Spatiotemporal Patterns of a Host-Generalist Parasitoid Reaction–Diffusion Model

In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implici...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of bifurcation and chaos in applied sciences and engineering Vol. 33; no. 7
Main Authors Ma, Zhan-Ping, Cheng, Zhi-Bo, Liang, Wei
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 15.06.2023
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0218-1274
1793-6551
DOI10.1142/S0218127423500876

Cover

Abstract In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay τ as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when τ is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter m is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter k when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when k is larger than 1 but not sufficiently close to 1.
AbstractList In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay τ as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when τ is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter m is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter k when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when k is larger than 1 but not sufficiently close to 1.
In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay τ as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when τ is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter m is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter k when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when k is larger than 1 but not sufficiently close to 1.
In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids are introduced to control the invasion of the hosts. We construct an explicit expression of positive steady-state solution using the implicit function theorem and prove its linear stability. Moreover, by applying feedback time delay [Formula: see text] as the bifurcation parameter, spatially inhomogeneous Hopf bifurcation near the positive steady-state solution is proved when [Formula: see text] is varied through a sequence of critical values. This finding implies that feedback time delay can induce spatially inhomogeneous periodic oscillatory patterns. The direction of spatially inhomogeneous Hopf bifurcation is forward when parameter [Formula: see text] is sufficiently large. We present numerical simulations and solutions to further illustrate our main theoretical results. Numerical simulations show that the period and amplitude of the inhomogeneous periodic solution increase with increasing feedback time delay. Our theoretical analysis results only hold for parameter [Formula: see text] when it is sufficiently close to 1, whereas numerical simulations suggest that spatially inhomogeneous Hopf bifurcation still occurs when [Formula: see text] is larger than 1 but not sufficiently close to 1.
Author Ma, Zhan-Ping
Cheng, Zhi-Bo
Liang, Wei
Author_xml – sequence: 1
  givenname: Zhan-Ping
  surname: Ma
  fullname: Ma, Zhan-Ping
– sequence: 2
  givenname: Zhi-Bo
  surname: Cheng
  fullname: Cheng, Zhi-Bo
– sequence: 3
  givenname: Wei
  surname: Liang
  fullname: Liang, Wei
BookMark eNp9kMFKAzEQhoNUsNY-gLcFz6uZJJtkj1K1FSpKq-clm00gst2sSYp48x18Q5_ELRUPCp5m4Pu_GWaO0ajznUHoFPA5ACMXa0xAAhGM0AJjKfgBGoMoac6LAkZovMP5jh-haYyuxpgwKUQJY7Ra9yo5n8ym90G12YNKyYQuZt5mKlv4mPK56cyAXEwDDSq65F2TrYzSg9h9vn9cOWu3ceizO9-Y9gQdWtVGM_2uE_R0c_04W-TL-_nt7HKZawqM58BKaLhRJbeWs1rVTCsjGOWWlkQD1Lq2DHMQlFomOWiCBa0ZbrDh2MiCTtDZfm4f_MvWxFQ9-23ohpUVkZTJgpeFHFJin9LBxxiMrbRLu5O7FJRrK8DV7ofVnx8OJvwy--A2Krz96-C98-pD20TtTJecdfpH_at8AS8WhL0
CitedBy_id crossref_primary_10_1142_S0218127424502031
Cites_doi 10.1515/9780691230894-008
10.1007/978-1-4612-5561-1
10.1016/j.nonrwa.2021.103311
10.1142/S0218127421502497
10.1006/jdeq.1996.0003
10.1093/imammb/dqm011
10.1016/j.jde.2019.10.036
10.1016/j.jde.2017.08.021
10.1007/s11538-010-9532-5
10.1007/978-1-4612-4050-1
10.1016/j.jde.2021.04.021
10.1111/j.1749-6632.1948.tb39854.x
10.1016/S0960-0779(02)00068-1
10.1142/S0218339020500023
10.1016/S0025-5564(00)00006-7
10.1016/j.chaos.2016.07.003
10.1111/sapm.12443
10.1142/S0218127418300045
10.1006/bulm.2001.0239
10.1016/j.ecocom.2020.100826
10.1002/mma.8749
10.1142/S1793524520500096
10.1016/j.jde.2015.10.036
10.1016/j.jde.2022.01.038
10.1111/j.1469-1809.1937.tb02153.x
ContentType Journal Article
Copyright 2023, World Scientific Publishing Company
2023. World Scientific Publishing Company
Copyright_xml – notice: 2023, World Scientific Publishing Company
– notice: 2023. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0218127423500876
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1793-6551
ExternalDocumentID 10_1142_S0218127423500876
S0218127423500876
GroupedDBID 0R~
4.4
5GY
ABPKU
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
F5P
HZ~
O9-
P2P
P71
RNS
RWJ
AAYXX
AMVHM
CITATION
ID FETCH-LOGICAL-c3146-1491d6ea96ff64bab4cae7436f392c11bcbf4061733f4861c2073b40d0e60e853
ISSN 0218-1274
IngestDate Sun Jun 29 14:58:42 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 03:03:29 EDT 2025
Fri Aug 23 08:19:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords bifurcation direction
Host-parasitoid diffusion model
time delay
Hopf bifurcation
steady-state solution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3146-1491d6ea96ff64bab4cae7436f392c11bcbf4061733f4861c2073b40d0e60e853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6140-993X
PQID 2834856958
PQPubID 2049929
ParticipantIDs worldscientific_primary_S0218127423500876
proquest_journals_2834856958
crossref_citationtrail_10_1142_S0218127423500876
crossref_primary_10_1142_S0218127423500876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230615
2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 20230615
  day: 15
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of bifurcation and chaos in applied sciences and engineering
PublicationYear 2023
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Pazy A. (S0218127423500876BIB019) 1983
Song Y. (S0218127423500876BIB024) 2022; 148
Culshaw R. V. (S0218127423500876BIB005) 2000; 165
Zhao M. (S0218127423500876BIB032) 2022; 316
Fisher R. A. (S0218127423500876BIB006) 1937; 7
Ai S. (S0218127423500876BIB001) 2017; 263
Hutchinson G. E. (S0218127423500876BIB013) 1948; 50
Han R. (S0218127423500876BIB010) 2021; 60
Seo G. (S0218127423500876BIB023) 2020; 13
Ruan S. (S0218127423500876BIB020) 2021; 26
Zhou L. (S0218127423500876BIB033) 2002; 14
Hoyle R. B. (S0218127423500876BIB012) 1996
Xiang C. (S0218127423500876BIB029) 2020; 268
S0218127423500876BIB015
Turing A. (S0218127423500876BIB026) 1952; 237
Magal C. (S0218127423500876BIB017) 2008; 25
Ghorai S. (S0218127423500876BIB007) 2016; 91
Wu J. (S0218127423500876BIB028) 1996
Hastings A. (S0218127423500876BIB011) 2000
Yan X. P. (S0218127423500876BIB030) 2012; 17
Biswas S. (S0218127423500876BIB002) 2023; 46
Busenberg S. (S0218127423500876BIB003) 1996; 124
Guo S. (S0218127423500876BIB008) 2021; 289
Wang J. (S0218127423500876BIB027) 2016; 260
Owen M. R. (S0218127423500876BIB018) 2001; 63
Lee S. S. (S0218127423500876BIB016) 2010; 72
S0218127423500876BIB009
Sarkar K. (S0218127423500876BIB022) 2020; 42
Zhang X. (S0218127423500876BIB031) 2015
S0218127423500876BIB025
Khajanchi S. (S0218127423500876BIB014) 2014; 244
S0218127423500876BIB021
Cantrell R. S. (S0218127423500876BIB004) 2003
References_xml – volume: 13
  start-page: 3157
  year: 2020
  ident: S0218127423500876BIB023
  publication-title: Discr. Contin. Dyn. Syst. Ser. B
– start-page: 70
  volume-title: Parasitoids Population Biology
  year: 2000
  ident: S0218127423500876BIB011
  doi: 10.1515/9780691230894-008
– volume-title: Semigroup of Linear Operators and Applications to Partial Differential Equations
  year: 1983
  ident: S0218127423500876BIB019
  doi: 10.1007/978-1-4612-5561-1
– volume: 60
  start-page: 103311
  year: 2021
  ident: S0218127423500876BIB010
  publication-title: Nonlin. Anal.: Real World Appl.
  doi: 10.1016/j.nonrwa.2021.103311
– ident: S0218127423500876BIB025
  doi: 10.1142/S0218127421502497
– volume-title: Spatial Ecology via Reaction–Diffusion Equations
  year: 2003
  ident: S0218127423500876BIB004
– volume: 124
  start-page: 80
  year: 1996
  ident: S0218127423500876BIB003
  publication-title: J. Diff. Eqs.
  doi: 10.1006/jdeq.1996.0003
– volume: 25
  start-page: 1
  year: 2008
  ident: S0218127423500876BIB017
  publication-title: Math. Med. Biol.
  doi: 10.1093/imammb/dqm011
– volume: 268
  start-page: 4618
  year: 2020
  ident: S0218127423500876BIB029
  publication-title: J. Diff. Eqs.
  doi: 10.1016/j.jde.2019.10.036
– volume: 263
  start-page: 7782
  year: 2017
  ident: S0218127423500876BIB001
  publication-title: J. Diff. Eqs.
  doi: 10.1016/j.jde.2017.08.021
– volume: 72
  start-page: 2139
  year: 2010
  ident: S0218127423500876BIB016
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-010-9532-5
– volume-title: Theory and Applications of Partial Functional Differential Equations
  year: 1996
  ident: S0218127423500876BIB028
  doi: 10.1007/978-1-4612-4050-1
– volume: 289
  start-page: 236
  year: 2021
  ident: S0218127423500876BIB008
  publication-title: J. Diff. Eqs.
  doi: 10.1016/j.jde.2021.04.021
– volume: 50
  start-page: 221
  year: 1948
  ident: S0218127423500876BIB013
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/j.1749-6632.1948.tb39854.x
– volume: 244
  start-page: 344
  year: 2014
  ident: S0218127423500876BIB014
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 541
  year: 2021
  ident: S0218127423500876BIB020
  publication-title: Discr. Contin. Dyn. Syst. Ser. B
– volume: 14
  start-page: 1201
  year: 2002
  ident: S0218127423500876BIB033
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/S0960-0779(02)00068-1
– ident: S0218127423500876BIB009
  doi: 10.1142/S0218339020500023
– volume: 165
  start-page: 27
  year: 2000
  ident: S0218127423500876BIB005
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(00)00006-7
– volume: 91
  start-page: 421
  year: 2016
  ident: S0218127423500876BIB007
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2016.07.003
– volume: 148
  start-page: 373
  year: 2022
  ident: S0218127423500876BIB024
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12443
– ident: S0218127423500876BIB021
  doi: 10.1142/S0218127418300045
– volume: 63
  start-page: 655
  year: 2001
  ident: S0218127423500876BIB018
  publication-title: Bull. Math. Biol.
  doi: 10.1006/bulm.2001.0239
– volume: 42
  start-page: 100826
  year: 2020
  ident: S0218127423500876BIB022
  publication-title: Ecol. Compl.
  doi: 10.1016/j.ecocom.2020.100826
– volume: 46
  start-page: 4184
  year: 2023
  ident: S0218127423500876BIB002
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.8749
– ident: S0218127423500876BIB015
  doi: 10.1142/S1793524520500096
– volume: 260
  start-page: 3495
  year: 2016
  ident: S0218127423500876BIB027
  publication-title: J. Diff. Eqs.
  doi: 10.1016/j.jde.2015.10.036
– volume: 316
  start-page: 552
  year: 2022
  ident: S0218127423500876BIB032
  publication-title: J. Diff. Eqs.
  doi: 10.1016/j.jde.2022.01.038
– volume: 7
  start-page: 355
  year: 1937
  ident: S0218127423500876BIB006
  publication-title: Annu. Eugen.
  doi: 10.1111/j.1469-1809.1937.tb02153.x
– volume: 17
  start-page: 367
  year: 2012
  ident: S0218127423500876BIB030
  publication-title: Discr. Contin. Dyn. Syst. Ser. B
– volume: 237
  start-page: 37
  year: 1952
  ident: S0218127423500876BIB026
  publication-title: Philos. Trans. R. Soc. Ser. B
– volume-title: Efficient Solution of MATLAB Differential Equation: Principle and Implementation of Spectral Method
  year: 2015
  ident: S0218127423500876BIB031
– volume-title: Pattern Formation: An Introduction to Methods
  year: 1996
  ident: S0218127423500876BIB012
SSID ssib002487791
ssj0004368
Score 2.383678
Snippet In this paper, we study a delayed host-generalist parasitoid diffusion model subject to homogeneous Dirichlet boundary conditions, where generalist parasitoids...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boundary conditions
Dirichlet problem
Feedback
Hopf bifurcation
Mathematical models
Parameters
Simulation
Steady state
Time lag
Title Spatiotemporal Patterns of a Host-Generalist Parasitoid Reaction–Diffusion Model
URI http://www.worldscientific.com/doi/abs/10.1142/S0218127423500876
https://www.proquest.com/docview/2834856958
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1793-6551
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004368
  issn: 0218-1274
  databaseCode: AMVHM
  dateStart: 19910301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4HDxAaIwkA-cGBIHonrOMlxDFCFNIRgg4lL5Di2Gqlqpqa97LQ7R_5D_hKeP_LRdiDGJYrc5FXte37v5-f3fkboRVEwlkOcIgA2UsKojklexKYyh0WCB1oFha22-Mgn5-zDRXQxGPzoVS2tlvmRvLqxr-R_tApjoFfTJXsLzbZCYQDuQb9wBQ3D9Z90_MWWQ3t2qZmh2zfpvdr1PE6qekk8qzToEj5diBrmb2kaEl07Q1PpMH5bar0yeTN7Ntqsj1jXU4Y9oom81KuFS_i55ripqGxxrfDA1gdXRwKtOt7DLglud0amYk4-9YZPpsr5n-_Tkryp2oqh0me2v6myn6qg5tgI4po1vUcDPEFC6o7lOVLO44KDIDzyrLPeJTtuDG968c2enlG712whitlujiy7XhfWmq38jWjX1iC6jmyabYm4g3YohIhgiHaOT79OTntoJonjtKsgMuT9NoXnf5XfNAehr7eErsOebi2za4lxXfOrqQ3rgZuz-2jXr0rwsTOxPTRQ8310r8dVuY_2fBSo8UtvVIcP0Od1C8SNBeJKY4E3LBB3FogbC_x1_bO1PWxt7yE6f__u7GRC_CkdRI4hzBJYYocFVyLlWnOWi5xJoQCXcg3QW4ZhLnNtUGM8HmuW8FBSiCo5Ax-geKAALT5Cw3k1V48RDlOpJKM0lGHCADYljElYgMCLolAhpyMUNH9iJj2FvTlJZZb9UZkj9Kp95dLxt_zt4YNGM5mfT3UG-JslEU-jZIQON7TVitwS9eQ23_sU3e2mywEaLhcr9Qyw7jJ_7m3wN-8woUU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+Patterns+of+a+Host-Generalist+Parasitoid+Reaction%E2%80%93Diffusion+Model&rft.jtitle=International+journal+of+bifurcation+and+chaos+in+applied+sciences+and+engineering&rft.au=Ma%2C+Zhan-Ping&rft.au=Cheng%2C+Zhi-Bo&rft.au=Liang%2C+Wei&rft.date=2023-06-15&rft.issn=0218-1274&rft.eissn=1793-6551&rft.volume=33&rft.issue=7&rft_id=info:doi/10.1142%2FS0218127423500876&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0218127423500876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1274&client=summon