Application Level Resource Scheduling for Deep Learning Acceleration on MPSoC

Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered...

Full description

Saved in:
Bibliographic Details
Published inJournal of signal processing systems Vol. 95; no. 10; pp. 1231 - 1243
Main Authors Gao, Cong, Saha, Sangeet, Zhu, Xuqi, Jing, Hongyuan, McDonald-Maier, Klaus D., Zhai, Xiaojun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1939-8018
1939-8115
1939-8115
DOI10.1007/s11265-023-01881-9

Cover

Abstract Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in this paper, where each deep learning network is run with different service levels based on resource usage (where a higher service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall performance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+ XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second) using the same resource budget.
AbstractList Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in this paper, where each deep learning network is run with different service levels based on resource usage (where a higher service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall performance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+ XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second) using the same resource budget.
Author Saha, Sangeet
Zhu, Xuqi
Jing, Hongyuan
Zhai, Xiaojun
Gao, Cong
McDonald-Maier, Klaus D.
Author_xml – sequence: 1
  givenname: Cong
  surname: Gao
  fullname: Gao, Cong
  organization: School of Computer Science and Electronic Engineering, University of Essex
– sequence: 2
  givenname: Sangeet
  surname: Saha
  fullname: Saha, Sangeet
  organization: School of Computer Science and Electronic Engineering, University of Essex
– sequence: 3
  givenname: Xuqi
  surname: Zhu
  fullname: Zhu, Xuqi
  organization: School of Computer Science and Electronic Engineering, University of Essex
– sequence: 4
  givenname: Hongyuan
  surname: Jing
  fullname: Jing, Hongyuan
  organization: Beijing Key Laboratory of Information Service Engineering, Beijing Union University
– sequence: 5
  givenname: Klaus D.
  surname: McDonald-Maier
  fullname: McDonald-Maier, Klaus D.
  organization: School of Computer Science and Electronic Engineering, University of Essex
– sequence: 6
  givenname: Xiaojun
  orcidid: 0000-0002-1030-8311
  surname: Zhai
  fullname: Zhai, Xiaojun
  email: xzhai@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex
BookMark eNqNUE1LAzEQDVLBtvoHPC14Xs0km-zmWOontChWzyGNs3XLml2TrtJ_b-pWvIkwMMPMe483b0QGrnFIyCnQc6A0vwgATIqUMp5SKApI1QEZguIqLQDE4GeOtyMyCmFNqaS5gCGZT9q2rqzZVI1LZviBdfKIoem8xWRhX_Glqyu3SsrGJ5eIbYQY73abibVYo--JseYPi2Z6TA5LUwc82fcxeb6-epreprP7m7vpZJZaDtkmZQBGlgyMyY1AucxZWTK1zJUUCgzLRLbMmC0UR5aBtSUT0nJujBRGSp4LPia81-1ca7afpq5166s347caqN4lovtEdExEfyeiVWSd9azWN-8dho1ex0ddNKo5EwJoTjmNKNajrG9C8Fj-T3pvKESwW6H_lf6D9QVy-YAV
Cites_doi 10.1109/JSAC.2019.2904348
10.1109/CVPRW53098.2021.00347
10.23919/DATE54114.2022.9774727
10.1109/MNET.2018.1700202
10.1109/COMST.2018.2844341
10.1109/ACCESS.2020.3004198
10.1109/JSYST.2022.3144019
10.1109/TSC.2017.2662008
10.1007/978-3-031-21867-5_5
10.1109/ICAC55051.2022.9911081
10.1145/3316781.3317829
10.1109/ICFPT51103.2020.00018
10.1016/j.iot.2021.100461
10.1109/ICCE-TW52618.2021.9603066
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ADTOC
UNPAY
DOI 10.1007/s11265-023-01881-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-8115
EndPage 1243
ExternalDocumentID 10.1007/s11265-023-01881-9
10_1007_s11265_023_01881_9
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/R02572X/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/P017487/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V000462/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V034111/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P9P
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8P
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ADTOC
UNPAY
ID FETCH-LOGICAL-c314t-211a6f21aa7a5e6b72ff29b796591a2454b42c893e241ccf256c33aa65a663753
IEDL.DBID BENPR
ISSN 1939-8018
1939-8115
IngestDate Wed Oct 01 16:55:16 EDT 2025
Mon Sep 29 04:23:17 EDT 2025
Wed Oct 01 01:08:47 EDT 2025
Fri Feb 21 02:41:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Hardware accelerator
Resource schedule strategy
Embedded systems
FPGA
Deep Neutral networks
MPSoC
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-211a6f21aa7a5e6b72ff29b796591a2454b42c893e241ccf256c33aa65a663753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1030-8311
OpenAccessLink https://doi.org/10.1007/s11265-023-01881-9
PQID 3255107030
PQPubID 2044217
PageCount 13
ParticipantIDs unpaywall_primary_10_1007_s11265_023_01881_9
proquest_journals_3255107030
crossref_primary_10_1007_s11265_023_01881_9
springer_journals_10_1007_s11265_023_01881_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationSubtitle for Signal, Image, and Video Technology (formerly the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology)
PublicationTitle Journal of signal processing systems
PublicationTitleAbbrev J Sign Process Syst
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gao, C., Saha, S., Lu, Y., Saha, R., McDonald-Maier, K. D., & Zhai, X. (2022). Deep learning on FPGAs with multiple service levels for edge computing. In 2022 27th International Conference on Automation and Computing (ICAC) (pp. 1–6). IEEE.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
MohammadiMAl-FuqahaASorourSGuizaniMDeep learning for IoT big data and streaming analytics: A surveyIEEE Communications Surveys & Tutorials20182042923296010.1109/COMST.2018.2844341
AMD-Xilinx. (2022). Xilinx Vitis-ai 2.5 release. Retrieved August 2022, from https://docs.xilinx.com/r/en-US/ug1414-vitis-ai
WangZXuKWuSLiuLLiuLWangDSparse-YOLO: Hardware/software co-design of an FPGA accelerator for YOLOv2IEEE Access2020811656911658510.1109/ACCESS.2020.3004198
Korol, G., Jordan, M. G., Rutzig, M. B., & Beck, A. C. S. (2022). AdaFlow: A framework for adaptive dataflow CNN acceleration on FPGAs. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 244–249). IEEE.
Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. Preprint retrieved from http://arxiv.org/abs/1908.09791
Lu, Y., Zhai, X., Saha, S., Ehsan, S., & McDonald-Maier, K. D. (2022). A self-adaptive SEU mitigation scheme for embedded systems in extreme radiation environments. IEEE Systems Journal.
Lu, Y., Gao, C., Saha, R., Saha, S., McDonald-Maier, K. D., & Zhai, X. (2022) FPGA-based dynamic deep learning acceleration for real-time video analytics. In 35th GI/ITG International Conference on Architecture of Computing Systems. IEEE.
Goel, S., Kedia, R., Balakrishnan, M., & Sen, R. (2020). Infer: Interference-aware estimation of runtime for concurrent CNN execution on DPUS. In 2020 International Conference on Field-Programmable Technology (ICFPT) (pp. 66–71). IEEE.
Lou, W., Xun, L., Sabet, A., Bi, J., Hare, J., & Merrett, G. V. (2021). Dynamic-OFA: Runtime DNN architecture switching for performance scaling on heterogeneous embedded platforms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3110–3118).
Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W-M., & Chen, D. (2019). FPGA/DNN co-design: An efficient design methodology for 1ot intelligence on the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC) (pp. 1–6). IEEE.
DuttaLBharaliSTinyML meets IoT: A comprehensive surveyInternet of Things20211610.1016/j.iot.2021.100461
LiHOtaKDongMLearning IoT in edge: Deep learning for the internet of things with edge computingIEEE Network20183219610110.1109/MNET.2018.1700202
WangSTuorTSalonidisTLeungKKMakayaCHeTChanKAdaptive federated learning in resource constrained edge computing systemsIEEE Journal on Selected Areas in Communications20193761205122110.1109/JSAC.2019.2904348
Lin, G-Z., Nguyen, H. M., Sun, C-C., Kuo, P-Y., & Sheu, M-H. (2021). A novel bird detection and identification based on DPU processor on PYNQ FPGA. In 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1–2). IEEE.
Deng, Z., Xu, C., Cai, Q., & Faraboschi, P. (2015). Reduced-precision memory value approximation for deep learning. Hewlett Packard Labs, HPL-2015-100.
AMD-Xilinx. (2022). DPUCZDX8G for zynq ultrascale+ MPSoCs product guide (pg338). Retrieved August 2022, from https://docs.xilinx.com/r/en-US/pg338-dpu/reg_dpu_isr
LiuCCaoYLuoYChenGVokkaraneVYunshengMChenSHouPA new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructureIEEE Transactions on Services Computing201711224926110.1109/TSC.2017.2662008
1881_CR3
1881_CR4
S Wang (1881_CR11) 2019; 37
L Dutta (1881_CR2) 2021; 16
1881_CR5
1881_CR1
C Liu (1881_CR10) 2017; 11
1881_CR7
1881_CR8
M Mohammadi (1881_CR12) 2018; 20
H Li (1881_CR9) 2018; 32
Z Wang (1881_CR6) 2020; 8
1881_CR19
1881_CR18
1881_CR17
1881_CR16
1881_CR15
1881_CR14
1881_CR13
References_xml – reference: WangZXuKWuSLiuLLiuLWangDSparse-YOLO: Hardware/software co-design of an FPGA accelerator for YOLOv2IEEE Access2020811656911658510.1109/ACCESS.2020.3004198
– reference: LiuCCaoYLuoYChenGVokkaraneVYunshengMChenSHouPA new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructureIEEE Transactions on Services Computing201711224926110.1109/TSC.2017.2662008
– reference: AMD-Xilinx. (2022). Xilinx Vitis-ai 2.5 release. Retrieved August 2022, from https://docs.xilinx.com/r/en-US/ug1414-vitis-ai
– reference: Lou, W., Xun, L., Sabet, A., Bi, J., Hare, J., & Merrett, G. V. (2021). Dynamic-OFA: Runtime DNN architecture switching for performance scaling on heterogeneous embedded platforms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3110–3118).
– reference: Lu, Y., Zhai, X., Saha, S., Ehsan, S., & McDonald-Maier, K. D. (2022). A self-adaptive SEU mitigation scheme for embedded systems in extreme radiation environments. IEEE Systems Journal.
– reference: LiHOtaKDongMLearning IoT in edge: Deep learning for the internet of things with edge computingIEEE Network20183219610110.1109/MNET.2018.1700202
– reference: Goel, S., Kedia, R., Balakrishnan, M., & Sen, R. (2020). Infer: Interference-aware estimation of runtime for concurrent CNN execution on DPUS. In 2020 International Conference on Field-Programmable Technology (ICFPT) (pp. 66–71). IEEE.
– reference: Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
– reference: WangSTuorTSalonidisTLeungKKMakayaCHeTChanKAdaptive federated learning in resource constrained edge computing systemsIEEE Journal on Selected Areas in Communications20193761205122110.1109/JSAC.2019.2904348
– reference: Korol, G., Jordan, M. G., Rutzig, M. B., & Beck, A. C. S. (2022). AdaFlow: A framework for adaptive dataflow CNN acceleration on FPGAs. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 244–249). IEEE.
– reference: Gao, C., Saha, S., Lu, Y., Saha, R., McDonald-Maier, K. D., & Zhai, X. (2022). Deep learning on FPGAs with multiple service levels for edge computing. In 2022 27th International Conference on Automation and Computing (ICAC) (pp. 1–6). IEEE.
– reference: DuttaLBharaliSTinyML meets IoT: A comprehensive surveyInternet of Things20211610.1016/j.iot.2021.100461
– reference: Lu, Y., Gao, C., Saha, R., Saha, S., McDonald-Maier, K. D., & Zhai, X. (2022) FPGA-based dynamic deep learning acceleration for real-time video analytics. In 35th GI/ITG International Conference on Architecture of Computing Systems. IEEE.
– reference: Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. Preprint retrieved from http://arxiv.org/abs/1908.09791
– reference: MohammadiMAl-FuqahaASorourSGuizaniMDeep learning for IoT big data and streaming analytics: A surveyIEEE Communications Surveys & Tutorials20182042923296010.1109/COMST.2018.2844341
– reference: AMD-Xilinx. (2022). DPUCZDX8G for zynq ultrascale+ MPSoCs product guide (pg338). Retrieved August 2022, from https://docs.xilinx.com/r/en-US/pg338-dpu/reg_dpu_isr
– reference: Lin, G-Z., Nguyen, H. M., Sun, C-C., Kuo, P-Y., & Sheu, M-H. (2021). A novel bird detection and identification based on DPU processor on PYNQ FPGA. In 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1–2). IEEE.
– reference: Deng, Z., Xu, C., Cai, Q., & Faraboschi, P. (2015). Reduced-precision memory value approximation for deep learning. Hewlett Packard Labs, HPL-2015-100.
– reference: Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W-M., & Chen, D. (2019). FPGA/DNN co-design: An efficient design methodology for 1ot intelligence on the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC) (pp. 1–6). IEEE.
– volume: 37
  start-page: 1205
  issue: 6
  year: 2019
  ident: 1881_CR11
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2019.2904348
– ident: 1881_CR18
– ident: 1881_CR4
  doi: 10.1109/CVPRW53098.2021.00347
– ident: 1881_CR5
  doi: 10.23919/DATE54114.2022.9774727
– volume: 32
  start-page: 96
  issue: 1
  year: 2018
  ident: 1881_CR9
  publication-title: IEEE Network
  doi: 10.1109/MNET.2018.1700202
– volume: 20
  start-page: 2923
  issue: 4
  year: 2018
  ident: 1881_CR12
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2018.2844341
– volume: 8
  start-page: 116569
  year: 2020
  ident: 1881_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004198
– ident: 1881_CR8
  doi: 10.1109/JSYST.2022.3144019
– volume: 11
  start-page: 249
  issue: 2
  year: 2017
  ident: 1881_CR10
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2017.2662008
– ident: 1881_CR17
  doi: 10.1007/978-3-031-21867-5_5
– ident: 1881_CR14
  doi: 10.1109/ICAC55051.2022.9911081
– ident: 1881_CR1
– ident: 1881_CR7
  doi: 10.1145/3316781.3317829
– ident: 1881_CR13
– ident: 1881_CR3
– ident: 1881_CR15
  doi: 10.1109/ICFPT51103.2020.00018
– volume: 16
  year: 2021
  ident: 1881_CR2
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2021.100461
– ident: 1881_CR16
  doi: 10.1109/ICCE-TW52618.2021.9603066
– ident: 1881_CR19
SSID ssj0060751
Score 2.3324466
Snippet Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification,...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1231
SubjectTerms Accuracy
Autonomous cars
Budgets
Circuits and Systems
Co-design
Computer Imaging
Constraints
Deep learning
Electrical Engineering
Engineering
Field programmable gate arrays
Heuristic
Image classification
Image Processing and Computer Vision
Internet of Things
Machine learning
Multiprocessing
Natural language processing
Neural networks
Object recognition
Pattern Recognition
Pattern Recognition and Graphics
Resource scheduling
Signal,Image and Speech Processing
Software
System on chip
Vision
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20HrQH8ROrVfbgzQbNJrtJjqVailgRaqG3MLvZ9FLaYlvEf-9sPpoqIgohl5ANvElm3mRm3gJc-0olSibCSVy0CUroOehpOok7L-CGGLSys8P9Z9kb-o8jMSpkcuwszLf6_e3CjrjYGWLb9ROGrhNtww4FKZkVZmWn9LqSQp-bV5Aj63XDYkDm5zW-BqGKWa6LoXXYXU3n-PGOk8lGvOkewH5BFFk7t-whbJnpEdQ35AOPod-uqs_syXb_sPJvPBuQMRLbZT5mREvZvTFzVmipjllba4o2ue0ZHf2XwaxzAsPuw2un5xTbIzjac_2lQ6kbypS7iAEKI1XA05RHKrASgS5yX_jK55r4iKEorXVK5EZ7HqIUSDSD0pRTqE1nU3MGTKLgqEzETYp-Siljgokb6kiJMKK7VQNuSrziea6CEVd6xxbdmNCNM3TjqAHNEtK4-CIWsUe5i5v5lwa0Spiry7-t1lqb4g8PP__f6hewZzeQz9vzmlBbvq3MJdGMpbrK3q9PQYLFFw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7m9iB78Lc4mZIH31w3mzZd-zg2xxA3BnMwn0qSpntwdEU7RP96L2u7ThFRhFIKaVNyd819x919BbiyhQiEEzAjMLkOUFzL4JbEE7ux2lQhgha6d3g4cgZT-27GZiXo5b0w62r3PCWZ9jRolqYoacVB2Coa30zq6M5iXQvkuqbhNXF4ByoOQ0Rehsp0NO48pgllT2_C7uYaEVDWO_P9RJ_9UwE6N3nSKuyuopi_vfLFYssV9fdB5YtIK1CemqtENOX7F37H_67yAPYyrEo6qXEdQklFR1DdYjA8hmGnSICTe12ARPKEAJmgPQS60H1OEBmTnlIxyehc56QjJTq81PwIHsPxZNk9gWn_9qE7MLI_NBjSMu3EwOiROyE1OW9zphzRpmFIPdHWLIUmpzazhU0lQiKFQEHKEPGVtCzOHcYR6WCkdArlaBmpMyAOZ5QL5VEVcjvEqDXggelKTzDXw6dFDa5zvfhxSsThF5TLWlA-CspfC8r3alDPVednH-WLb2H4ZK63uBo0cukXwz_N1tio_BcvP__b7XUoJ88rdYHgJhGXme1-AJgK76k
  priority: 102
  providerName: Unpaywall
Title Application Level Resource Scheduling for Deep Learning Acceleration on MPSoC
URI https://link.springer.com/article/10.1007/s11265-023-01881-9
https://www.proquest.com/docview/3255107030
https://link.springer.com/content/pdf/10.1007/s11265-023-01881-9.pdf
UnpaywallVersion publishedVersion
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: U2A
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VdgAGxFOUR-WBDSKwk7jJgFAofQhoVQGVYIrOjsOC2gJFiH_PuUkILBVS5MFWYunOufvO9wI48pRKlEx8J-FoDZTAddDVNPhnblMYQtDK5g73B7I38q4f_ccKDIpcGBtWWcjEuaBOJtrekZ-6hH35_HxeTF8d2zXKeleLFhqYt1ZIzuclxpagJmxlrCrULtuD4V0hmyUpSJ75mUMrm4M8jSZLpuNC2mxlG18UBNwJ_6qqEn_-uExXYfljPMWvT3x5-aWVOuuwlsNJFmX834CKGW_C6q8ig1vQj0ofNbu1MUKsuLNn98SyxMaiPzMCr-zKmCnLK64-s0hr0knZCWH09If3k9Y2jDrth1bPyZsoONrl3swhAw9lKjhiE30jVVOkqQhV0xYS5Cg831Oe0IRaDOlyrVOCQNp1EaWPBEbImNmB6ngyNrvAJPoClQmFSdFLybBMMOGBDpUfhPS2qsNxQa94mtXKiMuqyJa6MVE3nlM3DutwUJA0zv-b97jkch1OCjKXy4u-dvLDin9svrd4831YsW3ls6C9A6jO3j7MIYGPmWrAUtDpNqAWdZ9u2o38fNFsS7ZoHImI5kaDYfT0DdYC2KM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFH4UPVQP4op1nYOeNOhMJttBpG5UbYu4gLf4ZjLpRdpqW8Q_52_zTZM0ehEvhZBLSAJvvsz3vbwNYE8qlSg_8ZyEo3VQQtdBV9PJO3YDYUhBK1s73Gr7jSd58-w9V-CrqIWxaZXFnjjeqJOetv_Ij1zSvnyMz9P-m2OnRtnoajFCA_PRCsnJuMVYXthxaz4_yIUbnFxf0HrvC3F1-XjecPIpA452uRw65AGhnwqOGKBnfBWINBWRCmynPY5CelJJoYnWDZGd1ilpBO26iL6HxNaBnRpBFDArXRmR8zd7dtm-uy-4wCdC5llcO7JcEOZlO1nxHhe-rY62-UxhyJ3oNzWWencSop2H6qjbx88PfH39wYJXi7CQy1dWz_C2BBXTXYb5H00NV6BVL2PirGlzklgRI2APBJHE5r53GIlldmFMn-UdXjusrjVxYIZIRkfr7qF3vgpPUzHnGsx0e12zDsxHT6AykTApypQc2QQTHupIeWFEd6saHBT2ivtZb4647MJsrRuTdeOxdeOoBluFSeP8Ox3EJapqcFiYubz819MOJ0vxj5dv_P3yXag2HlvNuHndvt2EOTvSPksY3IKZ4fvIbJPwGaqdHF0MXqYN6G-Yqw5I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50groH8SdOp-bBN1c0aZu1j6NzTN3GYA72VpI03cvoim6I_72XtV0niCiUvpRe4C69-6533wXg1pEykjxyrYgKk6B4tiVshTf3wW4yjQhaGu5wf8C7Y-d54k42WPyrbveiJJlxGsyUpmRxn0bxfUl8o4wbZrHpBfI8avnbsIMLUXOGQcCDwhdzDIg0qyv7xhd7OW3mZxnfQ1OJN9cl0irsLZNUfH6I2WwjCnUO4SCHj6SV2fsItnRyDNWNoYIn0G-VNWnSMz1BpPhHT0Zoosj0nk8JglXS1jol-YTVKWkphTEo2xEEr_5wNA9OYdx5fA26Vn5ogqVs6iwsTOgEjxkVoilczWWTxTHzZdMMDqSCOa4jHaYQpWiM3UrFCHmUbQvBXYHgA5OXM6gk80SfA-HCZUJqn-lYODEmkpGIqKd86Xo-vi1rcFfoK0yz2RhhOQXZaDdE7YYr7YZ-DeqFSsP8O3kPbcxo6Mrr1KBRqLl8_Ju0xtoUf1j84n_Sb2B32O6EvafByyXsmxPms_69OlQWb0t9hThkIa9XW-0LHk3QTQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7m9iB78Lc4mZIH31w3mzZd-zg2xxA3BnMwn0qSpntwdEU7RP96L2u7ThFRhFIKaVNyd819x919BbiyhQiEEzAjMLkOUFzL4JbEE7ux2lQhgha6d3g4cgZT-27GZiXo5b0w62r3PCWZ9jRolqYoacVB2Coa30zq6M5iXQvkuqbhNXF4ByoOQ0Rehsp0NO48pgllT2_C7uYaEVDWO_P9RJ_9UwE6N3nSKuyuopi_vfLFYssV9fdB5YtIK1CemqtENOX7F37H_67yAPYyrEo6qXEdQklFR1DdYjA8hmGnSICTe12ARPKEAJmgPQS60H1OEBmTnlIxyehc56QjJTq81PwIHsPxZNk9gWn_9qE7MLI_NBjSMu3EwOiROyE1OW9zphzRpmFIPdHWLIUmpzazhU0lQiKFQEHKEPGVtCzOHcYR6WCkdArlaBmpMyAOZ5QL5VEVcjvEqDXggelKTzDXw6dFDa5zvfhxSsThF5TLWlA-CspfC8r3alDPVednH-WLb2H4ZK63uBo0cukXwz_N1tio_BcvP__b7XUoJ88rdYHgJhGXme1-AJgK76k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+Level+Resource+Scheduling+for+Deep+Learning+Acceleration+on+MPSoC&rft.jtitle=Journal+of+signal+processing+systems&rft.au=Gao%2C+Cong&rft.au=Saha%2C+Sangeet&rft.au=Zhu%2C+Xuqi&rft.au=Jing%2C+Hongyuan&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1939-8018&rft.eissn=1939-8115&rft.volume=95&rft.issue=10&rft.spage=1231&rft.epage=1243&rft_id=info:doi/10.1007%2Fs11265-023-01881-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8018&client=summon