Intelligent Prediction Approach for Diabetic Retinopathy Using Deep learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new met...
Saved in:
| Published in | Computers, materials & continua Vol. 66; no. 2; pp. 1613 - 1629 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
01.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1546-2226 1546-2218 1546-2226 |
| DOI | 10.32604/cmc.2020.013443 |
Cover
| Abstract | Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses. The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy. The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers. The feature loss factor increases the label value to identify the patterns with the kernel-based matching. The performance of the proposed model is compared with the related methods of DREAM, KNN, GD-CNN and SVM. Experimental results show that the proposed CNN performs better. |
|---|---|
| AbstractList | Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses. The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy. The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers. The feature loss factor increases the label value to identify the patterns with the kernel-based matching. The performance of the proposed model is compared with the related methods of DREAM, KNN, GD-CNN and SVM. Experimental results show that the proposed CNN performs better. |
| Author | Golden Julie, E. Shanmuganathan, Vimal Nam, Yunyoung Rho, Seungmin Arun Sampaul Thomas, G. Harold Robinson, Y. |
| Author_xml | – sequence: 1 givenname: G. surname: Arun Sampaul Thomas fullname: Arun Sampaul Thomas, G. – sequence: 2 givenname: Y. surname: Harold Robinson fullname: Harold Robinson, Y. – sequence: 3 givenname: E. surname: Golden Julie fullname: Golden Julie, E. – sequence: 4 givenname: Vimal surname: Shanmuganathan fullname: Shanmuganathan, Vimal – sequence: 5 givenname: Seungmin surname: Rho fullname: Rho, Seungmin – sequence: 6 givenname: Yunyoung surname: Nam fullname: Nam, Yunyoung |
| BookMark | eNqFkMtuFDEQRS0UJJLAnqUl1jP41e6e5TDhESlAhMjaqvZj2sFjN7abaD6Fv6UnzQKxgE3dKqnuVdW5QGcxRYvQS0rWnEkiXuuDXjPCyJpQLgR_gs5pI-SKMSbP_uifoYtS7gnhkm_IOfp5HasNwe9trPg2W-N19Sni7TjmBHrALmV85aG31Wv8Za4xjVCHI74rPu7xlbUjDhZyPE1voFiDdyn-SGE65UDAn-yUH6U-pPyt4G3Yp-zrcMD9EX-0EAtObkkGfDukmvYZxqE8R08dhGJf_NZLdPfu7dfdh9XN5_fXu-3NSnPK68r0Qor5MUPajXMbDYI4Rx3nLZUUjGiII502hBnXOmiskU0Pbc9EZ03TCc0vEV1ypzjC8QFCUGP2B8hHRYl6ZKtmturEVi1sZ8-rxTND-j7ZUtV9mvL8bVFMyKbbNLxr5y25bOmcSsnWKe0rnLDUDD78K578ZfzvRb8A6IKfsQ |
| CitedBy_id | crossref_primary_10_32604_cmc_2022_023670 crossref_primary_10_1108_WJE_06_2021_0324 crossref_primary_10_1108_WJE_06_2021_0348 crossref_primary_10_1109_ACCESS_2023_3348145 crossref_primary_10_3233_JHS_210667 crossref_primary_10_32604_iasc_2021_019194 crossref_primary_10_1038_s41598_025_92510_x crossref_primary_10_32604_cmc_2021_014370 crossref_primary_10_1016_j_mex_2025_103185 crossref_primary_10_1142_S0219467824500323 crossref_primary_10_1007_s11063_021_10495_w crossref_primary_10_1007_s11227_021_03994_z crossref_primary_10_1109_TNNLS_2023_3326283 crossref_primary_10_1007_s11227_021_03757_w |
| Cites_doi | 10.1001/jama.2017.18152 10.1016/j.patcog.2018.11.032 10.1016/j.compbiomed.2015.05.019 10.1109/JBHI.2013.2294635 10.5120/5503-7503 10.3390/jcm9051462 10.1016/j.ophtha.2017.02.008 10.1007/s00500-020-04753-7 10.1167/tvst.7.1.4 10.1001/jama.2016.17216 10.1016/j.cmpb.2017.10.017 10.1167/tvst.6.4.9 10.1016/j.ophtha.2009.07.044 10.1016/j.neucom.2019.02.016 10.2337/db09-1216 10.1016/j.compbiomed.2017.01.018 10.3390/electronics9091337 10.1007/s11042-020-09217-6 10.1109/TBME.2017.2752701 10.5120/19540-9686 10.1016/j.artmed.2019.07.002 10.1016/j.neucom.2014.07.059 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.32604/cmc.2020.013443 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 1629 |
| ExternalDocumentID | 10.32604/cmc.2020.013443 10_32604_cmc_2020_013443 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c313t-db464222d079ff9ca40ff1f337161ad450f08cd02df7fa5ed65ba7b248ed584c3 |
| IEDL.DBID | BENPR |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Sun Sep 07 11:28:52 EDT 2025 Mon Jun 30 05:08:42 EDT 2025 Wed Oct 01 04:24:08 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-db464222d079ff9ca40ff1f337161ad450f08cd02df7fa5ed65ba7b248ed584c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2465895387?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2465895387 |
| PQPubID | 2048737 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2020_013443 proquest_journals_2465895387 crossref_citationtrail_10_32604_cmc_2020_013443 crossref_primary_10_32604_cmc_2020_013443 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2021 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Cao (ref32) 2019; 78 Lim (ref36) 2010; 117 Devarajan (ref41) 2020; 24 Roychowdhury (ref43) 2014; 18 Klein (ref2) 1995 Xie (ref17) 2017 Wang (ref38) 2018; 7 Melinscak (ref25) 2015; 1 Li (ref31) 2019; 72 Costa (ref21) 2018 Gulshan (ref5) 2016; 316 Krizhevsky (ref13) 2012 Wang (ref23) 2014; 149 Liu (ref19) 2019; 99 Murugan (ref40) 2020; 79 Orlando (ref10) 2018; 153 ref24 Gulshan (ref34) 2016; 316 Zhang (ref3) 2017 Xiao (ref9) 2017 ref20 Jiang (ref33) 2019; 88 ref42 Ra (ref11) 2020; 9 Huang (ref14) 2017 Zhou (ref7) 2017 Liu (ref39) 2019 Priya (ref28) 2012; 41 Mookiah (ref4) 2015; 63 Adal (ref22) 2017; 65 Hu (ref18) 2018 Giraddi (ref29) 2015; 111 Baniasadi (ref37) 2017; 6 Gargeya (ref35) 2017; 124 Zhang (ref8) 2017 Lachure (ref27) 2015 Ting (ref12) 2017; 318 Carlos (ref30) 2019; 340 White (ref1) 2010; 59 Burlina (ref6) 2017; 82 Joly (ref15) 2015 Luo (ref26) 2020; 9 Khalifa (ref16) 2018 |
| References_xml | – volume: 318 start-page: 2211 year: 2017 ident: ref12 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – volume: 88 start-page: 321 year: 2019 ident: ref33 article-title: Class-specific attribute weighted naive Bayes publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.11.032 – ident: ref20 – volume: 1 start-page: 577 year: 2015 ident: ref25 article-title: Retinal vessel segmentation using deep neural networks publication-title: VISAPP – start-page: 3900 year: 2017 ident: ref3 article-title: PolyNet: A pursuit of structural diversity in very deep networks – volume: 63 start-page: 208 year: 2015 ident: ref4 article-title: Local configuration pattern features for age-related macular degeneration characterization and classification publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2015.05.019 – volume: 18 start-page: 1717 year: 2014 ident: ref43 article-title: DREAM: diabetic retinopathy analysis using machine learning publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2013.2294635 – ident: ref24 – volume: 41 start-page: 6 year: 2012 ident: ref28 article-title: SVM and neural network based diagnosis of diabetic retinpathy publication-title: International Journal of Computer Applications doi: 10.5120/5503-7503 – start-page: 1097 year: 2012 ident: ref13 article-title: Imagenet classification with deep convolutional neural networks – start-page: 5987 year: 2017 ident: ref17 article-title: Aggregated residual transformations for deep neural networks – start-page: 3549 year: 2017 ident: ref8 article-title: MDNet: a semantically and visually interpretable medical image diagnosis network – volume: 9 start-page: 1450 year: 2020 ident: ref11 article-title: Relationships among retinal nonperfusion, neovascularization, and vascular endothelial growth factor levels in quiescent proliferative diabetic retinopathy publication-title: Journal of Clinical Medicine doi: 10.3390/jcm9051462 – volume: 124 start-page: 962 year: 2017 ident: ref35 article-title: Automated identification of diabetic retinopathy using deep learning publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.02.008 – start-page: 660 year: 2017 ident: ref9 article-title: Retinal hemorrhage detection by rule-based and machine learning approach – volume: 24 start-page: 13347 year: 2020 ident: ref41 article-title: A metaheuristic segmentation framework for detection of retinal disorders from fundus images using a hybrid ant colony optimization publication-title: Soft Computing doi: 10.1007/s00500-020-04753-7 – start-page: 4761 year: 2017 ident: ref7 article-title: Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally – year: 2015 ident: ref15 publication-title: Experimental IR Meets Multi-Linguality, Multimodality, and Interaction. Lecture Notes in Computer Science – start-page: 293 year: 1995 ident: ref2 publication-title: Vision Disorders in Diabetes. Diabetes in America, Chapter 14 – volume: 72 start-page: 25 year: 2019 ident: ref31 article-title: Image super-resolution via feature-augmented random forest publication-title: Signal Processing: Image Communication – volume: 78 start-page: 388 year: 2019 ident: ref32 article-title: Content-oriented image quality assessment with multi-label SVM classifier publication-title: Signal Processing: Image Communication – start-page: 2261 year: 2017 ident: ref14 article-title: Densely connected convolutional networks – volume: 7 start-page: 1 year: 2018 ident: ref38 article-title: The interrelationship between refractive error, blood vessel anatomy, and glaucomatous visual field loss publication-title: Translational Vision Science & Technology doi: 10.1167/tvst.7.1.4 – volume: 316 start-page: 2402 year: 2016 ident: ref5 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – start-page: 122 year: 2018 ident: ref16 article-title: Deep galaxy v2: Robust deep convolutional neural networks for galaxy morphology classifications – start-page: 18747 year: 2018 ident: ref21 publication-title: IEEE—Advanced Signal Proc. Methods in Medical Imaging – volume: 153 start-page: 115 year: 2018 ident: ref10 article-title: An ensemble deep learning based approach for red lesion detection in fundus images publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2017.10.017 – volume: 6 start-page: 9 year: 2017 ident: ref37 article-title: Associations between optic nerve head-related anatomical parameters and refractive error over the full range of glaucoma severity publication-title: Translational Vision Science & Technology doi: 10.1167/tvst.6.4.9 – ident: ref42 – volume: 316 start-page: 2402 year: 2016 ident: ref34 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Jama doi: 10.1001/jama.2016.17216 – volume: 117 start-page: 524 year: 2010 ident: ref36 article-title: Are myopic eyes less likely to have diabetic retinopathy? publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.07.044 – start-page: 7132 year: 2018 ident: ref18 article-title: Squeeze-and-excitation networks – volume: 340 start-page: 19 year: 2019 ident: ref30 article-title: Semi-supervised and active learning through manifold reciprocal kNN graph for image retrieval publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.016 – volume: 59 start-page: 1244 year: 2010 ident: ref1 article-title: Effect of prior intensive therapy in type 1 diabetes on 10-year progression of retinopathy in the DCCT/EDIC: Comparison of Adults and Adolescents publication-title: Diabetes doi: 10.2337/db09-1216 – year: 2015 ident: ref27 article-title: Diabetic retinopathy using morphological operations and machine learning – volume: 82 start-page: 80 year: 2017 ident: ref6 article-title: Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2017.01.018 – volume: 9 start-page: 1327 year: 2020 ident: ref26 article-title: Automatic diabetic retinopathy grading via self-knowledge distillation publication-title: Electronics doi: 10.3390/electronics9091337 – start-page: 1 year: 2019 ident: ref39 article-title: Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs publication-title: JAMA Ophthalmology – volume: 79 start-page: 24949 year: 2020 ident: ref40 article-title: An abnormality detection of retinal fundus images by deep convolutional neural networks publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-09217-6 – volume: 65 start-page: 1382 year: 2017 ident: ref22 article-title: An automated system for the detection and classification of retinal changes due to red lesions in fundus images publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2017.2752701 – volume: 111 start-page: 5 year: 2015 ident: ref29 article-title: Identifying abnormalities in the retinal images using SVM classifiers publication-title: International Journal of Computer Applications doi: 10.5120/19540-9686 – volume: 99 start-page: 101694 year: 2019 ident: ref19 article-title: Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2019.07.002 – volume: 149 start-page: 708 year: 2014 ident: ref23 article-title: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.059 |
| SSID | ssj0036390 |
| Score | 2.334782 |
| Snippet | Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1613 |
| SubjectTerms | Algorithms Artificial neural networks Bleeding Blood vessels Color vision Deep learning Diabetes Diabetic retinopathy Eye diseases Image classification Neural networks Signs and symptoms |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZGeYCXsQ3QCmy6B15ASnET22keOzbEJoGqaZXgKfJPQJSkalNQ95_sv905cTs2TYM9JQ-Xk3U-5z6fz98Rso-bHpcwKyIpNI9YSnWkpE_AC25Szo2QzF8UPjsXp0P25YJfhHyHvwvz6PwegQVlR_rOEw3GtINYhbFkhawKjqi7RVaH54P-ZU2HykQUx3UqL7zH4UTyryp-j0C_YOXarBjL-YMcjR5FmJONhu5oWhMT-sKS286sUh39_Q_axucM_hV5GWAm9Bu_eE1e2OIN2Vi0cICwojfJj89LSs4KBhN_auNnCvqBahwQ00JTNXOj4au_H136JsZzqGsN4KO1YwidJ67gA4ZEA8dlcR8cGofg2T_qR11uPoX-6Kqc3FTXd6DmcGYxUkLpGs0SBtdl1XBoT7fI8OTTt-PTKHRriHTSTarIKCZ8PsnQNHMu05JR57ouSXBH1pWGcepoTxsaG5c6ya0RXMlUxaxnDaIgnWyTVlEW9i0BKmQv0Y4K6jKGMgr_FJnQWuluKqnQbXK0mMFcBypz31FjlOOWprZ8jpbPveXzxvJtcrD8YtzQePxDdm_hFHlY0NM8ZgjVMowOaZscLh3lSV07_yO8S9ZjXzFTJ3j2SKuazOw7hDyVeh-8_SdZkvpE priority: 102 providerName: Unpaywall |
| Title | Intelligent Prediction Approach for Diabetic Retinopathy Using Deep learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs |
| URI | https://www.proquest.com/docview/2465895387 https://doi.org/10.32604/cmc.2020.013443 |
| UnpaywallVersion | publishedVersion |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6V9AAX3ohAQXPgApLJxvtwfEAoLa0KUqOoIlI5Wet9tEipHRoXlJ_Cv2XGXqdwKae9rFfWfrMzs7Mz3zD2Bi89QUivE6OtSmTGbVIaCsBr5TKlnDaSCoVPZvp4Ib-cqbMdNutrYSitsteJraJ2taUY-SiVaCtzPJ7Zx9WPhLpG0etq30LDxNYK7kNLMXaH7abEjDVgu_uHs_lpr5sF2uO2RFJJnaRo3bqHS3RhuBzZS6I0TPl79IqkFP8aqhvv8-51tTKbX2a5_MsQHT1k96MHCdMO8kdsx1eP2YO-OwPEw_qE_f68ZdtsYH5FDzIEAkwjiziguwpdQsx3C6dU-lxTf-INtGkE8Mn7FUT61XPYR2vn4KCufkZZxV8gYo92aDPJ1zBdnuOONReXUG7gxKMRhDp0KxuYX9RNR4-9fsoWR4dfD46T2IghsWIsmsSVUlOoyPEsDyG3RvIQxkEIvGyNjZOKBz6xjqcuZMEo77QqTVamcuIdOjhWPGODqq78cwZcm4mwgWsecolzSlQCuba2tOPMcG2HbNTvemEjSzk1y1gWeFtpcSoQp4JwKjqchuzt9otVx9Bxy9y9HsgintV1cSNZQ_ZuC-5_13px-1ov2b2U0l_aaM0eGzRX1_4V-i9N-ToKJY6L2Xz67Q-uLfG1 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHOillD7EFgpzaA-tlK43dpzNAVXLS7uFXa0QSNxSxw-otCRbNhTtT-mf6W9jnDhLe6EnTrk4VpTPnm_GnvmGkA8Y9FjGjQikUFHAY6qCTLoDeBHpOIq0kNwVCg9Hon_Ov11EF0vkT1ML49IqG5tYGWpdKHdG3g45cmWC2zP-Ov0ZuK5R7na1aaEhfWsFvVtJjPnCjmMzv8MQbrY7OEC8P4bh0eHZfj_wXQYCxTqsDHTGhTsH0TROrE2U5NTajmUMI4mO1DyilnaVpqG2sZWR0SLKZJyFvGs0srdiOO8zssIZTzD4W9k7HI1PGy5gyP9VSWbERRAim9YXpegyUd5W105CMaRf0AvjnP1LjA_e7uptPpXzOzmZ_EV8Ry_JC--xQq9eYutkyeSvyFrTDQK8cXhNfg8W6p4ljG_cBZADHXpetRzQPYY6AeeHglNXal24fshzqNIW4MCYKXi510vYQ3bVsF_kv_zewE9wQiLVo8pcn0FvcokIlVfXkM1haJB0obD1zBLGV0VZy3HP3pDzJ4HkLVnOi9xsEKBCdpmyVFCbcByTodFJhFKZ6sSSCtUi7eavp8qrorvmHJMUo6MKpxRxSh1OaY1Ti3xavDGtFUEeGbvVAJl62zBLH1Zyi3xegPvfud49PtcOWe2fDU_Sk8HoeJM8D13qTXVStEWWy5tb8x59pzLb9gsUyPen3hP31KIt3g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZGeYCXsQ3QCmy6B15ASnET22keOzbEJoGqaZXgKfJPQJSkalNQ95_sv905cTs2TYM9JQ-Xk3U-5z6fz98Rso-bHpcwKyIpNI9YSnWkpE_AC25Szo2QzF8UPjsXp0P25YJfhHyHvwvz6PwegQVlR_rOEw3GtINYhbFkhawKjqi7RVaH54P-ZU2HykQUx3UqL7zH4UTyryp-j0C_YOXarBjL-YMcjR5FmJONhu5oWhMT-sKS286sUh39_Q_axucM_hV5GWAm9Bu_eE1e2OIN2Vi0cICwojfJj89LSs4KBhN_auNnCvqBahwQ00JTNXOj4au_H136JsZzqGsN4KO1YwidJ67gA4ZEA8dlcR8cGofg2T_qR11uPoX-6Kqc3FTXd6DmcGYxUkLpGs0SBtdl1XBoT7fI8OTTt-PTKHRriHTSTarIKCZ8PsnQNHMu05JR57ouSXBH1pWGcepoTxsaG5c6ya0RXMlUxaxnDaIgnWyTVlEW9i0BKmQv0Y4K6jKGMgr_FJnQWuluKqnQbXK0mMFcBypz31FjlOOWprZ8jpbPveXzxvJtcrD8YtzQePxDdm_hFHlY0NM8ZgjVMowOaZscLh3lSV07_yO8S9ZjXzFTJ3j2SKuazOw7hDyVeh-8_SdZkvpE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Prediction+Approach+for+Diabetic+Retinopathy+Using+Deep+learning+Based+Convolutional+Neural+Networks+Algorithm+by+Means+of+Retina+Photographs&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Arun+Sampaul+Thomas%2C+G.&rft.au=Harold+Robinson%2C+Y.&rft.au=Golden+Julie%2C+E.&rft.au=Shanmuganathan%2C+Vimal&rft.date=2021-01-01&rft.issn=1546-2226&rft.volume=66&rft.issue=2&rft.spage=1613&rft.epage=1629&rft_id=info:doi/10.32604%2Fcmc.2020.013443&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2020_013443 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |