Distributed design optimization of multi-component systems using meta models and topology optimization
Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distrib...
        Saved in:
      
    
          | Published in | Structural and multidisciplinary optimization Vol. 67; no. 9; p. 160 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.09.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1615-147X 1615-1488 1615-1488  | 
| DOI | 10.1007/s00158-024-03836-5 | 
Cover
| Abstract | Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distributed optimization architecture was previously proposed that does not require coordination. This so-called
Informed Decomposition
is based on two types of optimization problems: (1) one for system optimization to produce stiffness requirements on components using pre-trained meta models and (2) one for the optimization of components with two interfaces to produce detailed geometries that satisfy the stiffness requirements. Each component optimization problem can be carried out independently and in parallel. This paper extends the approach to three-dimensional structures consisting of components with six degrees of freedom per interface, thus significantly increasing the applicability to practical problems. For this, an 8-dimensional representation of the general 12 x 12 interface stiffness matrix for components is derived. Meta models for mass estimation and physical feasibility of stiffness targets are trained using an active-learning strategy. A simple two-component structure and a large robot structure consisting of four components subject to constraints for 100 different loading scenarios are optimized. The example results are at most 12.9% heavier than those of a monolithic optimization. | 
    
|---|---|
| AbstractList | Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distributed optimization architecture was previously proposed that does not require coordination. This so-called Informed Decomposition is based on two types of optimization problems: (1) one for system optimization to produce stiffness requirements on components using pre-trained meta models and (2) one for the optimization of components with two interfaces to produce detailed geometries that satisfy the stiffness requirements. Each component optimization problem can be carried out independently and in parallel. This paper extends the approach to three-dimensional structures consisting of components with six degrees of freedom per interface, thus significantly increasing the applicability to practical problems. For this, an 8-dimensional representation of the general 12 x 12 interface stiffness matrix for components is derived. Meta models for mass estimation and physical feasibility of stiffness targets are trained using an active-learning strategy. A simple two-component structure and a large robot structure consisting of four components subject to constraints for 100 different loading scenarios are optimized. The example results are at most 12.9% heavier than those of a monolithic optimization. Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To ensure consistency and convergence towards a global optimum, however, cumbersome coordination is necessary and often not sufficient. A distributed optimization architecture was previously proposed that does not require coordination. This so-called Informed Decomposition is based on two types of optimization problems: (1) one for system optimization to produce stiffness requirements on components using pre-trained meta models and (2) one for the optimization of components with two interfaces to produce detailed geometries that satisfy the stiffness requirements. Each component optimization problem can be carried out independently and in parallel. This paper extends the approach to three-dimensional structures consisting of components with six degrees of freedom per interface, thus significantly increasing the applicability to practical problems. For this, an 8-dimensional representation of the general 12 x 12 interface stiffness matrix for components is derived. Meta models for mass estimation and physical feasibility of stiffness targets are trained using an active-learning strategy. A simple two-component structure and a large robot structure consisting of four components subject to constraints for 100 different loading scenarios are optimized. The example results are at most 12.9% heavier than those of a monolithic optimization.  | 
    
| ArticleNumber | 160 | 
    
| Author | Krischer, Lukas Zimmermann, Markus Endress, Felix Wanninger, Tobias  | 
    
| Author_xml | – sequence: 1 givenname: Lukas surname: Krischer fullname: Krischer, Lukas organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich – sequence: 2 givenname: Felix surname: Endress fullname: Endress, Felix organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich – sequence: 3 givenname: Tobias surname: Wanninger fullname: Wanninger, Tobias organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich – sequence: 4 givenname: Markus orcidid: 0000-0002-6666-3291 surname: Zimmermann fullname: Zimmermann, Markus email: zimmermann@tum.de organization: Laboratory for Product Development and Lightweight Design, Technical University of Munich  | 
    
| BookMark | eNqNUMtKxDAUDTKCM6M_4CrgOnrT9LmU8QmCGwV3IW2SkqFNapMi9euNzqC4EVf3wXlxVmhhnVUInVI4pwDFhQegWUkgSQmwkuUkO0BLmtOM0LQsF9978XKEVt5vAaCEtFoifWV8GE09BSWxVN60FrshmN68i2BcPDTupy4Y0rh-iKY2YD_7oHqPJ29si3sVBO6dVJ3Hwkoc3OA6186_ZI7RoRadVyf7uUbPN9dPmzvy8Hh7v7l8IA2jaSCM1iALoaWUgqWNloqCqMpKa9E0QkGWVE1BGVMyfhRVOoOmACbrROVVImu2RmynO9lBzG-i6_gwml6MM6fAP6viu6p4rIp_VcWzyDrbsYbRvU7KB75102hjUM4oMMghekZUskM1o_N-VPp_0vtAPoJtq8Yf6T9YH-Jwjnk | 
    
| Cites_doi | 10.1007/s11044-010-9198-7 10.1115/DETC2022-91344 10.1023/B:OPTE.0000048534.58121.93 10.1007/BF01197554 10.1007/s10470-010-9476-6 10.1016/j.engstruct.2016.04.016 10.1016/j.commatsci.2018.10.017 10.1109/70.843170 10.1080/09544828.2017.1303664 10.1017/pds.2022.165 10.1007/s00158-022-03369-9 10.1115/1.1582501 10.1115/1.2804743 10.1016/j.cma.2014.12.018 10.1007/978-3-662-05086-6 10.1007/s10845-019-01463-2 10.1115/1.2829309 10.2514/3.2874 10.2514/6.1996-4018 10.1002/nme.4450 10.1002/nme.1620240207 10.1002/j.2334-5837.1991.tb01484.x 10.1115/1.4043787 10.1007/s00158-022-03347-1 10.2514/2.1889 10.1007/s10107-002-0304-3 10.1007/s00158-021-02881-8 10.2514/1.J051895 10.1007/BF01214002 10.1007/s12541-012-0096-1 10.1109/ICVD.2005.47 10.1016/j.cma.2018.11.003 10.1007/s00158-021-02993-1 10.1007/s00158-008-0347-z 10.1016/j.mechmachtheory.2022.104964 10.2514/1.J052375 10.2140/memocs.2017.5.95 10.1007/s11831-021-09544-3 10.1016/S0045-7825(97)00215-6 10.2514/2.937 10.1016/j.cma.2018.09.007 10.1016/j.mechmachtheory.2018.10.015  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY  | 
    
| DOI | 10.1007/s00158-024-03836-5 | 
    
| DatabaseName | (Open Access) Springer Nature eJournals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central SciTech Premium Collection (via ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Engineering Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1615-1488 | 
    
| ExternalDocumentID | 10.1007/s00158-024-03836-5 10_1007_s00158_024_03836_5  | 
    
| GrantInformation_xml | – fundername: Technische Universität München (1025) – fundername: Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie grantid: 07 02/683 57/98/20 252/22 253/23 254/24 funderid: http://dx.doi.org/10.13039/501100020639  | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c314t-31b0d7afddda34cfde10a989ffaccae0529c7133edffae1ef50c703db2e692db3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1615-147X 1615-1488  | 
    
| IngestDate | Sun Sep 07 11:25:44 EDT 2025 Sat Oct 25 08:17:51 EDT 2025 Wed Oct 01 02:17:30 EDT 2025 Fri Feb 21 02:37:47 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | Distributed design optimization Topology optimization Machine learning  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c314t-31b0d7afddda34cfde10a989ffaccae0529c7133edffae1ef50c703db2e692db3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6666-3291 | 
    
| OpenAccessLink | https://doi.org/10.1007/s00158-024-03836-5 | 
    
| PQID | 3103060133 | 
    
| PQPubID | 2043658 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s00158_024_03836_5 proquest_journals_3103060133 crossref_primary_10_1007_s00158_024_03836_5 springer_journals_10_1007_s00158_024_03836_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240900 2024-09-00 20240901  | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Structural and multidisciplinary optimization | 
    
| PublicationTitleAbbrev | Struct Multidisc Optim | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | HeirmanGHKDesmetWInterface reduction of flexible bodies for efficient modeling of body flexibility in multibody dynamicsMultibody Syst Dyn2010242219234 ZimmermannMKönigsSNiemeyerCFenderJZeherbauerCVitaleRWahleMOn the design of large systems subject to uncertaintyJ Eng Des2017284233254 Sobieszczanski-SobieskiJAgteJSanduskyRRBilevel integrated system synthesisAIAA J2000381164172 WangLTaoSZhuPChenWData-driven topology optimization with multiclass microstructures using latent variable gaussian processJ Mech Des20211433296 MiltonGHarutyunyanDBrianeMTowards a complete characterization of the effective elasticity tensors of mixtures of an elastic phase and an almost rigid phaseMath Mech Complex Syst201751951133677944 WangXZhangDZhaoCZhangPZhangYCaiYOptimal design of lightweight serial robots by integrating topology optimization and parametric system optimizationMech Mach Theory20191324865 MiltonGCherkaevAVWhich elasticity tensors are realizable?J Eng Mater Technol19951174483493 PapadrakakisMLagarosNDTsompanakisYStructural optimization using evolution strategies and neural networksComput Methods Appl Mech Eng19981561–4309333 CoutinhoCPBaptistaAJDias RodriguesJReduced scale models based on similitude theory: a review up to 2015Eng Struct20161198194 SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Optim1998166875 BoolchandaniDAhmedASahulaVEfficient kernel functions for support vector machine regression model for analog circuits’ performance evaluationAnalog Integr Circ Sig Process2011661117128 SvanbergKThe method of moving asymptotes—a new method for structural optimizationInt J Numer Meth Eng1987242359373875307 Regenwetter L, Ahmed F (2022) Design target achievement index: a differentiable metric to enhance deep generative models in multi-objective inverse design. Volume 3B: 48th Design Automation Conference (DAC)(9) Krischer L (2023) Informed Decomposition: Distributed design optimization of mechanical multi-component systems. PhD thesis, Technische Universität München Braun R (1996) Collaborative optimization: an architecture for large-scale distributed design: Ph.D. thesis KimHMMichelenaNFPapalambrosPYJiangTTarget cascading in optimal system designJ Mech Des20031253474480 GuyanRJReduction of stiffness and mass matricesAIAA J196532380 VianaFACSimpsonTWBalabanovVToropovVSpecial section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come?AIAA J2014524670690 WuJSigmundOGroenJPTopology optimization of multi-scale structures: a reviewStruct Multidisc Optim2021633145514804233690 EckertCClarksonJClarksonJEckertCThe reality of designDesign process improvement, SpringerLink Bücher2005LondonSpringer129 CasaburoAPetroneGFrancoFde RosaSA review of similitude methods for structural engineeringAppl Mech Rev2019713030802 AndersenLNielsenSRElastic beams in three dimensions: textbook200823AalborgAalborg University JungJYoonJIParkS-JKangJ-YKimGLSongYHParkSTOhKWKimHSModelling feasibility constraints for materials design: application to inverse crystallographic texture problemComput Mater Sci2019156361367 HaftkaRTWatsonLTMultidisciplinary design optimization with quasi-separable subsystemsOptim Eng2005619202122423 Sobieszczanski-SobieskiJHaftkaRTMultidisciplinary aerospace design optimization: survey of recent developmentsStruct Multidisc Optim1997141123 TosseramsSEtmanLFPRoodaJEA classification of methods for distributed system optimization based on formulation structureStruct Multidisc Optim20093955035172551070 AlexandrovNMHussainiMYMultidisciplinary design optimization: state-of-the-art1997PhiladelphiaSociety for Industrial and Applied Mathematics SIAM WangLChanY-CAhmedFLiuZZhuPChenWDeep generative modeling for mechanistic-based learning and design of metamaterial systemsComput Methods Appl Mech Eng20203724146801 HuangSSchimmelsJMThe Eigen screw decomposition of spatial stiffness matricesIEEE Trans Robot Autom2000162146156 BendsøeMPSigmundOTopology Optimization: Theory, Methods, and Applications20042Berlin and HeidelbergSpringer Ding M, Vemur RI (2005) An active learning scheme using support vector machines for analog circuit feasibility classification. In: Proceedings of the 18th international conference on VLSI design, pp 528–534 WangMSongYLianBWangPChenKSunTDimensional parameters and structural topology integrated design method of a planar 5r parallel machining robotMech Mach Theory2022175 Kulick J, Lang T, Toussaint M, Lopes M (2013) Active learning for teaching a robot grounded relational symbols. In: International joint conference on artificial intelligence XiaLBreitkopfPMultiscale structural topology optimization with an approximate constitutive model for local material microstructureComput Methods Appl Mech Eng20152861471673315071 KrischerLSureshbabuAVZimmermannMActive-learning combined with topology optimization for top-down design of multi-component systemsProc Des Soc2022216291638 HouLJiaoRJData-informed inverse design by product usage information: a review, framework and outlookJ Intell Manuf2020313529552 MeyerCDMatrix analysis and applied linear algebra2008PhiladelphiaSociety for Industrial and Applied Mathematics HuangSSchimmelsJMAchieving an arbitrary spatial stiffness with springs connected in parallelJ Mech Des19981204520526 MartinsJRRANingAEngineering design optimization2022CambridgeCambridge University Press Sobieszczanski-SobieskiJAltusTDPhillipsMSanduskyRRBilevel integrated system synthesis for concurrent and distributed processingAIAA J2003411019962003 ZimmermannMvon HoessleJEComputing solution spaces for robust designInt J Numer Meth Eng2013943290307 ConejoAJNogalesFJPrietoFJA decomposition procedure based on approximate newton directionsMath Program20029334955151953258 MukherjeeSLuDRaghavanBBreitkopfPDuttaSXiaoMZhangWAccelerating large-scale topology optimization: state-of-the-art and challengesArch Comput Methods Eng2021287454945714338497 MartinsJRRALambeABMultidisciplinary design optimization: a survey of architecturesAIAA J201351920492075 JeongS-HChoiD-HJeongMFeasibility classification of new design points using support vector machine trained by reduced datasetInt J Precis Eng Manuf2012135739746 WuZXiaLWangSShiTTopology optimization of hierarchical lattice structures with substructuringComput Methods Appl Mech Eng201934526026173883256 ForsbergKMoozHThe relationship of system engineering to the project cycleINCOSE Int Symp1991115765 LiuG-RQuekSSThe finite element method: a practical course20132OxfordButterworth-Heinemann QiuCHanYShanmugamLZhaoYDongSDuSYangJA deep learning-based composite design strategy for efficient selection of material and layup sequences from a given databaseCompos Sci Technol2021230 KennedyJEberhartRParticle swarm optimizationProceedings/ 1995 IEEE international conference on neural networks1995IEEEPiscataway19421948 WoldsethRVAageNBærentzenJASigmundOOn the use of artificial neural networks in topology optimisationStruct Multidisc Optim20226510294 KrischerLZimmermannMDecomposition and optimization of linear structures using meta modelsStruct Multidisc Optim20216423932407 UlrichKTEppingerSDProduct design and development2003McGraw-Hill WhiteDAArrighiWJKudoJWattsSEMultiscale topology optimization using neural network surrogate modelsComput Methods Appl Mech Eng2019346111811353913008 RamuPThananjayanPAcarEBayrakGParkJWLeeIA survey of machine learning techniques in structural and multidisciplinary optimizationStruct Multidisc Optim2022659266 KollmannHTAbueiddaDWKoricSGuleryuzESobhNADeep learning for topology optimization of 2d metamaterialsMater Des20201964 GHK Heirman (3836_CR14) 2010; 24 3836_CR23 CD Meyer (3836_CR30) 2008 NM Alexandrov (3836_CR1) 1997 3836_CR5 RT Haftka (3836_CR13) 2005; 6 3836_CR26 KT Ulrich (3836_CR44) 2003 AJ Conejo (3836_CR7) 2002; 93 FAC Viana (3836_CR45) 2014; 52 3836_CR9 M Wang (3836_CR48) 2022; 175 G-R Liu (3836_CR27) 2013 RV Woldseth (3836_CR51) 2022; 65 J Sobieszczanski-Sobieski (3836_CR40) 2003; 41 L Xia (3836_CR54) 2015; 286 G Milton (3836_CR31) 1995; 117 A Casaburo (3836_CR6) 2019; 71 L Wang (3836_CR47) 2021; 143 3836_CR37 L Wang (3836_CR46) 2020; 372 G Milton (3836_CR32) 2017; 5 L Hou (3836_CR15) 2020; 31 JRRA Martins (3836_CR28) 2013; 51 CP Coutinho (3836_CR8) 2016; 119 M Zimmermann (3836_CR56) 2013; 94 P Ramu (3836_CR36) 2022; 65 JRRA Martins (3836_CR29) 2022 J Jung (3836_CR19) 2019; 156 O Sigmund (3836_CR38) 1998; 16 S Tosserams (3836_CR43) 2009; 39 X Wang (3836_CR49) 2019; 132 S Huang (3836_CR17) 2000; 16 S Huang (3836_CR16) 1998; 120 J Sobieszczanski-Sobieski (3836_CR41) 1997; 14 MP Bendsøe (3836_CR3) 2004 K Forsberg (3836_CR11) 1991; 1 RJ Guyan (3836_CR12) 1965; 3 L Andersen (3836_CR2) 2008 M Zimmermann (3836_CR55) 2017; 28 L Krischer (3836_CR25) 2021; 64 K Svanberg (3836_CR42) 1987; 24 Z Wu (3836_CR53) 2019; 345 J Kennedy (3836_CR20) 1995 C Qiu (3836_CR35) 2021; 230 C Eckert (3836_CR10) 2005 J Sobieszczanski-Sobieski (3836_CR39) 2000; 38 S-H Jeong (3836_CR18) 2012; 13 S Mukherjee (3836_CR33) 2021; 28 HT Kollmann (3836_CR22) 2020; 196 J Wu (3836_CR52) 2021; 63 DA White (3836_CR50) 2019; 346 L Krischer (3836_CR24) 2022; 2 D Boolchandani (3836_CR4) 2011; 66 M Papadrakakis (3836_CR34) 1998; 156 HM Kim (3836_CR21) 2003; 125  | 
    
| References_xml | – reference: MeyerCDMatrix analysis and applied linear algebra2008PhiladelphiaSociety for Industrial and Applied Mathematics – reference: WuJSigmundOGroenJPTopology optimization of multi-scale structures: a reviewStruct Multidisc Optim2021633145514804233690 – reference: AlexandrovNMHussainiMYMultidisciplinary design optimization: state-of-the-art1997PhiladelphiaSociety for Industrial and Applied Mathematics SIAM – reference: Sobieszczanski-SobieskiJHaftkaRTMultidisciplinary aerospace design optimization: survey of recent developmentsStruct Multidisc Optim1997141123 – reference: MartinsJRRALambeABMultidisciplinary design optimization: a survey of architecturesAIAA J201351920492075 – reference: JungJYoonJIParkS-JKangJ-YKimGLSongYHParkSTOhKWKimHSModelling feasibility constraints for materials design: application to inverse crystallographic texture problemComput Mater Sci2019156361367 – reference: Krischer L (2023) Informed Decomposition: Distributed design optimization of mechanical multi-component systems. PhD thesis, Technische Universität München – reference: CoutinhoCPBaptistaAJDias RodriguesJReduced scale models based on similitude theory: a review up to 2015Eng Struct20161198194 – reference: GuyanRJReduction of stiffness and mass matricesAIAA J196532380 – reference: Kulick J, Lang T, Toussaint M, Lopes M (2013) Active learning for teaching a robot grounded relational symbols. In: International joint conference on artificial intelligence – reference: WhiteDAArrighiWJKudoJWattsSEMultiscale topology optimization using neural network surrogate modelsComput Methods Appl Mech Eng2019346111811353913008 – reference: KollmannHTAbueiddaDWKoricSGuleryuzESobhNADeep learning for topology optimization of 2d metamaterialsMater Des20201964 – reference: HouLJiaoRJData-informed inverse design by product usage information: a review, framework and outlookJ Intell Manuf2020313529552 – reference: HuangSSchimmelsJMAchieving an arbitrary spatial stiffness with springs connected in parallelJ Mech Des19981204520526 – reference: MiltonGCherkaevAVWhich elasticity tensors are realizable?J Eng Mater Technol19951174483493 – reference: MiltonGHarutyunyanDBrianeMTowards a complete characterization of the effective elasticity tensors of mixtures of an elastic phase and an almost rigid phaseMath Mech Complex Syst201751951133677944 – reference: WoldsethRVAageNBærentzenJASigmundOOn the use of artificial neural networks in topology optimisationStruct Multidisc Optim20226510294 – reference: MartinsJRRANingAEngineering design optimization2022CambridgeCambridge University Press – reference: WangLTaoSZhuPChenWData-driven topology optimization with multiclass microstructures using latent variable gaussian processJ Mech Des20211433296 – reference: PapadrakakisMLagarosNDTsompanakisYStructural optimization using evolution strategies and neural networksComput Methods Appl Mech Eng19981561–4309333 – reference: XiaLBreitkopfPMultiscale structural topology optimization with an approximate constitutive model for local material microstructureComput Methods Appl Mech Eng20152861471673315071 – reference: WuZXiaLWangSShiTTopology optimization of hierarchical lattice structures with substructuringComput Methods Appl Mech Eng201934526026173883256 – reference: BoolchandaniDAhmedASahulaVEfficient kernel functions for support vector machine regression model for analog circuits’ performance evaluationAnalog Integr Circ Sig Process2011661117128 – reference: RamuPThananjayanPAcarEBayrakGParkJWLeeIA survey of machine learning techniques in structural and multidisciplinary optimizationStruct Multidisc Optim2022659266 – reference: Sobieszczanski-SobieskiJAltusTDPhillipsMSanduskyRRBilevel integrated system synthesis for concurrent and distributed processingAIAA J2003411019962003 – reference: KrischerLZimmermannMDecomposition and optimization of linear structures using meta modelsStruct Multidisc Optim20216423932407 – reference: QiuCHanYShanmugamLZhaoYDongSDuSYangJA deep learning-based composite design strategy for efficient selection of material and layup sequences from a given databaseCompos Sci Technol2021230 – reference: HuangSSchimmelsJMThe Eigen screw decomposition of spatial stiffness matricesIEEE Trans Robot Autom2000162146156 – reference: MukherjeeSLuDRaghavanBBreitkopfPDuttaSXiaoMZhangWAccelerating large-scale topology optimization: state-of-the-art and challengesArch Comput Methods Eng2021287454945714338497 – reference: BendsøeMPSigmundOTopology Optimization: Theory, Methods, and Applications20042Berlin and HeidelbergSpringer – reference: KennedyJEberhartRParticle swarm optimizationProceedings/ 1995 IEEE international conference on neural networks1995IEEEPiscataway19421948 – reference: WangLChanY-CAhmedFLiuZZhuPChenWDeep generative modeling for mechanistic-based learning and design of metamaterial systemsComput Methods Appl Mech Eng20203724146801 – reference: VianaFACSimpsonTWBalabanovVToropovVSpecial section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come?AIAA J2014524670690 – reference: Braun R (1996) Collaborative optimization: an architecture for large-scale distributed design: Ph.D. thesis – reference: ConejoAJNogalesFJPrietoFJA decomposition procedure based on approximate newton directionsMath Program20029334955151953258 – reference: Ding M, Vemur RI (2005) An active learning scheme using support vector machines for analog circuit feasibility classification. In: Proceedings of the 18th international conference on VLSI design, pp 528–534 – reference: Regenwetter L, Ahmed F (2022) Design target achievement index: a differentiable metric to enhance deep generative models in multi-objective inverse design. Volume 3B: 48th Design Automation Conference (DAC)(9) – reference: SigmundOPeterssonJNumerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minimaStruct Optim1998166875 – reference: LiuG-RQuekSSThe finite element method: a practical course20132OxfordButterworth-Heinemann – reference: TosseramsSEtmanLFPRoodaJEA classification of methods for distributed system optimization based on formulation structureStruct Multidisc Optim20093955035172551070 – reference: Sobieszczanski-SobieskiJAgteJSanduskyRRBilevel integrated system synthesisAIAA J2000381164172 – reference: JeongS-HChoiD-HJeongMFeasibility classification of new design points using support vector machine trained by reduced datasetInt J Precis Eng Manuf2012135739746 – reference: ZimmermannMvon HoessleJEComputing solution spaces for robust designInt J Numer Meth Eng2013943290307 – reference: KrischerLSureshbabuAVZimmermannMActive-learning combined with topology optimization for top-down design of multi-component systemsProc Des Soc2022216291638 – reference: WangMSongYLianBWangPChenKSunTDimensional parameters and structural topology integrated design method of a planar 5r parallel machining robotMech Mach Theory2022175 – reference: SvanbergKThe method of moving asymptotes—a new method for structural optimizationInt J Numer Meth Eng1987242359373875307 – reference: AndersenLNielsenSRElastic beams in three dimensions: textbook200823AalborgAalborg University – reference: HeirmanGHKDesmetWInterface reduction of flexible bodies for efficient modeling of body flexibility in multibody dynamicsMultibody Syst Dyn2010242219234 – reference: ZimmermannMKönigsSNiemeyerCFenderJZeherbauerCVitaleRWahleMOn the design of large systems subject to uncertaintyJ Eng Des2017284233254 – reference: ForsbergKMoozHThe relationship of system engineering to the project cycleINCOSE Int Symp1991115765 – reference: EckertCClarksonJClarksonJEckertCThe reality of designDesign process improvement, SpringerLink Bücher2005LondonSpringer129 – reference: WangXZhangDZhaoCZhangPZhangYCaiYOptimal design of lightweight serial robots by integrating topology optimization and parametric system optimizationMech Mach Theory20191324865 – reference: CasaburoAPetroneGFrancoFde RosaSA review of similitude methods for structural engineeringAppl Mech Rev2019713030802 – reference: HaftkaRTWatsonLTMultidisciplinary design optimization with quasi-separable subsystemsOptim Eng2005619202122423 – reference: KimHMMichelenaNFPapalambrosPYJiangTTarget cascading in optimal system designJ Mech Des20031253474480 – reference: UlrichKTEppingerSDProduct design and development2003McGraw-Hill – volume-title: Multidisciplinary design optimization: state-of-the-art year: 1997 ident: 3836_CR1 – volume: 24 start-page: 219 issue: 2 year: 2010 ident: 3836_CR14 publication-title: Multibody Syst Dyn doi: 10.1007/s11044-010-9198-7 – ident: 3836_CR37 doi: 10.1115/DETC2022-91344 – volume: 6 start-page: 9 issue: 1 year: 2005 ident: 3836_CR13 publication-title: Optim Eng doi: 10.1023/B:OPTE.0000048534.58121.93 – volume-title: The finite element method: a practical course year: 2013 ident: 3836_CR27 – volume: 14 start-page: 1 issue: 1 year: 1997 ident: 3836_CR41 publication-title: Struct Multidisc Optim doi: 10.1007/BF01197554 – volume: 66 start-page: 117 issue: 1 year: 2011 ident: 3836_CR4 publication-title: Analog Integr Circ Sig Process doi: 10.1007/s10470-010-9476-6 – volume: 119 start-page: 81 year: 2016 ident: 3836_CR8 publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.04.016 – volume: 156 start-page: 361 year: 2019 ident: 3836_CR19 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2018.10.017 – volume: 16 start-page: 146 issue: 2 year: 2000 ident: 3836_CR17 publication-title: IEEE Trans Robot Autom doi: 10.1109/70.843170 – volume: 28 start-page: 233 issue: 4 year: 2017 ident: 3836_CR55 publication-title: J Eng Des doi: 10.1080/09544828.2017.1303664 – volume: 2 start-page: 1629 year: 2022 ident: 3836_CR24 publication-title: Proc Des Soc doi: 10.1017/pds.2022.165 – volume: 143 start-page: 296 issue: 3 year: 2021 ident: 3836_CR47 publication-title: J Mech Des – volume: 65 start-page: 266 issue: 9 year: 2022 ident: 3836_CR36 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-022-03369-9 – volume: 125 start-page: 474 issue: 3 year: 2003 ident: 3836_CR21 publication-title: J Mech Des doi: 10.1115/1.1582501 – volume: 117 start-page: 483 issue: 4 year: 1995 ident: 3836_CR31 publication-title: J Eng Mater Technol doi: 10.1115/1.2804743 – volume: 286 start-page: 147 year: 2015 ident: 3836_CR54 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.12.018 – volume-title: Engineering design optimization year: 2022 ident: 3836_CR29 – volume-title: Topology Optimization: Theory, Methods, and Applications year: 2004 ident: 3836_CR3 doi: 10.1007/978-3-662-05086-6 – volume: 31 start-page: 529 issue: 3 year: 2020 ident: 3836_CR15 publication-title: J Intell Manuf doi: 10.1007/s10845-019-01463-2 – volume: 196 issue: 4 year: 2020 ident: 3836_CR22 publication-title: Mater Des – start-page: 1 volume-title: Design process improvement, SpringerLink Bücher year: 2005 ident: 3836_CR10 – volume: 120 start-page: 520 issue: 4 year: 1998 ident: 3836_CR16 publication-title: J Mech Des doi: 10.1115/1.2829309 – volume: 3 start-page: 380 issue: 2 year: 1965 ident: 3836_CR12 publication-title: AIAA J doi: 10.2514/3.2874 – ident: 3836_CR5 doi: 10.2514/6.1996-4018 – volume: 94 start-page: 290 issue: 3 year: 2013 ident: 3836_CR56 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.4450 – volume-title: Matrix analysis and applied linear algebra year: 2008 ident: 3836_CR30 – volume: 24 start-page: 359 issue: 2 year: 1987 ident: 3836_CR42 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620240207 – volume: 1 start-page: 57 issue: 1 year: 1991 ident: 3836_CR11 publication-title: INCOSE Int Symp doi: 10.1002/j.2334-5837.1991.tb01484.x – volume: 71 start-page: 030802 issue: 3 year: 2019 ident: 3836_CR6 publication-title: Appl Mech Rev doi: 10.1115/1.4043787 – volume: 65 start-page: 294 issue: 10 year: 2022 ident: 3836_CR51 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-022-03347-1 – volume: 41 start-page: 1996 issue: 10 year: 2003 ident: 3836_CR40 publication-title: AIAA J doi: 10.2514/2.1889 – volume: 93 start-page: 495 issue: 3 year: 2002 ident: 3836_CR7 publication-title: Math Program doi: 10.1007/s10107-002-0304-3 – volume-title: Product design and development year: 2003 ident: 3836_CR44 – volume: 63 start-page: 1455 issue: 3 year: 2021 ident: 3836_CR52 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-021-02881-8 – volume: 51 start-page: 2049 issue: 9 year: 2013 ident: 3836_CR28 publication-title: AIAA J doi: 10.2514/1.J051895 – volume-title: Elastic beams in three dimensions: textbook year: 2008 ident: 3836_CR2 – ident: 3836_CR23 – volume: 16 start-page: 68 year: 1998 ident: 3836_CR38 publication-title: Struct Optim doi: 10.1007/BF01214002 – volume: 230 year: 2021 ident: 3836_CR35 publication-title: Compos Sci Technol – start-page: 1942 volume-title: Proceedings/ 1995 IEEE international conference on neural networks year: 1995 ident: 3836_CR20 – volume: 13 start-page: 739 issue: 5 year: 2012 ident: 3836_CR18 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-012-0096-1 – ident: 3836_CR9 doi: 10.1109/ICVD.2005.47 – volume: 345 start-page: 602 issue: 2 year: 2019 ident: 3836_CR53 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.11.003 – volume: 64 start-page: 2393 year: 2021 ident: 3836_CR25 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-021-02993-1 – volume: 39 start-page: 503 issue: 5 year: 2009 ident: 3836_CR43 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-008-0347-z – volume: 175 year: 2022 ident: 3836_CR48 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2022.104964 – volume: 52 start-page: 670 issue: 4 year: 2014 ident: 3836_CR45 publication-title: AIAA J doi: 10.2514/1.J052375 – ident: 3836_CR26 – volume: 5 start-page: 95 issue: 1 year: 2017 ident: 3836_CR32 publication-title: Math Mech Complex Syst doi: 10.2140/memocs.2017.5.95 – volume: 28 start-page: 4549 issue: 7 year: 2021 ident: 3836_CR33 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-021-09544-3 – volume: 156 start-page: 309 issue: 1–4 year: 1998 ident: 3836_CR34 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(97)00215-6 – volume: 38 start-page: 164 issue: 1 year: 2000 ident: 3836_CR39 publication-title: AIAA J doi: 10.2514/2.937 – volume: 346 start-page: 1118 year: 2019 ident: 3836_CR50 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.09.007 – volume: 372 year: 2020 ident: 3836_CR46 publication-title: Comput Methods Appl Mech Eng – volume: 132 start-page: 48 year: 2019 ident: 3836_CR49 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2018.10.015  | 
    
| SSID | ssj0008049 | 
    
| Score | 2.4276078 | 
    
| Snippet | Distributed optimization architectures decompose large monolithic optimization problems into sets of smaller and more manageable optimization subproblems. To... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 160 | 
    
| SubjectTerms | Computational Mathematics and Numerical Analysis Coordination Decomposition Design optimization Engineering Engineering Design Parallel degrees of freedom Research Paper Stiffness matrix Theoretical and Applied Mechanics Topology optimization  | 
    
| SummonAdditionalLinks | – databaseName: (Open Access) Springer Nature eJournals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHGAHxFMMBsqBG4uUPtLHEQ2mCQlOTNqtSuqEy9ZNrBPav8dJu44hhODYh9zKdvyQ7c-E3EqVemArjDE3PiYoec7QzwND3QjTJBKxCu3s8PNLNByFT2MxrmFy7CzMt_q9Bfv0RMLQkzCOyVTExC7ZQycVucJs1G-sblKFujaAYV4Yj-sBmZ9pbDuhTWTZFEPbZH9ZzOXqQ04mX_zN4Igc1oEiva8ke0x2dHFC2l_gA0-JebCot3ZhlQYKrhWDztAETOvZSjoz1DUMMts4PivQv9AKuXlBbb_7G53qUlK3DGdBZQG0rFYmrLbInJHR4PG1P2T13gSWB15YollVHGJpAEAGYW5Ae1ymSWqMRHlpW9vLbW6qAe9oTxvBczz4oHwdpT6o4Jy0CvypC0JVFPAUMKbloEMjRZrgpeCSQwC-kqJD7taMzOYVPEbWACE7tmfI9syxPcO3u2teZ_VRWWRu0RmmhUHQIb01_zePf6PWa2T0h49f_o_6FTnwncbYdrIuaZXvS32N8UepbpzifQLfWNJ9 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gO6AdeCOGBsqBG8uUrk3XHidgmpCYODBpnKqkTjiwdRPrhMavx2m7FyAetz4it7Xd2Jbtz4RcShU6YDOMLW6aGKDEMUM7Dwx1wwsDX7SUZ3uH73t-t-_dDcRgBRb9KX1vsT4dETA0JIxjLOUzsU3KvkC3u0TK_d5D-8kGVGiVmeO1BqvjICgaZL4nsmmEVp7lMhlaITuzZCLnb3I4XLM3nb28UmuawRTaMpOXxixVjfj9K4jj75-yT3YLr5O2czU5IFs6OSSVNSzCI2JuLISunX6lgUJW10HHuJ-MikZNOjY0qz5ktgp9nKCxojkM9JTa4vlnOtKppNlknSmVCdA0n78w3yBzTPqd28frLiuGMLDYdbwU92jFoSUNAEjXiw1oh8swCI2RKHxtE4WxDXQ14BXtaCN4jLsIqKb2wyYo94SUEnypU0KV7_IQ0EHmoD0jRRjgqeCSgwtNJUWVXC2kEk1yrI1oiaqccS9C7kUZ9yJcXVsILir-u2mUTU3DGNN1q6S-EObq9k_U6kuB_-HhZ_9bXiOl9HWmz9F_SdVFobkfxU3n6w priority: 102 providerName: Unpaywall  | 
    
| Title | Distributed design optimization of multi-component systems using meta models and topology optimization | 
    
| URI | https://link.springer.com/article/10.1007/s00158-024-03836-5 https://www.proquest.com/docview/3103060133 http://doi.org/10.1007/s00158-024-03836-5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 67 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: AFBBN dateStart: 19890301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1615-1488 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1615-1488 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-C9rBxmAbbNDZW-bAbWHM-mxymqe1a0KZFCFGpnCInz94F0kKDJv77veckLVwQl0SxIzt6dt6H38cP4KsuUg_ZwzhU1icDpSwlyXmUtDfCNImjYRFy7vCfLD6bh78W0WIHsi4XhsMqO57oGDUuSz4j_-bwsMh6CIIfq1vJqFHsXe0gNHQLrYDfXYmxXej7XBmrB_3xNDu_2PDmpFGIWc2RXjhctGk0LpmO1YdEksySisy2WEZPRdVW_9y4TPfg1X210g__9PX1I6k0ewtvWnVSjJr134cdUx3A3qMig-_A_uTauAxrZVCgC9gQS2IUN20Gplha4cIKJYeXLyuSQqKp77wWHBX_V9yYWgsHmbMWukJRN8AKD0-GeQ_z2fRyciZbdAVZBl5YE_MtFA61RUQdhKVF4ymdJqm1RExt2ANYsgVrkFqMZ2ykSmIPWPgmTn0sgg_Qq-ijPoIo4kClSJqvQhNaHaUJPUZKKwzQL3R0CMcdIfNVU0Qj35RLdmTPiey5I3tObx91tM7bH2qdb5f_EE46-m-7nxvtZLNGL5j80_OTf4bXvtshHGR2BL367t58Ia2kLgawm8xOB9AfzcbjjO-nV7-ng3YDUu8kntB17o-obZ6dj67-A0BO530 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB5xUHAUCA4Qb1xwFVg4iZNNCoR4anmtTieQtgtOxqaB7MIGof1z_DbGTrILDaKhzEPjaDyeR-bxAWyrLPHQZhhbwvgUoOQ5JzuPnGRDJnEUtjJpe4evO1H7Vl50w-4EvDW9MLasstGJTlFjL7f_yPccHhZFD0Fw0H_iFjXKZlcbCA1VQyvgvhsxVjd2XOrhK4Vwg_3zE9rvv75_dnpz3OY1ygDPA0-WpIQygS1lEFEFMjeoPaGSODGGiCptM2G5jeQ00h3taROKnI4JZr6OEh-zgOj-gikZyISCv6mj086__yNbEFcOuHWruCdb3bptxzXvWXcl5mQjuaAwMeLhZ9M49ndHKdoZmH4p-mr4qh4ePljBszmYrd1XdljJ2zxM6OIPzHwYargA5sTO4rUwWhoZugIR1iPF9Fh3fLKeYa6Mkdty9l5BVo9V86QHzFbh37NHXSrmIHoGTBXIygrIYfiJzCLc_gifl2CyoI9aBpZFgUiQPG2BWhoVJjFdhkIJDNDPVLgCOw0j0341tCMdjWd2bE-J7alje0pvrze8TusDPEjH4rYCuw3_x4-_orY72qNvLL769eJbMN2-ub5Kr847l2vw23fSYgvc1mGyfH7RG-QRldlmLXYM7n5a0t8B42wgzg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJioH4zOiqHvwJhu2T9qjAQm-iAdJuDXbzq4XKERKDP_e2W0pkBijxz4ybWem881kXoTciji0QGcYW1zZGKAkCUOcB4a64YaB77ViV_cOv_b93sB9GnrDtS5-U-2-TEnmPQ16SlOaNaegmmXjm4b6gCG-MI4hls-8bbLjIrrpHQZtv13a4iB3gLVbwyy3NSzaZn6msQlNK3-zTJFWyd48nYrFlxiN1lCoe0gOCveR3ufyPiJbMj0m1bWhgidEdfQsXL3GSgIFU6BBJ2gYxkXHJZ0oasoImS4nn6T41TSf5zyjugr-g45lJqhZkTOjIgWa5YsUFhtkTsmg-_De7rFimwJLHMvN0NjGHFpCAYBw3ESBtLgIg1ApgVKUOuOX6IhVAp6RllQeT9AcQGxLP7Qhds5IJcWXOic09h0eAnq6HKSrhBcGeOhxwcEBOxZejdwtGRlN86EZUTke2bA9QrZHhu0R3l1f8joqfqBZZNafYbDoODXSWPJ_dfk3ao1SRn94-MX_qN-Q3bdON3p57D9fkn3bKI-uN6uTSvY5l1fooGTxtdHBbxsy3bM | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gO6AdeCOGBsqBG8uUrk3XHidgmpCYODBpnKqkTjiwdRPrhMavx2m7FyAetz4it7Xd2Jbtz4RcShU6YDOMLW6aGKDEMUM7Dwx1wwsDX7SUZ3uH73t-t-_dDcRgBRb9KX1vsT4dETA0JIxjLOUzsU3KvkC3u0TK_d5D-8kGVGiVmeO1BqvjICgaZL4nsmmEVp7lMhlaITuzZCLnb3I4XLM3nb28UmuawRTaMpOXxixVjfj9K4jj75-yT3YLr5O2czU5IFs6OSSVNSzCI2JuLISunX6lgUJW10HHuJ-MikZNOjY0qz5ktgp9nKCxojkM9JTa4vlnOtKppNlknSmVCdA0n78w3yBzTPqd28frLiuGMLDYdbwU92jFoSUNAEjXiw1oh8swCI2RKHxtE4WxDXQ14BXtaCN4jLsIqKb2wyYo94SUEnypU0KV7_IQ0EHmoD0jRRjgqeCSgwtNJUWVXC2kEk1yrI1oiaqccS9C7kUZ9yJcXVsILir-u2mUTU3DGNN1q6S-EObq9k_U6kuB_-HhZ_9bXiOl9HWmz9F_SdVFobkfxU3n6w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+design+optimization+of+multi-component+systems+using+meta+models+and+topology+optimization&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Krischer%2C+Lukas&rft.au=Endress%2C+Felix&rft.au=Wanninger%2C+Tobias&rft.au=Zimmermann%2C+Markus&rft.date=2024-09-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=67&rft.issue=9&rft_id=info:doi/10.1007%2Fs00158-024-03836-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_024_03836_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |