Finite Element Formulation for Linear Stability Analysis of Axially Functionally Graded Nonprismatic Timoshenko Beam
An improved approach based on the power series expansions is proposed to exactly evaluate the static and buckling stiffness matrices for the linear stability analysis of axially functionally graded (AFG) Timoshenko beams with variable cross-section and fixed–free boundary condition. Based on the Tim...
Saved in:
Published in | International journal of structural stability and dynamics Vol. 19; no. 2; p. 1950002 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.02.2019
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0219-4554 1793-6764 |
DOI | 10.1142/S0219455419500020 |
Cover
Abstract | An improved approach based on the power series expansions is proposed to exactly evaluate the static and buckling stiffness matrices for the linear stability analysis of axially functionally graded (AFG) Timoshenko beams with variable cross-section and fixed–free boundary condition. Based on the Timoshenko beam theory, the equilibrium equations are derived in the context of small displacements, considering the coupling between the transverse deflection and angle of rotation. The system of stability equations is then converted into a single homogeneous differential equation in terms of bending rotation for the cantilever, which is solved numerically with the help of the power series approximation. All the mechanical properties and displacement components are thus expanded in terms of the power series of a known degree. Afterwards, the shape functions are gained by altering the deformation shape of the AFG nonprismatic Timoshenko beam in a power series form. At the end, the elastic and buckling stiffness matrices are exactly determined by the weak form of the governing equation. The precision and competency of the present procedure in stability analysis are assessed through several numerical examples of axially nonhomogeneous and homogeneous Timoshenko beams with clamped-free ends. Comparison is also made with results obtained using ANSYS and other solutions available, which indicates the correctness of the present method. |
---|---|
AbstractList | An improved approach based on the power series expansions is proposed to exactly evaluate the static and buckling stiffness matrices for the linear stability analysis of axially functionally graded (AFG) Timoshenko beams with variable cross-section and fixed–free boundary condition. Based on the Timoshenko beam theory, the equilibrium equations are derived in the context of small displacements, considering the coupling between the transverse deflection and angle of rotation. The system of stability equations is then converted into a single homogeneous differential equation in terms of bending rotation for the cantilever, which is solved numerically with the help of the power series approximation. All the mechanical properties and displacement components are thus expanded in terms of the power series of a known degree. Afterwards, the shape functions are gained by altering the deformation shape of the AFG nonprismatic Timoshenko beam in a power series form. At the end, the elastic and buckling stiffness matrices are exactly determined by the weak form of the governing equation. The precision and competency of the present procedure in stability analysis are assessed through several numerical examples of axially nonhomogeneous and homogeneous Timoshenko beams with clamped-free ends. Comparison is also made with results obtained using ANSYS and other solutions available, which indicates the correctness of the present method. |
Author | Soltani, Masoumeh Asgarian, Behrouz |
Author_xml | – sequence: 1 givenname: Masoumeh surname: Soltani fullname: Soltani, Masoumeh – sequence: 2 givenname: Behrouz surname: Asgarian fullname: Asgarian, Behrouz |
BookMark | eNp9kMFOAjEQhhuDiYA-gLcmnlc7u8vu9ogE0IToATxvSncai90W2xLl7V3AeNDE02Qy8838-QakZ51FQq6B3QLk6d2SpcDz0SgHPmKMpeyM9KHkWVKURd4j_cM4OcwvyCCETbcBAFmfxJm2OiKdGmzRRjpzvt0ZEbWzVDlPF9qi8HQZxVobHfd0bIXZBx2oU3T8qYUxezrbWXkgjs3ciwYb-uTs1uvQdqckXenWhVe0b47eo2gvybkSJuDVdx2Sl9l0NXlIFs_zx8l4kcgMcpY0GVQsy9S6YU0Ja44SFRZZCkoWCnnVMJSKl2UhUsGhYYznCquyqKTIoRql2ZDcnO5uvXvfYYj1xu18FzPUKVRQ8JR1ioYETlvSuxA8qroL3gq_r4HVB7n1H7kdU_5ipI5Ha9ELbf4l2Yn8cN40QerOulZa_jz9i3wBg6qQAw |
CitedBy_id | crossref_primary_10_1142_S1758825123500874 crossref_primary_10_1016_j_rineng_2022_100395 crossref_primary_10_1016_j_tws_2022_109616 crossref_primary_10_1142_S0219455419501086 crossref_primary_10_1080_13287982_2022_2070958 crossref_primary_10_3390_nano14131144 crossref_primary_10_1016_j_compstruct_2020_112975 crossref_primary_10_1007_s40996_020_00402_z crossref_primary_10_1590_jatm_v15_1315 crossref_primary_10_1007_s11029_020_09859_5 crossref_primary_10_1142_S0219455421500097 crossref_primary_10_28948_ngumuh_994891 crossref_primary_10_1016_j_apm_2019_12_010 crossref_primary_10_1080_15397734_2025_2463007 crossref_primary_10_1007_s11029_024_10190_6 crossref_primary_10_1590_1679_78254665 crossref_primary_10_1080_15397734_2024_2407420 |
Cites_doi | 10.1016/j.jcsr.2013.11.001 10.1016/0045-7949(94)00554-G 10.1016/S0960-0779(00)00009-6 10.1016/0022-460X(80)90320-X 10.1016/j.apacoust.2012.08.003 10.1177/1077546310370691 10.1007/s12205-014-0278-8 10.12989/sem.2013.48.2.195 10.1260/1369-4332.14.2.319 10.1142/S0219455415500078 10.1080/15376490490452669 10.1016/j.jsv.2007.03.038 10.1590/1679-78252159 10.1006/jsvi.2000.2999 10.1016/j.compstruct.2016.10.017 10.1061/(ASCE)0733-9399(1987)113:9(1337) 10.12989/sem.2009.33.4.447 10.1007/s40430-014-0255-7 10.1016/j.compstruct.2016.02.040 10.1007/s10665-017-9937-3 10.1006/jsvi.1995.0490 10.1061/(ASCE)0733-9399(1987)113:10(1454) 10.1016/j.jsv.2009.12.029 10.1006/jsvi.2000.3009 10.1016/j.jsv.2006.02.011 10.1016/j.compositesb.2011.01.017 10.1155/2011/591716 10.1142/S0219455415500170 10.1016/j.tws.2007.08.018 10.1007/s12205-016-0149-6 10.1016/0045-7949(91)90312-A 10.1016/j.compositesb.2016.08.008 10.1016/j.apm.2010.07.006 10.1016/j.compstruct.2015.09.013 10.1016/j.advengsoft.2005.02.003 10.1016/j.jcsr.2004.03.004 10.1142/S0219455412500253 10.1142/S0219455417500778 10.1016/j.tws.2014.04.012 10.1142/S0219455412500575 10.1142/S0219455418500074 10.1007/s00419-014-0820-7 10.1016/j.amc.2016.05.034 10.1016/j.compositesb.2012.09.015 10.1016/j.compositesb.2009.03.001 10.1016/j.compositesb.2013.02.027 10.1080/15376494.2011.640971 10.1007/s40430-016-0701-9 10.1016/j.nonrwa.2007.11.019 10.1007/s00419-012-0689-2 10.1016/j.apm.2012.09.024 |
ContentType | Journal Article |
Copyright | 2019, World Scientific Publishing Company 2019. World Scientific Publishing Company |
Copyright_xml | – notice: 2019, World Scientific Publishing Company – notice: 2019. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0219455419500020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1793-6764 |
ExternalDocumentID | 10_1142_S0219455419500020 S0219455419500020 |
GroupedDBID | 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EJD ESX HZ~ J9A O9- P2P P71 RWJ AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3140-d318033fbd0d71b9ecefe6321fc6fe98d0ecf9776a2a91d0094fe8768ca418523 |
ISSN | 0219-4554 |
IngestDate | Mon Jun 30 09:42:19 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 04:09:03 EDT 2025 Fri Aug 23 08:19:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nonprismatic Timoshenko beam critical buckling load power series method (PSM) axially functionally graded material (AFGM) finite element solution |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3140-d318033fbd0d71b9ecefe6321fc6fe98d0ecf9776a2a91d0094fe8768ca418523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2181692079 |
PQPubID | 2049851 |
ParticipantIDs | crossref_primary_10_1142_S0219455419500020 crossref_citationtrail_10_1142_S0219455419500020 proquest_journals_2181692079 worldscientific_primary_S0219455419500020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190200 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 20190200 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of structural stability and dynamics |
PublicationYear | 2019 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S0219455419500020BIB040 Zienkiewicz O. C. (S0219455419500020BIB051) 2005 S0219455419500020BIB009 S0219455419500020BIB007 S0219455419500020BIB008 S0219455419500020BIB005 S0219455419500020BIB049 S0219455419500020BIB006 S0219455419500020BIB003 S0219455419500020BIB047 S0219455419500020BIB004 S0219455419500020BIB048 S0219455419500020BIB001 S0219455419500020BIB045 S0219455419500020BIB002 S0219455419500020BIB046 S0219455419500020BIB043 S0219455419500020BIB044 S0219455419500020BIB041 S0219455419500020BIB042 Soltani M. (S0219455419500020BIB050) 2016; 2 Wang C. M. (S0219455419500020BIB053) 2005 S0219455419500020BIB018 S0219455419500020BIB019 S0219455419500020BIB016 S0219455419500020BIB017 S0219455419500020BIB014 S0219455419500020BIB015 S0219455419500020BIB012 S0219455419500020BIB013 S0219455419500020BIB010 S0219455419500020BIB054 S0219455419500020BIB011 S0219455419500020BIB055 S0219455419500020BIB029 S0219455419500020BIB027 S0219455419500020BIB028 S0219455419500020BIB025 S0219455419500020BIB026 S0219455419500020BIB023 S0219455419500020BIB024 S0219455419500020BIB021 Logan D. L. (S0219455419500020BIB052) 2007 S0219455419500020BIB022 S0219455419500020BIB020 S0219455419500020BIB038 S0219455419500020BIB039 S0219455419500020BIB036 S0219455419500020BIB037 S0219455419500020BIB034 S0219455419500020BIB035 S0219455419500020BIB032 S0219455419500020BIB033 S0219455419500020BIB030 S0219455419500020BIB031 |
References_xml | – ident: S0219455419500020BIB048 doi: 10.1016/j.jcsr.2013.11.001 – ident: S0219455419500020BIB004 doi: 10.1016/0045-7949(94)00554-G – ident: S0219455419500020BIB007 doi: 10.1016/S0960-0779(00)00009-6 – ident: S0219455419500020BIB001 doi: 10.1016/0022-460X(80)90320-X – volume-title: A First Course in the Finite Element Method year: 2007 ident: S0219455419500020BIB052 – ident: S0219455419500020BIB027 doi: 10.1016/j.apacoust.2012.08.003 – ident: S0219455419500020BIB054 doi: 10.1177/1077546310370691 – ident: S0219455419500020BIB032 doi: 10.1007/s12205-014-0278-8 – ident: S0219455419500020BIB024 doi: 10.12989/sem.2013.48.2.195 – ident: S0219455419500020BIB018 doi: 10.1260/1369-4332.14.2.319 – ident: S0219455419500020BIB038 doi: 10.1142/S0219455415500078 – ident: S0219455419500020BIB008 doi: 10.1080/15376490490452669 – ident: S0219455419500020BIB012 doi: 10.1016/j.jsv.2007.03.038 – ident: S0219455419500020BIB033 doi: 10.1590/1679-78252159 – ident: S0219455419500020BIB009 doi: 10.1006/jsvi.2000.2999 – ident: S0219455419500020BIB040 doi: 10.1016/j.compstruct.2016.10.017 – ident: S0219455419500020BIB002 doi: 10.1061/(ASCE)0733-9399(1987)113:9(1337) – ident: S0219455419500020BIB015 doi: 10.12989/sem.2009.33.4.447 – ident: S0219455419500020BIB031 doi: 10.1007/s40430-014-0255-7 – volume-title: Exact Solutions for Buckling of Structural Members year: 2005 ident: S0219455419500020BIB053 – ident: S0219455419500020BIB034 doi: 10.1016/j.compstruct.2016.02.040 – ident: S0219455419500020BIB044 doi: 10.1007/s10665-017-9937-3 – ident: S0219455419500020BIB005 doi: 10.1006/jsvi.1995.0490 – ident: S0219455419500020BIB045 doi: 10.1061/(ASCE)0733-9399(1987)113:10(1454) – ident: S0219455419500020BIB016 doi: 10.1016/j.jsv.2009.12.029 – ident: S0219455419500020BIB006 doi: 10.1006/jsvi.2000.3009 – ident: S0219455419500020BIB010 doi: 10.1016/j.jsv.2006.02.011 – ident: S0219455419500020BIB019 doi: 10.1016/j.compositesb.2011.01.017 – ident: S0219455419500020BIB021 doi: 10.1155/2011/591716 – ident: S0219455419500020BIB035 doi: 10.1142/S0219455415500170 – ident: S0219455419500020BIB011 doi: 10.1016/j.tws.2007.08.018 – ident: S0219455419500020BIB042 doi: 10.1007/s12205-016-0149-6 – ident: S0219455419500020BIB003 doi: 10.1016/0045-7949(91)90312-A – ident: S0219455419500020BIB037 doi: 10.1016/j.compositesb.2016.08.008 – ident: S0219455419500020BIB020 doi: 10.1016/j.apm.2010.07.006 – ident: S0219455419500020BIB055 doi: 10.1016/j.compstruct.2015.09.013 – ident: S0219455419500020BIB047 doi: 10.1016/j.advengsoft.2005.02.003 – volume: 2 start-page: 57 year: 2016 ident: S0219455419500020BIB050 publication-title: Numer. Methods Civil Eng. – ident: S0219455419500020BIB046 doi: 10.1016/j.jcsr.2004.03.004 – ident: S0219455419500020BIB023 doi: 10.1142/S0219455412500253 – ident: S0219455419500020BIB041 doi: 10.1142/S0219455417500778 – ident: S0219455419500020BIB049 doi: 10.1016/j.tws.2014.04.012 – ident: S0219455419500020BIB025 doi: 10.1142/S0219455412500575 – ident: S0219455419500020BIB043 doi: 10.1142/S0219455418500074 – ident: S0219455419500020BIB030 doi: 10.1007/s00419-014-0820-7 – ident: S0219455419500020BIB036 doi: 10.1016/j.amc.2016.05.034 – ident: S0219455419500020BIB017 doi: 10.1016/j.compositesb.2012.09.015 – volume-title: The Finite Element Method for Solid and Structural Mechanics year: 2005 ident: S0219455419500020BIB051 – ident: S0219455419500020BIB014 doi: 10.1016/j.compositesb.2009.03.001 – ident: S0219455419500020BIB029 doi: 10.1016/j.compositesb.2013.02.027 – ident: S0219455419500020BIB022 doi: 10.1080/15376494.2011.640971 – ident: S0219455419500020BIB039 doi: 10.1007/s40430-016-0701-9 – ident: S0219455419500020BIB013 doi: 10.1016/j.nonrwa.2007.11.019 – ident: S0219455419500020BIB028 doi: 10.1007/s00419-012-0689-2 – ident: S0219455419500020BIB026 doi: 10.1016/j.apm.2012.09.024 |
SSID | ssj0021113 |
Score | 2.2484555 |
Snippet | An improved approach based on the power series expansions is proposed to exactly evaluate the static and buckling stiffness matrices for the linear stability... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1950002 |
SubjectTerms | Beam theory (structures) Boundary conditions Deformation Differential equations Elastic buckling Equilibrium equations Finite element method Free boundaries Functionally gradient materials Matrix methods Mechanical properties Nonlinear programming Power series Rotation Shape functions Stability analysis Stiffness matrix Timoshenko beams |
Title | Finite Element Formulation for Linear Stability Analysis of Axially Functionally Graded Nonprismatic Timoshenko Beam |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0219455419500020 https://www.proquest.com/docview/2181692079 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1793-6764 dateEnd: 20241005 omitProxy: false ssIdentifier: ssj0021113 issn: 0219-4554 databaseCode: ADMLS dateStart: 20010301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHiqcIFLQHLmC5rNfOOj6m0FAh0ktbqTfL3gdFpDbCQSL9H_xfZh_ebJqCKBcrtpxZJ_PtzOx65huEXk1SDtCpWawAEHEmqYIpJWUsBJlITlM1pro4eX7Mjs6yj-fj88HgV5C19GNZ7_OrG-tK_kercA30qqtkb6FZLxQuwGfQLxxBw3D8Jx3PvuiIMTq0KeDRDOJP143LZA_COlPT9EA8aTJgVxsMJNOf8HyLVTQDx2b3A-Hkw_dKQAR63DaGHtGwuWptdhey-dpGB7K6DKPZze3EgITCstIaRo_Oj6636MWqqS6DBPuTdrG0XaWiedW1YCj99vS0-wzreLs_eyB1O6GrcItCV0X5dA9rycAsxtnYskXvS2tpwTDELLcU5t4UFwHkaGBXdbNaYkqzb7D5GTVvnWEQPYa7lawdXP9S_5rf89mItjabllsi7qAdmjNGh2hn-n7-6cSv5MFBmNSF_ne51-Ug5O2WkM2AZ72K2TWUuLbsVWeFBWHN6X2069YjeGrB9QANZPMQ3QtYKh-hpYUZdjDDAcwwwAxbmGEPM9zDDLcKO5jhEGbYwgyHMMNrmGENs8fobHZ4-u4ods06Yp7qFGEBzoGkqaoFEXlSF5JLJVlKE8WZksVEEMkVLDZYRasiETqjVUlwxRNeaf4kmj5Bw6Zt5FOE1RhOC5JWXPJMMV7LWuU10TRKSaIKMUKk_0dL7pjsdUOVRflHTY7QG_-Vb5bG5W837_VqKt3U6UodCrOCkrwYodfXVOdFbol6dptxn6O769mzh4YwVeULCHmX9UsHwN-kmKsi |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+Element+Formulation+for+Linear+Stability+Analysis+of+Axially+Functionally+Graded+Nonprismatic+Timoshenko+Beam&rft.jtitle=International+journal+of+structural+stability+and+dynamics&rft.au=Soltani%2C+Masoumeh&rft.au=Asgarian%2C+Behrouz&rft.date=2019-02-01&rft.issn=0219-4554&rft.eissn=1793-6764&rft.volume=19&rft.issue=2&rft.spage=1950002&rft_id=info:doi/10.1142%2FS0219455419500020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0219455419500020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-4554&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-4554&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-4554&client=summon |