1.4043787
– volume: 65
  start-page: 294
  issue: 10
  year: 2022
  ident: 3836_CR51
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-022-03347-1
– volume: 41
  start-page: 1996
  issue: 10
  year: 2003
  ident: 3836_CR40
  publication-title: AIAA J
  doi: 10.2514/2.1889
– volume: 93
  start-page: 495
  issue: 3
  year: 2002
  ident: 3836_CR7
  publication-title: Math Program
  doi: 10.1007/s10107-002-0304-3
– volume-title: Product design and development
  year: 2003
  ident: 3836_CR44
– volume: 63
  start-page: 1455
  issue: 3
  year: 2021
  ident: 3836_CR52
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-021-02881-8
– volume: 51
  start-page: 2049
  issue: 9
  year: 2013
  ident: 3836_CR28
  publication-title: AIAA J
  doi: 10.2514/1.J051895
– volume-title: Elastic beams in three dimensions: textbook
  year: 2008
  ident: 3836_CR2
– ident: 3836_CR23
– volume: 16
  start-page: 68
  year: 1998
  ident: 3836_CR38
  publication-title: Struct Optim
  doi: 10.1007/BF01214002
– volume: 230
  year: 2021
  ident: 3836_CR35
  publication-title: Compos Sci Technol
– start-page: 1942
  volume-title: Proceedings/ 1995 IEEE international conference on neural networks
  year: 1995
  ident: 3836_CR20
– volume: 13
  start-page: 739
  issue: 5
  year: 2012
  ident: 3836_CR18
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-012-0096-1
– ident: 3836_CR9
  doi: 10.1109/ICVD.2005.47
– volume: 345
  start-page: 602
  issue: 2
  year: 2019
  ident: 3836_CR53
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.11.003
– volume: 64
  start-page: 2393
  year: 2021
  ident: 3836_CR25
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-021-02993-1
– volume: 39
  start-page: 503
  issue: 5
  year: 2009
  ident: 3836_CR43
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-008-0347-z
– volume: 175
  year: 2022
  ident: 3836_CR48
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2022.104964
– volume: 52
  start-page: 670
  issue: 4
  year: 2014
  ident: 3836_CR45
  publication-title: AIAA J
  doi: 10.2514/1.J052375
– ident: 3836_CR26
– volume: 5
  start-page: 95
  issue: 1
  year: 2017
  ident: 3836_CR32
  publication-title: Math Mech Complex Syst
  doi: 10.2140/memocs.2017.5.95
– volume: 28
  start-page: 4549
  issue: 7
  year: 2021
  ident: 3836_CR33
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-021-09544-3
– volume: 156
  start-page: 309
  issue: 1–4
  year: 1998
  ident: 3836_CR34
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(97)00215-6
– volume: 38
  start-page: 164
  issue: 1
  year: 2000
  ident: 3836_CR39
  publication-title: AIAA J
  doi: 10.2514/2.937
– volume: 346
  start-page: 1118
  year: 2019
  ident: 3836_CR50
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.09.007
– volume: 372
  year: 2020
  ident: 3836_CR46
  publication-title: Comput Methods Appl Mech Eng
– volume: 132
  start-page: 48
  year: 2019
  ident: 3836_CR49
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2018.10.015
SSID ssj0008049
Score 2.4276078
Snippet Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 160
SubjectTerms Computational Mathematics and Numerical Analysis
Coordination
Decomposition
Design optimization
Engineering
Engineering Design
Parallel degrees of freedom
Research Paper
Stiffness matrix
Theoretical and Applied Mechanics
Topology optimization
SummonAdditionalLinks – databaseName: (Open Access) Springer Nature eJournals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHGAHxFMMBsqBG4uUPtLHEQ2mCQlOTNqtSuqEy9ZNrBPav8dJu44hhODYh9zKdvyQ7c-E3EqVemArjDE3PiYoec7QzwND3QjTJBKxCu3s8PNLNByFT2MxrmFy7CzMt_q9Bfv0RMLQkzCOyVTExC7ZQycVucJs1G-sblKFujaAYV4Yj-sBmZ9pbDuhTWTZFEPbZH9ZzOXqQ04mX_zN4Igc1oEiva8ke0x2dHFC2l_gA0-JebCot3ZhlQYKrhWDztAETOvZSjoz1DUMMts4PivQv9AKuXlBbb_7G53qUlK3DGdBZQG0rFYmrLbInJHR4PG1P2T13gSWB15YollVHGJpAEAGYW5Ae1ymSWqMRHlpW9vLbW6qAe9oTxvBczz4oHwdpT6o4Jy0CvypC0JVFPAUMKbloEMjRZrgpeCSQwC-kqJD7taMzOYVPEbWACE7tmfI9syxPcO3u2teZ_VRWWRu0RmmhUHQIb01_zePf6PWa2T0h49f_o_6FTnwncbYdrIuaZXvS32N8UepbpzifQLfWNJ9
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gO6AdeCOGBsqBG8uUrk3XHidgmpCYODBpnKqkTjiwdRPrhMavx2m7FyAetz4it7Xd2Jbtz4RcShU6YDOMLW6aGKDEMUM7Dwx1wwsDX7SUZ3uH73t-t-_dDcRgBRb9KX1vsT4dETA0JIxjLOUzsU3KvkC3u0TK_d5D-8kGVGiVmeO1BqvjICgaZL4nsmmEVp7lMhlaITuzZCLnb3I4XLM3nb28UmuawRTaMpOXxixVjfj9K4jj75-yT3YLr5O2czU5IFs6OSSVNSzCI2JuLISunX6lgUJW10HHuJ-MikZNOjY0qz5ktgp9nKCxojkM9JTa4vlnOtKppNlknSmVCdA0n78w3yBzTPqd28frLiuGMLDYdbwU92jFoSUNAEjXiw1oh8swCI2RKHxtE4WxDXQ14BXtaCN4jLsIqKb2wyYo94SUEnypU0KV7_IQ0EHmoD0jRRjgqeCSgwtNJUWVXC2kEk1yrI1oiaqccS9C7kUZ9yJcXVsILir-u2mUTU3DGNN1q6S-EObq9k_U6kuB_-HhZ_9bXiOl9HWmz9F_SdVFobkfxU3n6w
  priority: 102
  providerName: Unpaywall
Title Distributed design optimization of multi-component systems using meta models and topology optimization
URI https://link.springer.com/article/10.1007/s00158-024-03836-5
https://www.proquest.com/docview/3103060133
http://doi.org/10.1007/s00158-024-03836-5
UnpaywallVersion publishedVersion
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AFBBN
  dateStart: 19890301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1615-1488
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-C9rBxmAbbNDZW-bAbWHM-mxymqe1a0KZFCFGpnCInz94F0kKDJv77veckLVwQl0SxIzt6dt6H38cP4KsuUg_ZwzhU1icDpSwlyXmUtDfCNImjYRFy7vCfLD6bh78W0WIHsi4XhsMqO57oGDUuSz4j_-bwsMh6CIIfq1vJqFHsXe0gNHQLrYDfXYmxXej7XBmrB_3xNDu_2PDmpFGIWc2RXjhctGk0LpmO1YdEksySisy2WEZPRdVW_9y4TPfg1X210g__9PX1I6k0ewtvWnVSjJr134cdUx3A3qMig-_A_uTauAxrZVCgC9gQS2IUN20Gplha4cIKJYeXLyuSQqKp77wWHBX_V9yYWgsHmbMWukJRN8AKD0-GeQ_z2fRyciZbdAVZBl5YE_MtFA61RUQdhKVF4ymdJqm1RExt2ANYsgVrkFqMZ2ykSmIPWPgmTn0sgg_Qq-ijPoIo4kClSJqvQhNaHaUJPUZKKwzQL3R0CMcdIfNVU0Qj35RLdmTPiey5I3tObx91tM7bH2qdb5f_EE46-m-7nxvtZLNGL5j80_OTf4bXvtshHGR2BL367t58Ia2kLgawm8xOB9AfzcbjjO-nV7-ng3YDUu8kntB17o-obZ6dj67-A0BO530
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB5xUHAUCA4Qb1xwFVg4iZNNCoR4anmtTieQtgtOxqaB7MIGof1z_DbGTrILDaKhzEPjaDyeR-bxAWyrLPHQZhhbwvgUoOQ5JzuPnGRDJnEUtjJpe4evO1H7Vl50w-4EvDW9MLasstGJTlFjL7f_yPccHhZFD0Fw0H_iFjXKZlcbCA1VQyvgvhsxVjd2XOrhK4Vwg_3zE9rvv75_dnpz3OY1ygDPA0-WpIQygS1lEFEFMjeoPaGSODGGiCptM2G5jeQ00h3taROKnI4JZr6OEh-zgOj-gikZyISCv6mj086__yNbEFcOuHWruCdb3bptxzXvWXcl5mQjuaAwMeLhZ9M49ndHKdoZmH4p-mr4qh4ePljBszmYrd1XdljJ2zxM6OIPzHwYargA5sTO4rUwWhoZugIR1iPF9Fh3fLKeYa6Mkdty9l5BVo9V86QHzFbh37NHXSrmIHoGTBXIygrIYfiJzCLc_gifl2CyoI9aBpZFgUiQPG2BWhoVJjFdhkIJDNDPVLgCOw0j0341tCMdjWd2bE-J7alje0pvrze8TusDPEjH4rYCuw3_x4-_orY72qNvLL769eJbMN2-ub5Kr847l2vw23fSYgvc1mGyfH7RG-QRldlmLXYM7n5a0t8B42wgzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJioH4zOiqHvwJhu2T9qjAQm-iAdJuDXbzq4XKERKDP_e2W0pkBijxz4ybWem881kXoTciji0QGcYW1zZGKAkCUOcB4a64YaB77ViV_cOv_b93sB9GnrDtS5-U-2-TEnmPQ16SlOaNaegmmXjm4b6gCG-MI4hls-8bbLjIrrpHQZtv13a4iB3gLVbwyy3NSzaZn6msQlNK3-zTJFWyd48nYrFlxiN1lCoe0gOCveR3ufyPiJbMj0m1bWhgidEdfQsXL3GSgIFU6BBJ2gYxkXHJZ0oasoImS4nn6T41TSf5zyjugr-g45lJqhZkTOjIgWa5YsUFhtkTsmg-_De7rFimwJLHMvN0NjGHFpCAYBw3ESBtLgIg1ApgVKUOuOX6IhVAp6RllQeT9AcQGxLP7Qhds5IJcWXOic09h0eAnq6HKSrhBcGeOhxwcEBOxZejdwtGRlN86EZUTke2bA9QrZHhu0R3l1f8joqfqBZZNafYbDoODXSWPJ_dfk3ao1SRn94-MX_qN-Q3bdON3p57D9fkn3bKI-uN6uTSvY5l1fooGTxtdHBbxsy3bM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gO6AdeCOGBsqBG8uUrk3XHidgmpCYODBpnKqkTjiwdRPrhMavx2m7FyAetz4it7Xd2Jbtz4RcShU6YDOMLW6aGKDEMUM7Dwx1wwsDX7SUZ3uH73t-t-_dDcRgBRb9KX1vsT4dETA0JIxjLOUzsU3KvkC3u0TK_d5D-8kGVGiVmeO1BqvjICgaZL4nsmmEVp7lMhlaITuzZCLnb3I4XLM3nb28UmuawRTaMpOXxixVjfj9K4jj75-yT3YLr5O2czU5IFs6OSSVNSzCI2JuLISunX6lgUJW10HHuJ-MikZNOjY0qz5ktgp9nKCxojkM9JTa4vlnOtKppNlknSmVCdA0n78w3yBzTPqd28frLiuGMLDYdbwU92jFoSUNAEjXiw1oh8swCI2RKHxtE4WxDXQ14BXtaCN4jLsIqKb2wyYo94SUEnypU0KV7_IQ0EHmoD0jRRjgqeCSgwtNJUWVXC2kEk1yrI1oiaqccS9C7kUZ9yJcXVsILir-u2mUTU3DGNN1q6S-EObq9k_U6kuB_-HhZ_9bXiOl9HWmz9F_SdVFobkfxU3n6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+design+optimization+of+multi-component+systems+using+meta+models+and+topology+optimization&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Krischer%2C+Lukas&rft.au=Endress%2C+Felix&rft.au=Wanninger%2C+Tobias&rft.au=Zimmermann%2C+Markus&rft.date=2024-09-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=67&rft.issue=9&rft_id=info:doi/10.1007%2Fs00158-024-03836-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_024_03836_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon