LDSVM: Leukemia Cancer Classification Using Machine Learning

Leukemia is blood cancer, including bone marrow and lymphatic tissues, typically involving white blood cells. Leukemia produces an abnormal amount of white blood cells compared to normal blood. Deoxyribonucleic acid (DNA) microarrays provide reliable medical diagnostic services to help more patients...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 71; no. 2; pp. 3887 - 3903
Main Authors Karim, Abdul, Azhari, Azhari, Shahroz, Mobeen, Brahim Belhaouri, Samir, Mustofa, Khabib
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2022
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2022.021218

Cover

Abstract Leukemia is blood cancer, including bone marrow and lymphatic tissues, typically involving white blood cells. Leukemia produces an abnormal amount of white blood cells compared to normal blood. Deoxyribonucleic acid (DNA) microarrays provide reliable medical diagnostic services to help more patients find the proposed treatment for infections. DNA microarrays are also known as biochips that consist of microscopic DNA spots attached to a solid glass surface. Currently, it is difficult to classify cancers using microarray data. Nearly many data mining techniques have failed because of the small sample size, which has become more critical for organizations. However, they are not highly effective in improving results and are frequently employed by doctors for cancer diagnosis. This study proposes a novel method using machine learning algorithms based on microarrays of leukemia GSE9476 cells. The main aim was to predict the initial leukemia disease. Machine learning algorithms such as decision tree (DT), naive bayes (NB), random forest (RF), gradient boosting machine (GBM), linear regression (LinR), support vector machine (SVM), and novel approach based on the combination of Logistic Regression (LR), DT and SVM named as ensemble LDSVM model. The k-fold cross-validation and grid search optimization methods were used with the LDSVM model to classify leukemia in patients and comparatively analyze their impacts. The proposed approach evaluated better accuracy, precision, recall, and f1 scores than the other algorithms. Furthermore, the results were relatively assessed, which showed LDSVM performance. This study aims to successfully predict leukemia in patients and enhance prediction accuracy in minimum time. Moreover, a Synthetic minority oversampling technique (SMOTE) and Principal compenent analysis (PCA) approaches were implemented. This makes the records generalized and evaluates the outcomes well. PCA reduces the feature count without losing any information and deals with class imbalanced datasets, as well as faster model execution along with less computation cost. In this study, a novel process was used to reduce the column results to develop a faster and more rapid experiment execution.
AbstractList Leukemia is blood cancer, including bone marrow and lymphatic tissues, typically involving white blood cells. Leukemia produces an abnormal amount of white blood cells compared to normal blood. Deoxyribonucleic acid (DNA) microarrays provide reliable medical diagnostic services to help more patients find the proposed treatment for infections. DNA microarrays are also known as biochips that consist of microscopic DNA spots attached to a solid glass surface. Currently, it is difficult to classify cancers using microarray data. Nearly many data mining techniques have failed because of the small sample size, which has become more critical for organizations. However, they are not highly effective in improving results and are frequently employed by doctors for cancer diagnosis. This study proposes a novel method using machine learning algorithms based on microarrays of leukemia GSE9476 cells. The main aim was to predict the initial leukemia disease. Machine learning algorithms such as decision tree (DT), naive bayes (NB), random forest (RF), gradient boosting machine (GBM), linear regression (LinR), support vector machine (SVM), and novel approach based on the combination of Logistic Regression (LR), DT and SVM named as ensemble LDSVM model. The k-fold cross-validation and grid search optimization methods were used with the LDSVM model to classify leukemia in patients and comparatively analyze their impacts. The proposed approach evaluated better accuracy, precision, recall, and f1 scores than the other algorithms. Furthermore, the results were relatively assessed, which showed LDSVM performance. This study aims to successfully predict leukemia in patients and enhance prediction accuracy in minimum time. Moreover, a Synthetic minority oversampling technique (SMOTE) and Principal compenent analysis (PCA) approaches were implemented. This makes the records generalized and evaluates the outcomes well. PCA reduces the feature count without losing any information and deals with class imbalanced datasets, as well as faster model execution along with less computation cost. In this study, a novel process was used to reduce the column results to develop a faster and more rapid experiment execution.
Author Brahim Belhaouri, Samir
Mustofa, Khabib
Shahroz, Mobeen
Karim, Abdul
Azhari, Azhari
Author_xml – sequence: 1
  givenname: Abdul
  surname: Karim
  fullname: Karim, Abdul
– sequence: 2
  givenname: Azhari
  surname: Azhari
  fullname: Azhari, Azhari
– sequence: 3
  givenname: Mobeen
  surname: Shahroz
  fullname: Shahroz, Mobeen
– sequence: 4
  givenname: Samir
  surname: Brahim Belhaouri
  fullname: Brahim Belhaouri, Samir
– sequence: 5
  givenname: Khabib
  surname: Mustofa
  fullname: Mustofa, Khabib
BookMark eNqFjztPwzAUhS1UJNrCzhiJOcW-TkyCWFB4SqkYoKyWc7HBJXWKnQj135M2DIgBpvvQOUfnm5CRa5wm5JjRGQdBk1Nc4QwowIwCA5btkTFLExEDgBj92A_IJIQlpVzwnI7JRXn1-Dw_j0rdveuVVVGhHGofFbUKwRqLqrWNixbButdorvDNOt2LlXf945DsG1UHffQ9p2Rxc_1U3MXlw-19cVnGyBlvYwMpcqR4llBVGYMMcxCmUlmiUlAiryhCf0CWc-A6Y0blQr8gYG5SzCvDp4QNuZ1bq82nqmu59nal_EYyKnf4sseXW3w54Peek8Gz9s1Hp0Mrl03nXV9TgmCpyBKeblViUKFvQvDaSLTtDrn1ytZ_xdNfxn8bfQEDHnwx
CitedBy_id crossref_primary_10_1155_2023_1406545
crossref_primary_10_1038_s41598_022_25109_1
Cites_doi 10.1016/j.csbj.2014.11.005
10.14257/ijbsbt.2013.5.5.25
10.1007/BF00058655
10.24996/ijs.2021.62.4.28
10.1021/ci034160g
10.3390/e21111078
10.9790/0661-1553944
10.1080/00207721.2011.617888
10.1371/journal.pone.0226115
10.3233/THC-151071
10.1186/1471-2105-7-387
10.1155/2021/6658192
10.1016/j.eswa.2021.115311
10.5121/mlaij.2016.3201
10.1007/s11749-016-0481-7
10.3390/a13080202
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2022.021218
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 3903
ExternalDocumentID 10.32604/cmc.2022.021218
10_32604_cmc_2022_021218
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c313t-f25c3c0c740abffc1c926fba84a52a69b0c2a84289323e81fa96edc2c9f5c9bf3
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Sun Oct 26 03:37:36 EDT 2025
Sun Jun 29 13:14:17 EDT 2025
Wed Oct 01 02:39:00 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-f25c3c0c740abffc1c926fba84a52a69b0c2a84289323e81fa96edc2c9f5c9bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2615684358?pq-origsite=%requestingapplication%&accountid=15518
PQID 2615684358
PQPubID 2048737
PageCount 17
ParticipantIDs unpaywall_primary_10_32604_cmc_2022_021218
proquest_journals_2615684358
crossref_citationtrail_10_32604_cmc_2022_021218
crossref_primary_10_32604_cmc_2022_021218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Ali (ref16) 2013; 5
Kourou (ref13) 2015; 13
Rustam (ref22) 2019; 21
Rajeswari (ref5) 2015; 2
Shajahaan (ref11) 2013; 3
Laosai (ref18) 2014
Shaheen (ref33) 2021; 2021
Vasighizaker (ref1) 2019; 14
Chandrasekar (ref10) 2013; 15
Breiman (ref25) 1996; 24
Awada (ref29) 2021; 2021
Suji (ref9) 2013; 2
Hossain (ref30) 2021; 1309
Karim (ref19) 2020; 13
Svetnik (ref23) 2003; 43
Fauzi (ref28) 2021; 1725
Das (ref34) 2021; 183
Ancona (ref12) 2006; 7
Biau (ref24) 2016; 25
Elsayad (ref27) 2010; 10
Du (ref21) 2013; 44
Morovvat (ref17) 2016; 3
Mahdi (ref31) 2021; 62
Pal (ref26) 2007; 36
Alrefai (ref15) 2019; 14
Sharma (ref32) 2021; 12
Oprea (ref7) 2014; 2344
Montazeri (ref14) 2016; 24
Maria (ref3) 2020; 9
Tomar (ref20) 2013; 5
Esmail (ref4) 2016; 10
Madhukar (ref6) 2012
Nall (ref2) 2020
Pujari (ref8) 2012; 2
References_xml – volume: 10
  start-page: 842
  year: 2016
  ident: ref4
  article-title: Predication model for leukemia diseases based on data mining classification algorithms with best accuracy
  publication-title: International Journal of Computer and Information Engineering
– volume: 13
  start-page: 8
  year: 2015
  ident: ref13
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2014.11.005
– volume: 12
  start-page: 3509
  year: 2021
  ident: ref32
  article-title: Modified method of diagnosis of blood cancer using MRI classification through machine learning
  publication-title: Turkish Journal of Computer and Mathematics Education
– volume: 5
  start-page: 241
  year: 2013
  ident: ref20
  article-title: A survey on data mining approaches for healthcare
  publication-title: International Journal of Bio-Science and Bio-Technology
  doi: 10.14257/ijbsbt.2013.5.5.25
– volume: 24
  start-page: 123
  year: 1996
  ident: ref25
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 2344
  start-page: 249
  year: 2014
  ident: ref7
  article-title: Performance evaluation of the data mining classification methods
  publication-title: Information Society and Sustainable Development
– volume: 2
  start-page: 380
  year: 2012
  ident: ref8
  article-title: Improving classification accuracy by using feature selection and ensemble model
  publication-title: International Journal of Soft Computing and Engineering (IJSCE)
– volume: 5
  start-page: 176
  year: 2013
  ident: ref16
  article-title: Classification with class imbalance problem
  publication-title: International Journal Advances in Soft Computing and its Applications
– volume: 14
  start-page: 4077
  year: 2019
  ident: ref15
  article-title: Ensemble machine learning for leukemia cancer diagnosis based on microarray datasets
  publication-title: International Journal of Applied Engineering Research
– volume: 62
  start-page: 1321
  year: 2021
  ident: ref31
  article-title: Enhanced supervised principal component analysis for cancer classification
  publication-title: Iraqi Journal of Science
  doi: 10.24996/ijs.2021.62.4.28
– volume: 43
  start-page: 1947
  year: 2003
  ident: ref23
  article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci034160g
– volume: 21
  start-page: 1078
  year: 2019
  ident: ref22
  article-title: Tweets classification on the base of sentiments for US airline companies
  publication-title: Entropy
  doi: 10.3390/e21111078
– year: 2020
  ident: ref2
  publication-title: What to Know about Cancer
– volume: 3
  start-page: 362
  year: 2013
  ident: ref11
  article-title: Application of data mining techniques to model breast cancer data
  publication-title: International Journal of Emerging Technology and Advanced Engineering
– volume: 2021
  year: 2021
  ident: ref29
  publication-title: Blood
– volume: 2
  start-page: 3759
  year: 2013
  ident: ref9
  article-title: An automatic oral cancer classification using data mining techniques
  publication-title: International Journal of Advanced Research in Computer and Communication Engineering
– volume: 15
  start-page: 39
  year: 2013
  ident: ref10
  article-title: Performance and evaluation of data mining techniques in cancer diagnosis
  publication-title: IOSR Journal of Computer Engineering
  doi: 10.9790/0661-1553944
– volume: 44
  start-page: 556
  year: 2013
  ident: ref21
  article-title: Demand forecasting of perishable farm products using support vector machine
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2011.617888
– start-page: 1
  year: 2014
  ident: ref18
  article-title: Acute leukemia classification by using SVM and K-Means clustering
– volume: 14
  start-page: 2
  year: 2019
  ident: ref1
  article-title: A novel one-class classification approach to accurately predict disease-gene association in acute myeloid leukemia cancer
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0226115
– volume: 24
  start-page: 31
  year: 2016
  ident: ref14
  article-title: Machine learning models in breast cancer survival prediction
  publication-title: Technology and Health Care
  doi: 10.3233/THC-151071
– volume: 1309
  start-page: 723
  year: 2021
  ident: ref30
  article-title: An effective leukemia prediction technique using supervised machine learning classification algorithm
– volume: 1725
  start-page: 12012
  year: 2021
  ident: ref28
  article-title: Multiclass classification of leukemia cancer data using fuzzy support vector machine (fsvm) with feature selection using principal component analysis (PCA)
  publication-title: Journal of Physics: Conference Series
– volume: 36
  start-page: 258
  year: 2007
  ident: ref26
  article-title: Ensemble learning with decision tree for remote sensing classification
  publication-title: World Academy of Science, Engineering and Technology
– volume: 7
  start-page: 1
  year: 2006
  ident: ref12
  article-title: On the statistical assessment of classifiers using DNA microarray data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-387
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref33
  article-title: Acute myeloid leukemia (AML) detection using alexnet model
  publication-title: Hindawi Complexity
  doi: 10.1155/2021/6658192
– volume: 183
  start-page: 1
  year: 2021
  ident: ref34
  article-title: An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115311
– volume: 9
  start-page: 267
  year: 2020
  ident: ref3
  article-title: Machine learning algorithms for diagnosis of leukemia
  publication-title: International Journal of Scientific & Technology Research
– volume: 2
  start-page: 42
  year: 2015
  ident: ref5
  article-title: Survey on data mining algorithms to predict leukemia types
  publication-title: International Journal for Research in Science Engineering & Technology
– volume: 3
  start-page: 1
  year: 2016
  ident: ref17
  article-title: An ensemble of filters and wrappers for microarray data classification
  publication-title: Machine Learning and Applications: An International Journal
  doi: 10.5121/mlaij.2016.3201
– volume: 25
  start-page: 197
  year: 2016
  ident: ref24
  article-title: A random forest guided tour
  publication-title: Test
  doi: 10.1007/s11749-016-0481-7
– start-page: 433
  year: 2012
  ident: ref6
  article-title: Deterministic model for acute myelogenous leukemia classification
– volume: 13
  start-page: 202
  year: 2020
  ident: ref19
  article-title: Methodology for analyzing the traditional algorithms performance of user reviews using machine learning techniques
  publication-title: Algorithms
  doi: 10.3390/a13080202
– volume: 10
  start-page: 13
  year: 2010
  ident: ref27
  article-title: Diagnosis of erythemato-squamous diseases using ensemble of data mining methods
  publication-title: ICGST-BIME Journal
SSID ssj0036390
Score 2.3052695
Snippet Leukemia is blood cancer, including bone marrow and lymphatic tissues, typically involving white blood cells. Leukemia produces an abnormal amount of white...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3887
SubjectTerms Accuracy
Algorithms
Biochips
Bone marrow
Cancer
Classification
Data mining
Decision trees
Deoxyribonucleic acid
DNA
DNA chips
Leukemia
Leukocytes
Machine learning
Optimization
Oversampling
Physicians
Support vector machines
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsQwFA06Llz5FkdUsnCj0Gmb1zTiRnwg4oigI7oq6U0i4lgHnVH0603aVMWF4q6laWhzbtpz25tzENp0nEMC4Trq6sREjFOIMqKTKKHW81PNWGXf1jsTx312cs2vJ1DcrIXxZZVevTQ8_-tVDQ8Qv3TTksTMxZeIh9pOoinBHfluoan-2fneTaWKykRESPVFL2yT8GPSUZSE-W5cPkhIx6uae5OP7y-iL3Y5PS6H6u1VDQbfXjRHs-i8ucS6vuS-Mx4VHXj_od74j3uYQzOBdOK9Okrm0YQpF9BsY-iAw_xeRLunBxdXvR18asb35uFO4X0fE0-4cs70NUUVjLgqM8C9qgzT4KDQeruE-keHl_vHUbBXiICmdBRZwoFCAl2WqMJaSEESYQuVMcWJErJIgLgdl5FRQk2WWiWF0UBAWg6ysHQZtcrH0qwgrKUiUieZpuD9r4wEIaEAy1PjQDCmjeJmrHMI2uPeAmOQuxykQid3A5R7dPIanTba-jxjWOtu_NJ2rYEvDzPwOXeZIReZI4Pu8PYnpH_2tfqfxmuoNXoam3VHS0bFRgjFD14a3sA
  priority: 102
  providerName: Unpaywall
Title LDSVM: Leukemia Cancer Classification Using Machine Learning
URI https://www.proquest.com/docview/2615684358
https://www.techscience.com/cmc/v71n2/45786/pdf
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NS8QwEB10PejFb3H9IgcvCnG7SVMbUcRPRNxF1BU9lXSSiLiuq-4i_nuTtFVPeiqFNIc3TeYlmbwHsO44h0QmNN3WkaGx4EhTpiMacev5qY7jYN_Waidnnfj8TtyNQLu6C-PLKqs5MUzU-gX9HnnDMX2RpC65p_v9V-pdo_zpamWhoUprBb0XJMZGYYx5ZawajB2etC-vqrmZu3wcrkiKOKHMZbfi4NJRmChu4LOXNGRsy6ueexOQ34nqh32OD3t99fmhut1fieh0GiZLBkkOipDPwIjpzcJU5c5AysE6B7sXx9e3rR1yYYZP5vlRkSMf4DcSbDB9gVCICQk1A6QVaioNKeVWH-ahc3pyc3RGS68EirzJB9QygRwj3I4jlVuLTZQssblKYyWYSmQeIXMvbnnFGTdp0yqZGI0MpRUoc8sXoNZ76ZlFIFoqJnWUao7ezMpITCTmaEXTOK5mTB0aFTAZlkLi3s-im7kFRYAyc1BmHsqsgLIOG99f9AsRjT_arlRYZ-Vwes9-gl-HzW_8_-1r6e--lmHCNy42VFagNngbmlVHMQb5WvnfuGenfXlw_wXbEc4R
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RONBL3xWhtPWhPVDJzcaPZY1AVctDAZKoagFxW7xju0INIYVEiD_Hb8P2eoETPXFcaT2Hb2dnvrHH8wF88pxDIZOGrpjMUiE50oKZjGbcBX5qhIjybf1B3j0Qu0fyaAaum7swoa2yiYkxUJszDHvkbc_0ZV745F58G_-jQTUqnK42Eho6SSuY9ThiLF3s2LNXl76Eu1jf2fTf-zNj21v7G12aVAYo8g6fUMckcsxwRWS6cg47qFjuKl0ILZnOVZUh8w--MOGM26LjtMqtQYbKSVSV497uE5gTXChf_M392Br8_NXkAu7zf7ySKUVOmc-m9UGpp0yZaONpGKHI2NcwZT2IjtxPjHdsd346GuurSz0c3kt82y_gWWKs5HvtYi9hxo5ewfNGDYKk4PAa1nqbvw_7q6Rnp3_t6YkmG8GhzkmU3QwNSdEHSOxRIP3Yw2lJGu_65w0cPApqb2F2dDayC0CM0kyZrDAcg3iWVZgrrNDJjvXc0NoWtBtgSkyDy4N-xrD0BUyEsvRQlgHKsoayBcu3K8b10I4H3l1qsC7T73tR3jlbC77c4v9fW4sP2_oI8939fq_s7Qz23sHTsLDezFmC2cn51L739GZSfUg-ROD4sd32BtLyCwI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsQwFA06Llz5FkdUsnCj0Gmb1zTiRnwg4oigI7oq6U0i4lgHnVH0603aVMWF4q6laWhzbtpz25tzENp0nEMC4Trq6sREjFOIMqKTKKHW81PNWGXf1jsTx312cs2vJ1DcrIXxZZVevTQ8_-tVDQ8Qv3TTksTMxZeIh9pOoinBHfluoan-2fneTaWKykRESPVFL2yT8GPSUZSE-W5cPkhIx6uae5OP7y-iL3Y5PS6H6u1VDQbfXjRHs-i8ucS6vuS-Mx4VHXj_od74j3uYQzOBdOK9Okrm0YQpF9BsY-iAw_xeRLunBxdXvR18asb35uFO4X0fE0-4cs70NUUVjLgqM8C9qgzT4KDQeruE-keHl_vHUbBXiICmdBRZwoFCAl2WqMJaSEESYQuVMcWJErJIgLgdl5FRQk2WWiWF0UBAWg6ysHQZtcrH0qwgrKUiUieZpuD9r4wEIaEAy1PjQDCmjeJmrHMI2uPeAmOQuxykQid3A5R7dPIanTba-jxjWOtu_NJ2rYEvDzPwOXeZIReZI4Pu8PYnpH_2tfqfxmuoNXoam3VHS0bFRgjFD14a3sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LDSVM%3A+Leukemia+Cancer+Classification+Using+Machine+Learning&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Karim%2C+Abdul&rft.au=Azhari%2C+Azhari&rft.au=Shahroz%2C+Mobeen&rft.au=Brahim+Belhaouri%2C+Samir&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=2&rft.spage=3887&rft.epage=3903&rft_id=info:doi/10.32604%2Fcmc.2022.021218&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_021218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon