Application Level Resource Scheduling for Deep Learning Acceleration on MPSoC
Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered...
Saved in:
| Published in | Journal of signal processing systems Vol. 95; no. 10; pp. 1231 - 1243 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-8018 1939-8115 1939-8115 |
| DOI | 10.1007/s11265-023-01881-9 |
Cover
| Abstract | Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in this paper, where each deep learning network is run with different service levels based on resource usage (where a higher service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall performance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+ XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second) using the same resource budget. |
|---|---|
| AbstractList | Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in this paper, where each deep learning network is run with different service levels based on resource usage (where a higher service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall performance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+ XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second) using the same resource budget. |
| Author | Saha, Sangeet Zhu, Xuqi Jing, Hongyuan Zhai, Xiaojun Gao, Cong McDonald-Maier, Klaus D. |
| Author_xml | – sequence: 1 givenname: Cong surname: Gao fullname: Gao, Cong organization: School of Computer Science and Electronic Engineering, University of Essex – sequence: 2 givenname: Sangeet surname: Saha fullname: Saha, Sangeet organization: School of Computer Science and Electronic Engineering, University of Essex – sequence: 3 givenname: Xuqi surname: Zhu fullname: Zhu, Xuqi organization: School of Computer Science and Electronic Engineering, University of Essex – sequence: 4 givenname: Hongyuan surname: Jing fullname: Jing, Hongyuan organization: Beijing Key Laboratory of Information Service Engineering, Beijing Union University – sequence: 5 givenname: Klaus D. surname: McDonald-Maier fullname: McDonald-Maier, Klaus D. organization: School of Computer Science and Electronic Engineering, University of Essex – sequence: 6 givenname: Xiaojun orcidid: 0000-0002-1030-8311 surname: Zhai fullname: Zhai, Xiaojun email: xzhai@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex |
| BookMark | eNqNUE1LAzEQDVLBtvoHPC14Xs0km-zmWOontChWzyGNs3XLml2TrtJ_b-pWvIkwMMPMe483b0QGrnFIyCnQc6A0vwgATIqUMp5SKApI1QEZguIqLQDE4GeOtyMyCmFNqaS5gCGZT9q2rqzZVI1LZviBdfKIoem8xWRhX_Glqyu3SsrGJ5eIbYQY73abibVYo--JseYPi2Z6TA5LUwc82fcxeb6-epreprP7m7vpZJZaDtkmZQBGlgyMyY1AucxZWTK1zJUUCgzLRLbMmC0UR5aBtSUT0nJujBRGSp4LPia81-1ca7afpq5166s347caqN4lovtEdExEfyeiVWSd9azWN-8dho1ex0ddNKo5EwJoTjmNKNajrG9C8Fj-T3pvKESwW6H_lf6D9QVy-YAV |
| Cites_doi | 10.1109/JSAC.2019.2904348 10.1109/CVPRW53098.2021.00347 10.23919/DATE54114.2022.9774727 10.1109/MNET.2018.1700202 10.1109/COMST.2018.2844341 10.1109/ACCESS.2020.3004198 10.1109/JSYST.2022.3144019 10.1109/TSC.2017.2662008 10.1007/978-3-031-21867-5_5 10.1109/ICAC55051.2022.9911081 10.1145/3316781.3317829 10.1109/ICFPT51103.2020.00018 10.1016/j.iot.2021.100461 10.1109/ICCE-TW52618.2021.9603066 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ADTOC UNPAY |
| DOI | 10.1007/s11265-023-01881-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-8115 |
| EndPage | 1243 |
| ExternalDocumentID | 10.1007/s11265-023-01881-9 10_1007_s11265_023_01881_9 |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/R02572X/1 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Engineering and Physical Sciences Research Council grantid: EP/P017487/1 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Engineering and Physical Sciences Research Council grantid: EP/V000462/1 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Engineering and Physical Sciences Research Council grantid: EP/V034111/1 funderid: http://dx.doi.org/10.13039/501100000266 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LAK LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O93 O9G O9J OAM P9P PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Z Z83 Z88 Z8M Z8N Z8P Z8T Z8W Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c314t-211a6f21aa7a5e6b72ff29b796591a2454b42c893e241ccf256c33aa65a663753 |
| IEDL.DBID | BENPR |
| ISSN | 1939-8018 1939-8115 |
| IngestDate | Wed Oct 01 16:55:16 EDT 2025 Mon Sep 29 04:23:17 EDT 2025 Wed Oct 01 01:08:47 EDT 2025 Fri Feb 21 02:41:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Hardware accelerator Resource schedule strategy Embedded systems FPGA Deep Neutral networks MPSoC |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-211a6f21aa7a5e6b72ff29b796591a2454b42c893e241ccf256c33aa65a663753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1030-8311 |
| OpenAccessLink | https://doi.org/10.1007/s11265-023-01881-9 |
| PQID | 3255107030 |
| PQPubID | 2044217 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1007_s11265_023_01881_9 proquest_journals_3255107030 crossref_primary_10_1007_s11265_023_01881_9 springer_journals_10_1007_s11265_023_01881_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Heidelberg |
| PublicationSubtitle | for Signal, Image, and Video Technology (formerly the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology) |
| PublicationTitle | Journal of signal processing systems |
| PublicationTitleAbbrev | J Sign Process Syst |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gao, C., Saha, S., Lu, Y., Saha, R., McDonald-Maier, K. D., & Zhai, X. (2022). Deep learning on FPGAs with multiple service levels for edge computing. In 2022 27th International Conference on Automation and Computing (ICAC) (pp. 1–6). IEEE. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. MohammadiMAl-FuqahaASorourSGuizaniMDeep learning for IoT big data and streaming analytics: A surveyIEEE Communications Surveys & Tutorials20182042923296010.1109/COMST.2018.2844341 AMD-Xilinx. (2022). Xilinx Vitis-ai 2.5 release. Retrieved August 2022, from https://docs.xilinx.com/r/en-US/ug1414-vitis-ai WangZXuKWuSLiuLLiuLWangDSparse-YOLO: Hardware/software co-design of an FPGA accelerator for YOLOv2IEEE Access2020811656911658510.1109/ACCESS.2020.3004198 Korol, G., Jordan, M. G., Rutzig, M. B., & Beck, A. C. S. (2022). AdaFlow: A framework for adaptive dataflow CNN acceleration on FPGAs. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 244–249). IEEE. Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. Preprint retrieved from http://arxiv.org/abs/1908.09791 Lu, Y., Zhai, X., Saha, S., Ehsan, S., & McDonald-Maier, K. D. (2022). A self-adaptive SEU mitigation scheme for embedded systems in extreme radiation environments. IEEE Systems Journal. Lu, Y., Gao, C., Saha, R., Saha, S., McDonald-Maier, K. D., & Zhai, X. (2022) FPGA-based dynamic deep learning acceleration for real-time video analytics. In 35th GI/ITG International Conference on Architecture of Computing Systems. IEEE. Goel, S., Kedia, R., Balakrishnan, M., & Sen, R. (2020). Infer: Interference-aware estimation of runtime for concurrent CNN execution on DPUS. In 2020 International Conference on Field-Programmable Technology (ICFPT) (pp. 66–71). IEEE. Lou, W., Xun, L., Sabet, A., Bi, J., Hare, J., & Merrett, G. V. (2021). Dynamic-OFA: Runtime DNN architecture switching for performance scaling on heterogeneous embedded platforms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3110–3118). Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W-M., & Chen, D. (2019). FPGA/DNN co-design: An efficient design methodology for 1ot intelligence on the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC) (pp. 1–6). IEEE. DuttaLBharaliSTinyML meets IoT: A comprehensive surveyInternet of Things20211610.1016/j.iot.2021.100461 LiHOtaKDongMLearning IoT in edge: Deep learning for the internet of things with edge computingIEEE Network20183219610110.1109/MNET.2018.1700202 WangSTuorTSalonidisTLeungKKMakayaCHeTChanKAdaptive federated learning in resource constrained edge computing systemsIEEE Journal on Selected Areas in Communications20193761205122110.1109/JSAC.2019.2904348 Lin, G-Z., Nguyen, H. M., Sun, C-C., Kuo, P-Y., & Sheu, M-H. (2021). A novel bird detection and identification based on DPU processor on PYNQ FPGA. In 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1–2). IEEE. Deng, Z., Xu, C., Cai, Q., & Faraboschi, P. (2015). Reduced-precision memory value approximation for deep learning. Hewlett Packard Labs, HPL-2015-100. AMD-Xilinx. (2022). DPUCZDX8G for zynq ultrascale+ MPSoCs product guide (pg338). Retrieved August 2022, from https://docs.xilinx.com/r/en-US/pg338-dpu/reg_dpu_isr LiuCCaoYLuoYChenGVokkaraneVYunshengMChenSHouPA new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructureIEEE Transactions on Services Computing201711224926110.1109/TSC.2017.2662008 1881_CR3 1881_CR4 S Wang (1881_CR11) 2019; 37 L Dutta (1881_CR2) 2021; 16 1881_CR5 1881_CR1 C Liu (1881_CR10) 2017; 11 1881_CR7 1881_CR8 M Mohammadi (1881_CR12) 2018; 20 H Li (1881_CR9) 2018; 32 Z Wang (1881_CR6) 2020; 8 1881_CR19 1881_CR18 1881_CR17 1881_CR16 1881_CR15 1881_CR14 1881_CR13 |
| References_xml | – reference: WangZXuKWuSLiuLLiuLWangDSparse-YOLO: Hardware/software co-design of an FPGA accelerator for YOLOv2IEEE Access2020811656911658510.1109/ACCESS.2020.3004198 – reference: LiuCCaoYLuoYChenGVokkaraneVYunshengMChenSHouPA new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructureIEEE Transactions on Services Computing201711224926110.1109/TSC.2017.2662008 – reference: AMD-Xilinx. (2022). Xilinx Vitis-ai 2.5 release. Retrieved August 2022, from https://docs.xilinx.com/r/en-US/ug1414-vitis-ai – reference: Lou, W., Xun, L., Sabet, A., Bi, J., Hare, J., & Merrett, G. V. (2021). Dynamic-OFA: Runtime DNN architecture switching for performance scaling on heterogeneous embedded platforms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3110–3118). – reference: Lu, Y., Zhai, X., Saha, S., Ehsan, S., & McDonald-Maier, K. D. (2022). A self-adaptive SEU mitigation scheme for embedded systems in extreme radiation environments. IEEE Systems Journal. – reference: LiHOtaKDongMLearning IoT in edge: Deep learning for the internet of things with edge computingIEEE Network20183219610110.1109/MNET.2018.1700202 – reference: Goel, S., Kedia, R., Balakrishnan, M., & Sen, R. (2020). Infer: Interference-aware estimation of runtime for concurrent CNN execution on DPUS. In 2020 International Conference on Field-Programmable Technology (ICFPT) (pp. 66–71). IEEE. – reference: Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. – reference: WangSTuorTSalonidisTLeungKKMakayaCHeTChanKAdaptive federated learning in resource constrained edge computing systemsIEEE Journal on Selected Areas in Communications20193761205122110.1109/JSAC.2019.2904348 – reference: Korol, G., Jordan, M. G., Rutzig, M. B., & Beck, A. C. S. (2022). AdaFlow: A framework for adaptive dataflow CNN acceleration on FPGAs. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 244–249). IEEE. – reference: Gao, C., Saha, S., Lu, Y., Saha, R., McDonald-Maier, K. D., & Zhai, X. (2022). Deep learning on FPGAs with multiple service levels for edge computing. In 2022 27th International Conference on Automation and Computing (ICAC) (pp. 1–6). IEEE. – reference: DuttaLBharaliSTinyML meets IoT: A comprehensive surveyInternet of Things20211610.1016/j.iot.2021.100461 – reference: Lu, Y., Gao, C., Saha, R., Saha, S., McDonald-Maier, K. D., & Zhai, X. (2022) FPGA-based dynamic deep learning acceleration for real-time video analytics. In 35th GI/ITG International Conference on Architecture of Computing Systems. IEEE. – reference: Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. Preprint retrieved from http://arxiv.org/abs/1908.09791 – reference: MohammadiMAl-FuqahaASorourSGuizaniMDeep learning for IoT big data and streaming analytics: A surveyIEEE Communications Surveys & Tutorials20182042923296010.1109/COMST.2018.2844341 – reference: AMD-Xilinx. (2022). DPUCZDX8G for zynq ultrascale+ MPSoCs product guide (pg338). Retrieved August 2022, from https://docs.xilinx.com/r/en-US/pg338-dpu/reg_dpu_isr – reference: Lin, G-Z., Nguyen, H. M., Sun, C-C., Kuo, P-Y., & Sheu, M-H. (2021). A novel bird detection and identification based on DPU processor on PYNQ FPGA. In 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1–2). IEEE. – reference: Deng, Z., Xu, C., Cai, Q., & Faraboschi, P. (2015). Reduced-precision memory value approximation for deep learning. Hewlett Packard Labs, HPL-2015-100. – reference: Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W-M., & Chen, D. (2019). FPGA/DNN co-design: An efficient design methodology for 1ot intelligence on the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC) (pp. 1–6). IEEE. – volume: 37 start-page: 1205 issue: 6 year: 2019 ident: 1881_CR11 publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2019.2904348 – ident: 1881_CR18 – ident: 1881_CR4 doi: 10.1109/CVPRW53098.2021.00347 – ident: 1881_CR5 doi: 10.23919/DATE54114.2022.9774727 – volume: 32 start-page: 96 issue: 1 year: 2018 ident: 1881_CR9 publication-title: IEEE Network doi: 10.1109/MNET.2018.1700202 – volume: 20 start-page: 2923 issue: 4 year: 2018 ident: 1881_CR12 publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2018.2844341 – volume: 8 start-page: 116569 year: 2020 ident: 1881_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004198 – ident: 1881_CR8 doi: 10.1109/JSYST.2022.3144019 – volume: 11 start-page: 249 issue: 2 year: 2017 ident: 1881_CR10 publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2017.2662008 – ident: 1881_CR17 doi: 10.1007/978-3-031-21867-5_5 – ident: 1881_CR14 doi: 10.1109/ICAC55051.2022.9911081 – ident: 1881_CR1 – ident: 1881_CR7 doi: 10.1145/3316781.3317829 – ident: 1881_CR13 – ident: 1881_CR3 – ident: 1881_CR15 doi: 10.1109/ICFPT51103.2020.00018 – volume: 16 year: 2021 ident: 1881_CR2 publication-title: Internet of Things doi: 10.1016/j.iot.2021.100461 – ident: 1881_CR16 doi: 10.1109/ICCE-TW52618.2021.9603066 – ident: 1881_CR19 |
| SSID | ssj0060751 |
| Score | 2.3324466 |
| Snippet | Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification,... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1231 |
| SubjectTerms | Accuracy Autonomous cars Budgets Circuits and Systems Co-design Computer Imaging Constraints Deep learning Electrical Engineering Engineering Field programmable gate arrays Heuristic Image classification Image Processing and Computer Vision Internet of Things Machine learning Multiprocessing Natural language processing Neural networks Object recognition Pattern Recognition Pattern Recognition and Graphics Resource scheduling Signal,Image and Speech Processing Software System on chip Vision |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20HrQH8ROrVfbgzQbNJrtJjqVailgRaqG3MLvZ9FLaYlvEf-9sPpoqIgohl5ANvElm3mRm3gJc-0olSibCSVy0CUroOehpOok7L-CGGLSys8P9Z9kb-o8jMSpkcuwszLf6_e3CjrjYGWLb9ROGrhNtww4FKZkVZmWn9LqSQp-bV5Aj63XDYkDm5zW-BqGKWa6LoXXYXU3n-PGOk8lGvOkewH5BFFk7t-whbJnpEdQ35AOPod-uqs_syXb_sPJvPBuQMRLbZT5mREvZvTFzVmipjllba4o2ue0ZHf2XwaxzAsPuw2un5xTbIzjac_2lQ6kbypS7iAEKI1XA05RHKrASgS5yX_jK55r4iKEorXVK5EZ7HqIUSDSD0pRTqE1nU3MGTKLgqEzETYp-Siljgokb6kiJMKK7VQNuSrziea6CEVd6xxbdmNCNM3TjqAHNEtK4-CIWsUe5i5v5lwa0Spiry7-t1lqb4g8PP__f6hewZzeQz9vzmlBbvq3MJdGMpbrK3q9PQYLFFw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7m9iB78Lc4mZIH31w3mzZd-zg2xxA3BnMwn0qSpntwdEU7RP96L2u7ThFRhFIKaVNyd819x919BbiyhQiEEzAjMLkOUFzL4JbEE7ux2lQhgha6d3g4cgZT-27GZiXo5b0w62r3PCWZ9jRolqYoacVB2Coa30zq6M5iXQvkuqbhNXF4ByoOQ0Rehsp0NO48pgllT2_C7uYaEVDWO_P9RJ_9UwE6N3nSKuyuopi_vfLFYssV9fdB5YtIK1CemqtENOX7F37H_67yAPYyrEo6qXEdQklFR1DdYjA8hmGnSICTe12ARPKEAJmgPQS60H1OEBmTnlIxyehc56QjJTq81PwIHsPxZNk9gWn_9qE7MLI_NBjSMu3EwOiROyE1OW9zphzRpmFIPdHWLIUmpzazhU0lQiKFQEHKEPGVtCzOHcYR6WCkdArlaBmpMyAOZ5QL5VEVcjvEqDXggelKTzDXw6dFDa5zvfhxSsThF5TLWlA-CspfC8r3alDPVednH-WLb2H4ZK63uBo0cukXwz_N1tio_BcvP__b7XUoJ88rdYHgJhGXme1-AJgK76k priority: 102 providerName: Unpaywall |
| Title | Application Level Resource Scheduling for Deep Learning Acceleration on MPSoC |
| URI | https://link.springer.com/article/10.1007/s11265-023-01881-9 https://www.proquest.com/docview/3255107030 https://link.springer.com/content/pdf/10.1007/s11265-023-01881-9.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1939-8115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060751 issn: 1939-8018 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1939-8115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060751 issn: 1939-8018 databaseCode: U2A dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VdgAGxFOUR-WBDSKwk7jJgFAofQhoVQGVYIrOjsOC2gJFiH_PuUkILBVS5MFWYunOufvO9wI48pRKlEx8J-FoDZTAddDVNPhnblMYQtDK5g73B7I38q4f_ccKDIpcGBtWWcjEuaBOJtrekZ-6hH35_HxeTF8d2zXKeleLFhqYt1ZIzuclxpagJmxlrCrULtuD4V0hmyUpSJ75mUMrm4M8jSZLpuNC2mxlG18UBNwJ_6qqEn_-uExXYfljPMWvT3x5-aWVOuuwlsNJFmX834CKGW_C6q8ig1vQj0ofNbu1MUKsuLNn98SyxMaiPzMCr-zKmCnLK64-s0hr0knZCWH09If3k9Y2jDrth1bPyZsoONrl3swhAw9lKjhiE30jVVOkqQhV0xYS5Cg831Oe0IRaDOlyrVOCQNp1EaWPBEbImNmB6ngyNrvAJPoClQmFSdFLybBMMOGBDpUfhPS2qsNxQa94mtXKiMuqyJa6MVE3nlM3DutwUJA0zv-b97jkch1OCjKXy4u-dvLDin9svrd4831YsW3ls6C9A6jO3j7MIYGPmWrAUtDpNqAWdZ9u2o38fNFsS7ZoHImI5kaDYfT0DdYC2KM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFH4UPVQP4op1nYOeNOhMJttBpG5UbYu4gLf4ZjLpRdpqW8Q_52_zTZM0ehEvhZBLSAJvvsz3vbwNYE8qlSg_8ZyEo3VQQtdBV9PJO3YDYUhBK1s73Gr7jSd58-w9V-CrqIWxaZXFnjjeqJOetv_Ij1zSvnyMz9P-m2OnRtnoajFCA_PRCsnJuMVYXthxaz4_yIUbnFxf0HrvC3F1-XjecPIpA452uRw65AGhnwqOGKBnfBWINBWRCmynPY5CelJJoYnWDZGd1ilpBO26iL6HxNaBnRpBFDArXRmR8zd7dtm-uy-4wCdC5llcO7JcEOZlO1nxHhe-rY62-UxhyJ3oNzWWencSop2H6qjbx88PfH39wYJXi7CQy1dWz_C2BBXTXYb5H00NV6BVL2PirGlzklgRI2APBJHE5r53GIlldmFMn-UdXjusrjVxYIZIRkfr7qF3vgpPUzHnGsx0e12zDsxHT6AykTApypQc2QQTHupIeWFEd6saHBT2ivtZb4647MJsrRuTdeOxdeOoBluFSeP8Ox3EJapqcFiYubz819MOJ0vxj5dv_P3yXag2HlvNuHndvt2EOTvSPksY3IKZ4fvIbJPwGaqdHF0MXqYN6G-Yqw5I |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50groH8SdOp-bBN1c0aZu1j6NzTN3GYA72VpI03cvoim6I_72XtV0niCiUvpRe4C69-6533wXg1pEykjxyrYgKk6B4tiVshTf3wW4yjQhaGu5wf8C7Y-d54k42WPyrbveiJJlxGsyUpmRxn0bxfUl8o4wbZrHpBfI8avnbsIMLUXOGQcCDwhdzDIg0qyv7xhd7OW3mZxnfQ1OJN9cl0irsLZNUfH6I2WwjCnUO4SCHj6SV2fsItnRyDNWNoYIn0G-VNWnSMz1BpPhHT0Zoosj0nk8JglXS1jol-YTVKWkphTEo2xEEr_5wNA9OYdx5fA26Vn5ogqVs6iwsTOgEjxkVoilczWWTxTHzZdMMDqSCOa4jHaYQpWiM3UrFCHmUbQvBXYHgA5OXM6gk80SfA-HCZUJqn-lYODEmkpGIqKd86Xo-vi1rcFfoK0yz2RhhOQXZaDdE7YYr7YZ-DeqFSsP8O3kPbcxo6Mrr1KBRqLl8_Ju0xtoUf1j84n_Sb2B32O6EvafByyXsmxPms_69OlQWb0t9hThkIa9XW-0LHk3QTQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7m9iB78Lc4mZIH31w3mzZd-zg2xxA3BnMwn0qSpntwdEU7RP96L2u7ThFRhFIKaVNyd819x919BbiyhQiEEzAjMLkOUFzL4JbEE7ux2lQhgha6d3g4cgZT-27GZiXo5b0w62r3PCWZ9jRolqYoacVB2Coa30zq6M5iXQvkuqbhNXF4ByoOQ0Rehsp0NO48pgllT2_C7uYaEVDWO_P9RJ_9UwE6N3nSKuyuopi_vfLFYssV9fdB5YtIK1CemqtENOX7F37H_67yAPYyrEo6qXEdQklFR1DdYjA8hmGnSICTe12ARPKEAJmgPQS60H1OEBmTnlIxyehc56QjJTq81PwIHsPxZNk9gWn_9qE7MLI_NBjSMu3EwOiROyE1OW9zphzRpmFIPdHWLIUmpzazhU0lQiKFQEHKEPGVtCzOHcYR6WCkdArlaBmpMyAOZ5QL5VEVcjvEqDXggelKTzDXw6dFDa5zvfhxSsThF5TLWlA-CspfC8r3alDPVednH-WLb2H4ZK63uBo0cukXwz_N1tio_BcvP__b7XUoJ88rdYHgJhGXme1-AJgK76k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+Level+Resource+Scheduling+for+Deep+Learning+Acceleration+on+MPSoC&rft.jtitle=Journal+of+signal+processing+systems&rft.au=Gao%2C+Cong&rft.au=Saha%2C+Sangeet&rft.au=Zhu%2C+Xuqi&rft.au=Jing%2C+Hongyuan&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1939-8018&rft.eissn=1939-8115&rft.volume=95&rft.issue=10&rft.spage=1231&rft.epage=1243&rft_id=info:doi/10.1007%2Fs11265-023-01881-9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8018&client=summon |