Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube

A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" dispersion equation is derived with the Maxwell equations by using the variable separation...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 3; pp. 424 - 427
Main Author 何昉明 谢文球 罗积润 朱敏 郭炜
Format Journal Article
LanguageEnglish
Published 01.03.2016
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/25/3/038401

Cover

More Information
Summary:A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" dispersion equation is derived with the Maxwell equations by using the variable separation method and the field-matching method. Through numerical calculations, the effects of the electron beam parameters and the staggered angle between adjacent walls on the linear gain are analyzed.
Bibliography:double-slot coupled cavity slow-wave structure, beam-wave interaction, field matching method,small signal gain
A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" dispersion equation is derived with the Maxwell equations by using the variable separation method and the field-matching method. Through numerical calculations, the effects of the electron beam parameters and the staggered angle between adjacent walls on the linear gain are analyzed.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/25/3/038401