Spatiotemporal Patterns of a Host-Generalist Parasitoid Reaction–Diffusion Model
In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implici...
Saved in:
| Published in | International journal of bifurcation and chaos in applied sciences and engineering Vol. 33; no. 7 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
World Scientific Publishing Company
15.06.2023
World Scientific Publishing Co. Pte., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0218-1274 1793-6551 |
| DOI | 10.1142/S0218127423500876 |
Cover
| Abstract | In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay
τ
as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when
τ
is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter
m
is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter
k
when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when
k
is larger than 1 but not sufficiently close to 1. |
|---|---|
| AbstractList | In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay
τ
as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when
τ
is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter
m
is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter
k
when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when
k
is larger than 1 but not sufficiently close to 1. In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay τ as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when τ is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter m is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter k when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when k is larger than 1 but not sufficiently close to 1. In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay [Formula: see text] as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when [Formula: see text] is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter [Formula: see text] is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter [Formula: see text] when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when [Formula: see text] is larger than 1 but not sufficiently close to 1. |
| Author | Ma, Zhan-Ping Cheng, Zhi-Bo Liang, Wei |
| Author_xml | – sequence: 1 givenname: Zhan-Ping surname: Ma fullname: Ma, Zhan-Ping – sequence: 2 givenname: Zhi-Bo surname: Cheng fullname: Cheng, Zhi-Bo – sequence: 3 givenname: Wei surname: Liang fullname: Liang, Wei |
| BookMark | eNp9kMFKAzEQhoNUsNY-gLcFz6uZJJtkj1K1FSpKq-clm00gst2sSYp48x18Q5_ELRUPCp5m4Pu_GWaO0ajznUHoFPA5ACMXa0xAAhGM0AJjKfgBGoMoac6LAkZovMP5jh-haYyuxpgwKUQJY7Ra9yo5n8ym90G12YNKyYQuZt5mKlv4mPK56cyAXEwDDSq65F2TrYzSg9h9vn9cOWu3ceizO9-Y9gQdWtVGM_2uE_R0c_04W-TL-_nt7HKZawqM58BKaLhRJbeWs1rVTCsjGOWWlkQD1Lq2DHMQlFomOWiCBa0ZbrDh2MiCTtDZfm4f_MvWxFQ9-23ohpUVkZTJgpeFHFJin9LBxxiMrbRLu5O7FJRrK8DV7ofVnx8OJvwy--A2Krz96-C98-pD20TtTJecdfpH_at8AS8WhL0 |
| CitedBy_id | crossref_primary_10_1142_S0218127424502031 |
| Cites_doi | 10.1515/9780691230894-008 10.1007/978-1-4612-5561-1 10.1016/j.nonrwa.2021.103311 10.1142/S0218127421502497 10.1006/jdeq.1996.0003 10.1093/imammb/dqm011 10.1016/j.jde.2019.10.036 10.1016/j.jde.2017.08.021 10.1007/s11538-010-9532-5 10.1007/978-1-4612-4050-1 10.1016/j.jde.2021.04.021 10.1111/j.1749-6632.1948.tb39854.x 10.1016/S0960-0779(02)00068-1 10.1142/S0218339020500023 10.1016/S0025-5564(00)00006-7 10.1016/j.chaos.2016.07.003 10.1111/sapm.12443 10.1142/S0218127418300045 10.1006/bulm.2001.0239 10.1016/j.ecocom.2020.100826 10.1002/mma.8749 10.1142/S1793524520500096 10.1016/j.jde.2015.10.036 10.1016/j.jde.2022.01.038 10.1111/j.1469-1809.1937.tb02153.x |
| ContentType | Journal Article |
| Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company |
| Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company |
| DBID | AAYXX CITATION |
| DOI | 10.1142/S0218127423500876 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1793-6551 |
| ExternalDocumentID | 10_1142_S0218127423500876 S0218127423500876 |
| GroupedDBID | 0R~ 4.4 5GY ABPKU ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS F5P HZ~ O9- P2P P71 RNS RWJ AAYXX AMVHM CITATION |
| ID | FETCH-LOGICAL-c3146-1491d6ea96ff64bab4cae7436f392c11bcbf4061733f4861c2073b40d0e60e853 |
| ISSN | 0218-1274 |
| IngestDate | Sun Jun 29 14:58:42 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 03:03:29 EDT 2025 Fri Aug 23 08:19:27 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | bifurcation direction Host-parasitoid diffusion model time delay Hopf bifurcation steady-state solution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3146-1491d6ea96ff64bab4cae7436f392c11bcbf4061733f4861c2073b40d0e60e853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6140-993X |
| PQID | 2834856958 |
| PQPubID | 2049929 |
| ParticipantIDs | worldscientific_primary_S0218127423500876 proquest_journals_2834856958 crossref_citationtrail_10_1142_S0218127423500876 crossref_primary_10_1142_S0218127423500876 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230615 2023-06-15 |
| PublicationDateYYYYMMDD | 2023-06-15 |
| PublicationDate_xml | – month: 06 year: 2023 text: 20230615 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | International journal of bifurcation and chaos in applied sciences and engineering |
| PublicationYear | 2023 |
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
| References | Pazy A. (S0218127423500876BIB019) 1983 Song Y. (S0218127423500876BIB024) 2022; 148 Culshaw R. V. (S0218127423500876BIB005) 2000; 165 Zhao M. (S0218127423500876BIB032) 2022; 316 Fisher R. A. (S0218127423500876BIB006) 1937; 7 Ai S. (S0218127423500876BIB001) 2017; 263 Hutchinson G. E. (S0218127423500876BIB013) 1948; 50 Han R. (S0218127423500876BIB010) 2021; 60 Seo G. (S0218127423500876BIB023) 2020; 13 Ruan S. (S0218127423500876BIB020) 2021; 26 Zhou L. (S0218127423500876BIB033) 2002; 14 Hoyle R. B. (S0218127423500876BIB012) 1996 Xiang C. (S0218127423500876BIB029) 2020; 268 S0218127423500876BIB015 Turing A. (S0218127423500876BIB026) 1952; 237 Magal C. (S0218127423500876BIB017) 2008; 25 Ghorai S. (S0218127423500876BIB007) 2016; 91 Wu J. (S0218127423500876BIB028) 1996 Hastings A. (S0218127423500876BIB011) 2000 Yan X. P. (S0218127423500876BIB030) 2012; 17 Biswas S. (S0218127423500876BIB002) 2023; 46 Busenberg S. (S0218127423500876BIB003) 1996; 124 Guo S. (S0218127423500876BIB008) 2021; 289 Wang J. (S0218127423500876BIB027) 2016; 260 Owen M. R. (S0218127423500876BIB018) 2001; 63 Lee S. S. (S0218127423500876BIB016) 2010; 72 S0218127423500876BIB009 Sarkar K. (S0218127423500876BIB022) 2020; 42 Zhang X. (S0218127423500876BIB031) 2015 S0218127423500876BIB025 Khajanchi S. (S0218127423500876BIB014) 2014; 244 S0218127423500876BIB021 Cantrell R. S. (S0218127423500876BIB004) 2003 |
| References_xml | – volume: 13 start-page: 3157 year: 2020 ident: S0218127423500876BIB023 publication-title: Discr. Contin. Dyn. Syst. Ser. B – start-page: 70 volume-title: Parasitoids Population Biology year: 2000 ident: S0218127423500876BIB011 doi: 10.1515/9780691230894-008 – volume-title: Semigroup of Linear Operators and Applications to Partial Differential Equations year: 1983 ident: S0218127423500876BIB019 doi: 10.1007/978-1-4612-5561-1 – volume: 60 start-page: 103311 year: 2021 ident: S0218127423500876BIB010 publication-title: Nonlin. Anal.: Real World Appl. doi: 10.1016/j.nonrwa.2021.103311 – ident: S0218127423500876BIB025 doi: 10.1142/S0218127421502497 – volume-title: Spatial Ecology via Reaction–Diffusion Equations year: 2003 ident: S0218127423500876BIB004 – volume: 124 start-page: 80 year: 1996 ident: S0218127423500876BIB003 publication-title: J. Diff. Eqs. doi: 10.1006/jdeq.1996.0003 – volume: 25 start-page: 1 year: 2008 ident: S0218127423500876BIB017 publication-title: Math. Med. Biol. doi: 10.1093/imammb/dqm011 – volume: 268 start-page: 4618 year: 2020 ident: S0218127423500876BIB029 publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2019.10.036 – volume: 263 start-page: 7782 year: 2017 ident: S0218127423500876BIB001 publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2017.08.021 – volume: 72 start-page: 2139 year: 2010 ident: S0218127423500876BIB016 publication-title: Bull. Math. Biol. doi: 10.1007/s11538-010-9532-5 – volume-title: Theory and Applications of Partial Functional Differential Equations year: 1996 ident: S0218127423500876BIB028 doi: 10.1007/978-1-4612-4050-1 – volume: 289 start-page: 236 year: 2021 ident: S0218127423500876BIB008 publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2021.04.021 – volume: 50 start-page: 221 year: 1948 ident: S0218127423500876BIB013 publication-title: Ann. NY Acad. Sci. doi: 10.1111/j.1749-6632.1948.tb39854.x – volume: 244 start-page: 344 year: 2014 ident: S0218127423500876BIB014 publication-title: Appl. Math. Comput. – volume: 26 start-page: 541 year: 2021 ident: S0218127423500876BIB020 publication-title: Discr. Contin. Dyn. Syst. Ser. B – volume: 14 start-page: 1201 year: 2002 ident: S0218127423500876BIB033 publication-title: Chaos Solit. Fract. doi: 10.1016/S0960-0779(02)00068-1 – ident: S0218127423500876BIB009 doi: 10.1142/S0218339020500023 – volume: 165 start-page: 27 year: 2000 ident: S0218127423500876BIB005 publication-title: Math. Biosci. doi: 10.1016/S0025-5564(00)00006-7 – volume: 91 start-page: 421 year: 2016 ident: S0218127423500876BIB007 publication-title: Chaos Solit. Fract. doi: 10.1016/j.chaos.2016.07.003 – volume: 148 start-page: 373 year: 2022 ident: S0218127423500876BIB024 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12443 – ident: S0218127423500876BIB021 doi: 10.1142/S0218127418300045 – volume: 63 start-page: 655 year: 2001 ident: S0218127423500876BIB018 publication-title: Bull. Math. Biol. doi: 10.1006/bulm.2001.0239 – volume: 42 start-page: 100826 year: 2020 ident: S0218127423500876BIB022 publication-title: Ecol. Compl. doi: 10.1016/j.ecocom.2020.100826 – volume: 46 start-page: 4184 year: 2023 ident: S0218127423500876BIB002 publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.8749 – ident: S0218127423500876BIB015 doi: 10.1142/S1793524520500096 – volume: 260 start-page: 3495 year: 2016 ident: S0218127423500876BIB027 publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2015.10.036 – volume: 316 start-page: 552 year: 2022 ident: S0218127423500876BIB032 publication-title: J. Diff. Eqs. doi: 10.1016/j.jde.2022.01.038 – volume: 7 start-page: 355 year: 1937 ident: S0218127423500876BIB006 publication-title: Annu. Eugen. doi: 10.1111/j.1469-1809.1937.tb02153.x – volume: 17 start-page: 367 year: 2012 ident: S0218127423500876BIB030 publication-title: Discr. Contin. Dyn. Syst. Ser. B – volume: 237 start-page: 37 year: 1952 ident: S0218127423500876BIB026 publication-title: Philos. Trans. R. Soc. Ser. B – volume-title: Efficient Solution of MATLAB Differential Equation: Principle and Implementation of Spectral Method year: 2015 ident: S0218127423500876BIB031 – volume-title: Pattern Formation: An Introduction to Methods year: 1996 ident: S0218127423500876BIB012 |
| SSID | ssib002487791 ssj0004368 |
| Score | 2.383678 |
| Snippet | In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids... |
| SourceID | proquest crossref worldscientific |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Boundary conditions Dirichlet problem Feedback Hopf bifurcation Mathematical models Parameters Simulation Steady state Time lag |
| Title | Spatiotemporal Patterns of a Host-Generalist Parasitoid Reaction–Diffusion Model |
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0218127423500876 https://www.proquest.com/docview/2834856958 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1793-6551 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004368 issn: 0218-1274 databaseCode: AMVHM dateStart: 19910301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4HDxAaIwkA-cGBIHonrOMlxDFCFNIRgg4lL5Di2Gqlqpqa97LQ7R_5D_hKeP_LRdiDGJYrc5FXte37v5-f3fkboRVEwlkOcIgA2UsKojklexKYyh0WCB1oFha22-Mgn5-zDRXQxGPzoVS2tlvmRvLqxr-R_tApjoFfTJXsLzbZCYQDuQb9wBQ3D9Z90_MWWQ3t2qZmh2zfpvdr1PE6qekk8qzToEj5diBrmb2kaEl07Q1PpMH5bar0yeTN7Ntqsj1jXU4Y9oom81KuFS_i55ripqGxxrfDA1gdXRwKtOt7DLglud0amYk4-9YZPpsr5n-_Tkryp2oqh0me2v6myn6qg5tgI4po1vUcDPEFC6o7lOVLO44KDIDzyrLPeJTtuDG968c2enlG712whitlujiy7XhfWmq38jWjX1iC6jmyabYm4g3YohIhgiHaOT79OTntoJonjtKsgMuT9NoXnf5XfNAehr7eErsOebi2za4lxXfOrqQ3rgZuz-2jXr0rwsTOxPTRQ8310r8dVuY_2fBSo8UtvVIcP0Od1C8SNBeJKY4E3LBB3FogbC_x1_bO1PWxt7yE6f__u7GRC_CkdRI4hzBJYYocFVyLlWnOWi5xJoQCXcg3QW4ZhLnNtUGM8HmuW8FBSiCo5Ax-geKAALT5Cw3k1V48RDlOpJKM0lGHCADYljElYgMCLolAhpyMUNH9iJj2FvTlJZZb9UZkj9Kp95dLxt_zt4YNGM5mfT3UG-JslEU-jZIQON7TVitwS9eQ23_sU3e2mywEaLhcr9Qyw7jJ_7m3wN-8woUU |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Patterns+of+a+Host-Generalist+Parasitoid+Reaction%E2%80%93Diffusion+Model&rft.jtitle=International+journal+of+bifurcation+and+chaos+in+applied+sciences+and+engineering&rft.au=Ma%2C+Zhan-Ping&rft.au=Cheng%2C+Zhi-Bo&rft.au=Liang%2C+Wei&rft.date=2023-06-15&rft.issn=0218-1274&rft.eissn=1793-6551&rft.volume=33&rft.issue=7&rft_id=info:doi/10.1142%2FS0218127423500876&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0218127423500876 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1274&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1274&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1274&client=summon |