High-frequency gravitational waves having large spectral densities and their electromagnetic response

Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the mi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 12; pp. 104 - 112
Main Author 李芳昱 文毫 方祯云
Format Journal Article
LanguageEnglish
Published 01.12.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/12/120402

Cover

Abstract Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
AbstractList Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
Author 李芳昱 文毫 方祯云
AuthorAffiliation Department of Physics, Chongqing University, Chongqing 400044, China
Author_xml – sequence: 1
  fullname: 李芳昱 文毫 方祯云
BookMark eNqFkE9LwzAYxoNMcJt-Bak3L3X52-bgRYY6YeBFzyFN33SRLu2SOtm3N2VjBy_CAwl5nud9yW-GJr7zgNAtwQ8ES7kgRclzgkWxoHRBRmGO6QWaUixkziTjEzQ9h67QLMYvjAuCKZsiWLlmk9sAu2_w5pA1Qe_doAfXed1mP3oPMdukJ99krQ4NZLEHM4Tk1eCjG1zyta-zYQMuZNCOZrfVjYfBmSxA7Dsf4RpdWt1GuDmdc_T58vyxXOXr99e35dM6N4zwIadGCyuoqKy1WlrJmSwtI2VNK1EXlSGaWyYtS1dueEUKzSyvGKG0pqIGwebo_ji3D136UBzU1kUDbas9dN9RkVIwwSSVMkWLY9SELsYAVvXBbXU4KILVyFWNyNSITFGqyKiRayo-_imaE7CExbX_1-9O9U3nm10Ce17MJZaMlZj9Aqk1jZ8
CitedBy_id crossref_primary_10_1140_epjd_e2017_70586_y
crossref_primary_10_7498_aps_65_079101
crossref_primary_10_1088_1475_7516_2021_03_054
crossref_primary_10_1103_PhysRevLett_132_131402
crossref_primary_10_1134_S0202289318010140
crossref_primary_10_1063_1_4962520
crossref_primary_10_7498_aps_63_159101
crossref_primary_10_1016_j_nuclphysb_2024_116537
crossref_primary_10_1103_PhysRevD_94_024048
crossref_primary_10_1103_PhysRevD_106_103520
Cites_doi 10.1103/PhysRevD.15.2047
10.1088/0256-307X/24/12/011
10.4236/jmp.2011.26060
10.1088/1674-1056/18/3/014
10.1088/0264-9381/29/9/095003
10.1103/PhysRevD.46.1239
10.1103/PhysRevD.67.104008
10.1103/PhysRevD.78.094002
10.1063/1.3115565
10.1103/PhysRevD.60.123511
10.1142/S0218271802002554
10.1088/0264-9381/24/9/F01
10.1016/S0370-1573(02)00389-7
10.1007/BF02710177
10.1146/annurev.aa.10.090172.002003
10.1142/S0217732391001111
10.1103/PhysRevD.80.064013
10.1103/PhysRevD.16.2915
10.1088/0264-9381/21/14/001
10.1016/S0375-9601(99)00337-0
10.1007/s10714-011-1176-8
10.1103/PhysRevD.80.084022
10.1063/1.3115563
10.1103/PhysRevD.68.044017
10.1088/0264-9381/26/4/045004
10.1038/nature08278
10.1038/scientificamerican0504-54
10.1142/S0217979207044366
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/22/12/120402
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate High-frequency gravitational waves having large spectral densities and their electromagnetic response
EISSN 2058-3834
1741-4199
EndPage 112
ExternalDocumentID 10_1088_1674_1056_22_12_120402
48083370
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c314t-2ca5f525bfffa8f84387f317d2b5d6bc1a4f38f36bc4c4b16a3f4b3122d25de53
ISSN 1674-1056
IngestDate Wed Oct 01 13:39:36 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Wed Oct 01 03:34:47 EDT 2025
Wed Feb 14 10:38:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c314t-2ca5f525bfffa8f84387f317d2b5d6bc1a4f38f36bc4c4b16a3f4b3122d25de53
Notes high-frequency gravitational waves electromagnetic response of high-frequency gravitational waves superconducting microwave cavities synchro-resonance system
Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
Li Fang-Yu, Wen Hao, Fang Zhen-Yun (Department of Physics, Chongqing University, Chongqing 400044, China )
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1753538288
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1753538288
crossref_primary_10_1088_1674_1056_22_12_120402
crossref_citationtrail_10_1088_1674_1056_22_12_120402
chongqing_primary_48083370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2013
References Nikishov A I (17) 1990; 71
22
Clarkson C (11) 2007; 24
23
24
25
Grishchuk L P (28) 2003
Bessonov E G (29) 1998
Li J (35) 2009; 18
Grishchuk L P (27) 1983; 53
Giovannini M (4) 2009; 26
30
31
10
32
33
12
36
15
16
18
Gertsenshtein M E (19) 1962; 14
Cruise A M (6) 2012; 29
Li F Y (26) 2007; 24
1
2
3
Chen P (14) 1994
7
8
9
Bisnovatyi-Kogun G S (5) 2004; 21
Yariv A (34) 1989
Sivaram C (13) 2011
20
21
References_xml – ident: 30
  doi: 10.1103/PhysRevD.15.2047
– start-page: 379
  year: 1994
  ident: 14
– volume: 24
  start-page: 3328
  issn: 0256-307X
  year: 2007
  ident: 26
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/24/12/011
– ident: 33
  doi: 10.4236/jmp.2011.26060
– volume: 18
  start-page: 922
  issn: 1674-1056
  year: 2009
  ident: 35
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/18/3/014
– year: 1998
  ident: 29
– year: 1989
  ident: 34
  publication-title: Quantum Electronics
– volume: 29
  start-page: 095003
  issn: 0264-9381
  year: 2012
  ident: 6
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/9/095003
– ident: 32
  doi: 10.1103/PhysRevD.46.1239
– ident: 22
  doi: 10.1103/PhysRevD.67.104008
– ident: 15
  doi: 10.1103/PhysRevD.78.094002
– ident: 1
  doi: 10.1063/1.3115565
– ident: 3
  doi: 10.1103/PhysRevD.60.123511
– ident: 16
  doi: 10.1142/S0218271802002554
– volume: 24
  start-page: F33
  issn: 0264-9381
  year: 2007
  ident: 11
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/24/9/F01
– ident: 9
  doi: 10.1016/S0370-1573(02)00389-7
– volume: 71
  start-page: 643
  issn: 0038-5646
  year: 1990
  ident: 17
  publication-title: Sov. Phys. JETP
– ident: 20
  doi: 10.1007/BF02710177
– ident: 7
  doi: 10.1146/annurev.aa.10.090172.002003
– volume: 14
  start-page: 84
  issn: 0038-5646
  year: 1962
  ident: 19
  publication-title: Sov. Phys. JETP
– ident: 18
  doi: 10.1142/S0217732391001111
– volume: 53
  start-page: 1128
  issn: 0038-5646
  year: 1983
  ident: 27
  publication-title: Sov. Phys. JETP
– year: 2011
  ident: 13
– ident: 23
  doi: 10.1103/PhysRevD.80.064013
– ident: 21
  doi: 10.1103/PhysRevD.16.2915
– volume: 21
  start-page: 3347
  issn: 0264-9381
  year: 2004
  ident: 5
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/21/14/001
– year: 2003
  ident: 28
– ident: 31
  doi: 10.1016/S0375-9601(99)00337-0
– ident: 24
  doi: 10.1007/s10714-011-1176-8
– ident: 2
  doi: 10.1103/PhysRevD.80.084022
– ident: 36
  doi: 10.1063/1.3115563
– ident: 12
  doi: 10.1103/PhysRevD.68.044017
– volume: 26
  start-page: 045004
  issn: 0264-9381
  year: 2009
  ident: 4
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/4/045004
– ident: 8
  doi: 10.1038/nature08278
– ident: 10
  doi: 10.1038/scientificamerican0504-54
– ident: 25
  doi: 10.1142/S0217979207044366
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0628977
Snippet Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Astronomical models
Cosmology
Energy density
Gravitational waves
Holes
Inverse
Joining
Large Hadron Collider
Superconductivity
大型强子对撞机
宇宙学模型
电磁响应
磁场耦合
能量密度
谱密度
高能量
高频引力波
Title High-frequency gravitational waves having large spectral densities and their electromagnetic response
URI http://lib.cqvip.com/qk/85823A/201312/48083370.html
https://www.proquest.com/docview/1753538288
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWIiReEKfYcshI-GkVduMrzmPSZlWQOB5aqW-Rc7hFKim0u0LwL_jHzDhxuguIS4oiaxI72cy3nnHyzQwhz9Pa6Vg7EdlaVrBAETqyruJRlaa2SSqrG4uxw6_f6IMj-epYHU8m3zZYS-tV9aL--su4kv_RKshArxgl-w-aHQcFAbRBv7AHDcP-r3SMJI3IXfRs6C8zLCU0pNyGB__ZYkJZDMLvTmZnSPie-bBKjMhvkLaOqVQDgfL9xWwoiPPBnnRtn9jZs2e3qEKskCw3LNtnhWJpznJoJMykLEuxkS6Y0TkrlizfY2nGCsMMnBSzQrNUM5MMZ5uRP-uP7DNT-HMzlgsvMdBpttFLs2zJsjyIcn-1TKEU7yhjfS2u8PoiFhtUkH7G1YkEW6CGfNhexhfKRCK85RwAyDem2aFk8WCx4_7YT8YAJlB8LxEugLEvmG027ncwe_ErIzhSE6UBp1Qki2vkOgdDgdVAXr59F4y7xkwXuIYPg4agc2Pmo2zO-TzGDS-BOTtOz7uTT6Dsbd9n2_R7f-bwNrk1LERo1qPqDpm03V1ywxOC68t7pN3GFt3CFvXYoj22qMcWDdiiI7YoYIt6bNEfsEUDtu6To2VxuHcQDSU5olrEchXx2iqnuKqcc9Y4I4VJHLigDa9Uo6s6ttIJ4wQ0Jfz5Y22Fk5WIOW-4alolHpCd7rxrHxIKC4cGOrawpE5lxVtw9blMhLOxU7VN0inZHR9c-bFPvVIG7UyJCk-yrIdfjzVVzkpPqjCmRG2UqI2S8zLGDbUxJfOxXxjzTz2eBUWVMPPi5zTbtefryxJz3IK7wI3Z_d2tPiI3r3D_mOysLtbtE3BkV9VTD63vl5CH9Q
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-frequency+gravitational+waves+having+large+spectral+densities+and+their+electromagnetic+response&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9D%8E%E8%8A%B3%E6%98%B1+%E6%96%87%E6%AF%AB+%E6%96%B9%E7%A5%AF%E4%BA%91&rft.date=2013-12-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=12&rft.spage=104&rft.epage=112&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F12%2F120402&rft.externalDocID=48083370
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg