Dynamic Analysis of a Population Competition Model with Disease in One Species and Group Defense in Another Species

In this paper, we study the dynamics of an ecoepidemic competition system where the individuals of one population gather together in herds with a defensive strategy, showing social behavior, while another predator population is subject to a transmissible disease and behaves individually. By analyzin...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of bifurcation and chaos in applied sciences and engineering Vol. 30; no. 12; p. 2050181
Main Authors Cheng, Xue, Luo, Jianfeng, Zhao, Yi
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 30.09.2020
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0218-1274
1793-6551
DOI10.1142/S0218127420501813

Cover

Abstract In this paper, we study the dynamics of an ecoepidemic competition system where the individuals of one population gather together in herds with a defensive strategy, showing social behavior, while another predator population is subject to a transmissible disease and behaves individually. By analyzing the existence and stability of the equilibria of the system, we find that the relatively isolated population can be eradicated, or the population with group defense can live alone eventually under some constraints. Infected individuals end up in two possible situations. In the first case, the disease is eventually eliminated, meaning that only healthy and group-defense individuals in the system can survive. In the other case, the spread of the disease is controlled and eventually all three individuals can coexist. We also conduct a correlation analysis using competition parameter and recovery rate of disease as birfurcation parameters in order to study the transcritical bifurcation, saddle-node bifurcation and Hopf bifurcation. The long-term dynamics of the boundary and interior equilibria are demonstrated by numerical simulations.
AbstractList In this paper, we study the dynamics of an ecoepidemic competition system where the individuals of one population gather together in herds with a defensive strategy, showing social behavior, while another predator population is subject to a transmissible disease and behaves individually. By analyzing the existence and stability of the equilibria of the system, we find that the relatively isolated population can be eradicated, or the population with group defense can live alone eventually under some constraints. Infected individuals end up in two possible situations. In the first case, the disease is eventually eliminated, meaning that only healthy and group-defense individuals in the system can survive. In the other case, the spread of the disease is controlled and eventually all three individuals can coexist. We also conduct a correlation analysis using competition parameter and recovery rate of disease as birfurcation parameters in order to study the transcritical bifurcation, saddle-node bifurcation and Hopf bifurcation. The long-term dynamics of the boundary and interior equilibria are demonstrated by numerical simulations.
Author Luo, Jianfeng
Zhao, Yi
Cheng, Xue
Author_xml – sequence: 1
  givenname: Xue
  surname: Cheng
  fullname: Cheng, Xue
– sequence: 2
  givenname: Jianfeng
  surname: Luo
  fullname: Luo, Jianfeng
– sequence: 3
  givenname: Yi
  surname: Zhao
  fullname: Zhao, Yi
BookMark eNp9kE9Lw0AQxRepYK39AN4WPEf3X7LJsbRaBaVC9Rw2mwldSXfjbkLptzdt1IMFLzMD7_1mmHeJRtZZQOiakltKBbtbE0ZTyqRgJCb9xM_QmMqMR0kc0xEaH-TooF-gaQimIISJVMqMjlFY7K3aGo1nVtX7YAJ2FVb41TVdrVrjLJ67bQOtOc4vroQa70y7wQsTQAXAxuKVBbxuQBsIWNkSL73rGryACuxgmFnXbsD_mK7QeaXqANPvPkHvD_dv88foebV8ms-eI82p4BHVJBHAiwwyLau-cq5JBYUuGWihSlmWUikmU6V4wolMklgUKk0KyjIV85hP0M2wt_Hus4PQ5h-u8_2fIWdCpDGlJCO9iw4u7V0IHqq88War_D6nJD_Em5_E2zPyD6NNe4yr9crU_5JkIHfO12Xo47CtqYz-PXqKfAGsuI8z
CitedBy_id crossref_primary_10_3934_mbe_2022610
crossref_primary_10_1016_j_matcom_2022_10_016
crossref_primary_10_1016_j_matcom_2021_11_022
crossref_primary_10_1142_S0218127421300251
Cites_doi 10.15388/NA.2016.3.4
10.1016/j.nonrwa.2011.12.014
10.1007/BF00276947
10.1006/tpbi.1999.1414
10.2307/3866
10.1007/978-3-662-07544-9
10.1142/S0218339011004184
10.1093/imammb/19.3.185
10.1016/j.simpat.2013.02.004
10.1016/j.ecocom.2015.02.004
10.1007/s002850000032
10.1016/j.crvi.2007.10.004
10.1016/S0092-8240(86)90004-2
10.1016/S0022-5193(05)80240-1
10.1142/S0218127417501796
10.1016/j.ecolmodel.2014.10.039
10.1016/j.jtbi.2008.03.008
10.1093/biomet/47.3-4.219
10.1016/j.nonrwa.2011.02.002
10.1007/BF00168802
10.1006/jmaa.1994.1079
10.1137/1.9781611970258
ContentType Journal Article
Copyright 2020, World Scientific Publishing Company
2020. World Scientific Publishing Company
Copyright_xml – notice: 2020, World Scientific Publishing Company
– notice: 2020. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0218127420501813
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1793-6551
ExternalDocumentID 10_1142_S0218127420501813
S0218127420501813
GroupedDBID 0R~
4.4
5GY
ABPKU
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
F5P
HZ~
O9-
P2P
P71
RNS
RWJ
AAYXX
AMVHM
CITATION
ID FETCH-LOGICAL-c3143-1c064e3b9e9c7f9e933c0febcd2ec4ad7dd7aa278aa363076654ba86b129a5353
ISSN 0218-1274
IngestDate Mon Jun 30 07:13:47 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Tue Jul 01 03:03:27 EDT 2025
Fri Aug 23 08:19:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords transcritical bifurcation
saddle-node bifurcation
Hopf bifurcation
herd behavior
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3143-1c064e3b9e9c7f9e933c0febcd2ec4ad7dd7aa278aa363076654ba86b129a5353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1664-8613
PQID 2448511090
PQPubID 2049929
ParticipantIDs worldscientific_primary_S0218127420501813
crossref_citationtrail_10_1142_S0218127420501813
crossref_primary_10_1142_S0218127420501813
proquest_journals_2448511090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200930
2020-09-30
PublicationDateYYYYMMDD 2020-09-30
PublicationDate_xml – month: 09
  year: 2020
  text: 20200930
  day: 30
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of bifurcation and chaos in applied sciences and engineering
PublicationYear 2020
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0218127420501813BIB004
S0218127420501813BIB026
S0218127420501813BIB003
S0218127420501813BIB025
S0218127420501813BIB006
S0218127420501813BIB005
S0218127420501813BIB027
Hassard B. D. (S0218127420501813BIB014) 1981
S0218127420501813BIB022
S0218127420501813BIB002
S0218127420501813BIB024
S0218127420501813BIB001
S0218127420501813BIB008
Perko L. (S0218127420501813BIB023) 2000
S0218127420501813BIB007
S0218127420501813BIB009
Malchow H. (S0218127420501813BIB021) 2008
S0218127420501813BIB020
S0218127420501813BIB015
S0218127420501813BIB017
S0218127420501813BIB011
S0218127420501813BIB010
S0218127420501813BIB013
S0218127420501813BIB012
S0218127420501813BIB018
Lotka A. J. (S0218127420501813BIB019) 1956
Holling C. S. (S0218127420501813BIB016) 1986; 98
Wu J. (S0218127420501813BIB028) 2012
References_xml – ident: S0218127420501813BIB005
  doi: 10.15388/NA.2016.3.4
– ident: S0218127420501813BIB007
  doi: 10.1016/j.nonrwa.2011.12.014
– volume-title: Theory and Applications of Partial Functional Differential Equations
  year: 2012
  ident: S0218127420501813BIB028
– ident: S0218127420501813BIB013
  doi: 10.1007/BF00276947
– volume-title: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation
  year: 2008
  ident: S0218127420501813BIB021
– ident: S0218127420501813BIB009
  doi: 10.1006/tpbi.1999.1414
– ident: S0218127420501813BIB002
  doi: 10.2307/3866
– ident: S0218127420501813BIB015
  doi: 10.1007/978-3-662-07544-9
– ident: S0218127420501813BIB026
  doi: 10.1142/S0218339011004184
– ident: S0218127420501813BIB025
  doi: 10.1093/imammb/19.3.185
– ident: S0218127420501813BIB004
  doi: 10.1016/j.simpat.2013.02.004
– ident: S0218127420501813BIB012
  doi: 10.1016/j.ecocom.2015.02.004
– ident: S0218127420501813BIB010
  doi: 10.1007/s002850000032
– ident: S0218127420501813BIB024
  doi: 10.1016/j.crvi.2007.10.004
– ident: S0218127420501813BIB011
  doi: 10.1016/S0092-8240(86)90004-2
– ident: S0218127420501813BIB006
  doi: 10.1016/S0022-5193(05)80240-1
– ident: S0218127420501813BIB020
  doi: 10.1142/S0218127417501796
– volume: 98
  start-page: 1
  year: 1986
  ident: S0218127420501813BIB016
  publication-title: Mem. Entom. Soc. Canad.
– ident: S0218127420501813BIB022
  doi: 10.1016/j.ecolmodel.2014.10.039
– volume-title: Theory and Applications of Hopf Bifurcation
  year: 1981
  ident: S0218127420501813BIB014
– volume-title: Elements of Mathematical Biology
  year: 1956
  ident: S0218127420501813BIB019
– ident: S0218127420501813BIB008
  doi: 10.1016/j.jtbi.2008.03.008
– ident: S0218127420501813BIB017
  doi: 10.1093/biomet/47.3-4.219
– ident: S0218127420501813BIB001
  doi: 10.1016/j.nonrwa.2011.02.002
– volume-title: Differential Equations and Dynamical Systems
  year: 2000
  ident: S0218127420501813BIB023
– ident: S0218127420501813BIB003
  doi: 10.1007/BF00168802
– ident: S0218127420501813BIB018
  doi: 10.1006/jmaa.1994.1079
– ident: S0218127420501813BIB027
  doi: 10.1137/1.9781611970258
SSID ssib002487791
ssj0004368
Score 2.3063293
Snippet In this paper, we study the dynamics of an ecoepidemic competition system where the individuals of one population gather together in herds with a defensive...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2050181
SubjectTerms Competition
Computer simulation
Correlation analysis
Disease control
Hopf bifurcation
Mathematical models
Order parameters
Population
Stability analysis
Title Dynamic Analysis of a Population Competition Model with Disease in One Species and Group Defense in Another Species
URI http://www.worldscientific.com/doi/abs/10.1142/S0218127420501813
https://www.proquest.com/docview/2448511090
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1793-6551
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004368
  issn: 0218-1274
  databaseCode: AMVHM
  dateStart: 19910301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZK9wIP0zZAlA3kBx4YKCO_nTxWlKlCFHjYUMVLZDuOVgmlaG1e-Kf2L-5sXxKXTBPjxaqiqxPlvpzvzufvCHmjykTkPFZezLLYi5M89TgPlMek9DV1pfATfcB58TWdX8afl8lyNLpxqpaarTiTf-48V_I_WoVroFd9SvYBmu0mhQvwG_QLI2gYxn_S8cy2k99hFuHvv3c9uczXriwdkel6hiXpM7sro3Md38DJND3olSVrtsmpmaogvDUC09qc0WqFXGd2N5vocFCIVdVc21ygPTd3xdem7pajz4vrrr2l6ikR-2IDZW3QsumA96Wxm0SAZ3i4TvQnzG3WkZWbwIBoFastWjNpioaMJTPVUW7-bWgTwSPxgtA29jlT1maDifHSBHlr0ajjDRC84d2LRRya7Wrj5bA49A25YdSvjF294kDmEdkLYRnxx2RvuvgxXzgeT8ZY3lcZaYJ_k-bD58aNdbj1h8Gku65RH-_sG_LcTfeGHAfo4oDsY-RCpxaGh2Sk6iPyxOGzPCKHuFJs6FukMz99SjaIUtqilK4rymmPUuqglBqUUo1Siiilq5oCSikCkAJkqEEpRZRqAURpK_SMXJ5_uvg497DVhyejQJPkSnCNVSRylUtWwRhF0q-UkGWoZMxLVpaM85BlnEcpLEu6Z7bgWSrAXeVJlETPybhe1-oFoZwzkacyKFmmIBaACQUXnFVlLgOIdcSE-O1bLiTy4Ot2LL8Ke0Y_LAaKmZB33V9-WxKY-4RPWtUV-OVtCnCidWjj5_6EnP6lzm7KwVQvHyB7TB73H9cJGW-vG_UK_OWteI0YvQV6XL7S
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Analysis+of+a+Population+Competition+Model+with+Disease+in+One+Species+and+Group+Defense+in+Another+Species&rft.jtitle=International+journal+of+bifurcation+and+chaos+in+applied+sciences+and+engineering&rft.au=Cheng%2C+Xue&rft.au=Luo%2C+Jianfeng&rft.au=Zhao%2C+Yi&rft.date=2020-09-30&rft.pub=World+Scientific+Publishing+Company&rft.issn=0218-1274&rft.eissn=1793-6551&rft.volume=30&rft.issue=12&rft_id=info:doi/10.1142%2FS0218127420501813&rft.externalDocID=S0218127420501813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1274&client=summon