Intelligent Prediction Approach for Diabetic Retinopathy Using Deep learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs

Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new met...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 66; no. 2; pp. 1613 - 1629
Main Authors Arun Sampaul Thomas, G., Harold Robinson, Y., Golden Julie, E., Shanmuganathan, Vimal, Rho, Seungmin, Nam, Yunyoung
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 01.01.2021
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2020.013443

Cover

Abstract Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses. The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy. The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers. The feature loss factor increases the label value to identify the patterns with the kernel-based matching. The performance of the proposed model is compared with the related methods of DREAM, KNN, GD-CNN and SVM. Experimental results show that the proposed CNN performs better.
AbstractList Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses. The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy. The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers. The feature loss factor increases the label value to identify the patterns with the kernel-based matching. The performance of the proposed model is compared with the related methods of DREAM, KNN, GD-CNN and SVM. Experimental results show that the proposed CNN performs better.
Author Golden Julie, E.
Shanmuganathan, Vimal
Nam, Yunyoung
Rho, Seungmin
Arun Sampaul Thomas, G.
Harold Robinson, Y.
Author_xml – sequence: 1
  givenname: G.
  surname: Arun Sampaul Thomas
  fullname: Arun Sampaul Thomas, G.
– sequence: 2
  givenname: Y.
  surname: Harold Robinson
  fullname: Harold Robinson, Y.
– sequence: 3
  givenname: E.
  surname: Golden Julie
  fullname: Golden Julie, E.
– sequence: 4
  givenname: Vimal
  surname: Shanmuganathan
  fullname: Shanmuganathan, Vimal
– sequence: 5
  givenname: Seungmin
  surname: Rho
  fullname: Rho, Seungmin
– sequence: 6
  givenname: Yunyoung
  surname: Nam
  fullname: Nam, Yunyoung
BookMark eNqFkMtuFDEQRS0UJJLAnqUl1jP41e6e5TDhESlAhMjaqvZj2sFjN7abaD6Fv6UnzQKxgE3dKqnuVdW5QGcxRYvQS0rWnEkiXuuDXjPCyJpQLgR_gs5pI-SKMSbP_uifoYtS7gnhkm_IOfp5HasNwe9trPg2W-N19Sni7TjmBHrALmV85aG31Wv8Za4xjVCHI74rPu7xlbUjDhZyPE1voFiDdyn-SGE65UDAn-yUH6U-pPyt4G3Yp-zrcMD9EX-0EAtObkkGfDukmvYZxqE8R08dhGJf_NZLdPfu7dfdh9XN5_fXu-3NSnPK68r0Qor5MUPajXMbDYI4Rx3nLZUUjGiII502hBnXOmiskU0Pbc9EZ03TCc0vEV1ypzjC8QFCUGP2B8hHRYl6ZKtmturEVi1sZ8-rxTND-j7ZUtV9mvL8bVFMyKbbNLxr5y25bOmcSsnWKe0rnLDUDD78K578ZfzvRb8A6IKfsQ
CitedBy_id crossref_primary_10_32604_cmc_2022_023670
crossref_primary_10_1108_WJE_06_2021_0324
crossref_primary_10_1108_WJE_06_2021_0348
crossref_primary_10_1109_ACCESS_2023_3348145
crossref_primary_10_3233_JHS_210667
crossref_primary_10_32604_iasc_2021_019194
crossref_primary_10_1038_s41598_025_92510_x
crossref_primary_10_32604_cmc_2021_014370
crossref_primary_10_1016_j_mex_2025_103185
crossref_primary_10_1142_S0219467824500323
crossref_primary_10_1007_s11063_021_10495_w
crossref_primary_10_1007_s11227_021_03994_z
crossref_primary_10_1109_TNNLS_2023_3326283
crossref_primary_10_1007_s11227_021_03757_w
Cites_doi 10.1001/jama.2017.18152
10.1016/j.patcog.2018.11.032
10.1016/j.compbiomed.2015.05.019
10.1109/JBHI.2013.2294635
10.5120/5503-7503
10.3390/jcm9051462
10.1016/j.ophtha.2017.02.008
10.1007/s00500-020-04753-7
10.1167/tvst.7.1.4
10.1001/jama.2016.17216
10.1016/j.cmpb.2017.10.017
10.1167/tvst.6.4.9
10.1016/j.ophtha.2009.07.044
10.1016/j.neucom.2019.02.016
10.2337/db09-1216
10.1016/j.compbiomed.2017.01.018
10.3390/electronics9091337
10.1007/s11042-020-09217-6
10.1109/TBME.2017.2752701
10.5120/19540-9686
10.1016/j.artmed.2019.07.002
10.1016/j.neucom.2014.07.059
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2020.013443
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 1629
ExternalDocumentID 10.32604/cmc.2020.013443
10_32604_cmc_2020_013443
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c313t-db464222d079ff9ca40ff1f337161ad450f08cd02df7fa5ed65ba7b248ed584c3
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Sun Sep 07 11:28:52 EDT 2025
Mon Jun 30 05:08:42 EDT 2025
Wed Oct 01 04:24:08 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-db464222d079ff9ca40ff1f337161ad450f08cd02df7fa5ed65ba7b248ed584c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2465895387?pq-origsite=%requestingapplication%&accountid=15518
PQID 2465895387
PQPubID 2048737
PageCount 17
ParticipantIDs unpaywall_primary_10_32604_cmc_2020_013443
proquest_journals_2465895387
crossref_citationtrail_10_32604_cmc_2020_013443
crossref_primary_10_32604_cmc_2020_013443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2021
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Cao (ref32) 2019; 78
Lim (ref36) 2010; 117
Devarajan (ref41) 2020; 24
Roychowdhury (ref43) 2014; 18
Klein (ref2) 1995
Xie (ref17) 2017
Wang (ref38) 2018; 7
Melinscak (ref25) 2015; 1
Li (ref31) 2019; 72
Costa (ref21) 2018
Gulshan (ref5) 2016; 316
Krizhevsky (ref13) 2012
Wang (ref23) 2014; 149
Liu (ref19) 2019; 99
Murugan (ref40) 2020; 79
Orlando (ref10) 2018; 153
ref24
Gulshan (ref34) 2016; 316
Zhang (ref3) 2017
Xiao (ref9) 2017
ref20
Jiang (ref33) 2019; 88
ref42
Ra (ref11) 2020; 9
Huang (ref14) 2017
Zhou (ref7) 2017
Liu (ref39) 2019
Priya (ref28) 2012; 41
Mookiah (ref4) 2015; 63
Adal (ref22) 2017; 65
Hu (ref18) 2018
Giraddi (ref29) 2015; 111
Baniasadi (ref37) 2017; 6
Gargeya (ref35) 2017; 124
Zhang (ref8) 2017
Lachure (ref27) 2015
Ting (ref12) 2017; 318
Carlos (ref30) 2019; 340
White (ref1) 2010; 59
Burlina (ref6) 2017; 82
Joly (ref15) 2015
Luo (ref26) 2020; 9
Khalifa (ref16) 2018
References_xml – volume: 318
  start-page: 2211
  year: 2017
  ident: ref12
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– volume: 88
  start-page: 321
  year: 2019
  ident: ref33
  article-title: Class-specific attribute weighted naive Bayes
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.11.032
– ident: ref20
– volume: 1
  start-page: 577
  year: 2015
  ident: ref25
  article-title: Retinal vessel segmentation using deep neural networks
  publication-title: VISAPP
– start-page: 3900
  year: 2017
  ident: ref3
  article-title: PolyNet: A pursuit of structural diversity in very deep networks
– volume: 63
  start-page: 208
  year: 2015
  ident: ref4
  article-title: Local configuration pattern features for age-related macular degeneration characterization and classification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2015.05.019
– volume: 18
  start-page: 1717
  year: 2014
  ident: ref43
  article-title: DREAM: diabetic retinopathy analysis using machine learning
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2013.2294635
– ident: ref24
– volume: 41
  start-page: 6
  year: 2012
  ident: ref28
  article-title: SVM and neural network based diagnosis of diabetic retinpathy
  publication-title: International Journal of Computer Applications
  doi: 10.5120/5503-7503
– start-page: 1097
  year: 2012
  ident: ref13
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 5987
  year: 2017
  ident: ref17
  article-title: Aggregated residual transformations for deep neural networks
– start-page: 3549
  year: 2017
  ident: ref8
  article-title: MDNet: a semantically and visually interpretable medical image diagnosis network
– volume: 9
  start-page: 1450
  year: 2020
  ident: ref11
  article-title: Relationships among retinal nonperfusion, neovascularization, and vascular endothelial growth factor levels in quiescent proliferative diabetic retinopathy
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm9051462
– volume: 124
  start-page: 962
  year: 2017
  ident: ref35
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– start-page: 660
  year: 2017
  ident: ref9
  article-title: Retinal hemorrhage detection by rule-based and machine learning approach
– volume: 24
  start-page: 13347
  year: 2020
  ident: ref41
  article-title: A metaheuristic segmentation framework for detection of retinal disorders from fundus images using a hybrid ant colony optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-04753-7
– start-page: 4761
  year: 2017
  ident: ref7
  article-title: Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally
– year: 2015
  ident: ref15
  publication-title: Experimental IR Meets Multi-Linguality, Multimodality, and Interaction. Lecture Notes in Computer Science
– start-page: 293
  year: 1995
  ident: ref2
  publication-title: Vision Disorders in Diabetes. Diabetes in America, Chapter 14
– volume: 72
  start-page: 25
  year: 2019
  ident: ref31
  article-title: Image super-resolution via feature-augmented random forest
  publication-title: Signal Processing: Image Communication
– volume: 78
  start-page: 388
  year: 2019
  ident: ref32
  article-title: Content-oriented image quality assessment with multi-label SVM classifier
  publication-title: Signal Processing: Image Communication
– start-page: 2261
  year: 2017
  ident: ref14
  article-title: Densely connected convolutional networks
– volume: 7
  start-page: 1
  year: 2018
  ident: ref38
  article-title: The interrelationship between refractive error, blood vessel anatomy, and glaucomatous visual field loss
  publication-title: Translational Vision Science & Technology
  doi: 10.1167/tvst.7.1.4
– volume: 316
  start-page: 2402
  year: 2016
  ident: ref5
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– start-page: 122
  year: 2018
  ident: ref16
  article-title: Deep galaxy v2: Robust deep convolutional neural networks for galaxy morphology classifications
– start-page: 18747
  year: 2018
  ident: ref21
  publication-title: IEEE—Advanced Signal Proc. Methods in Medical Imaging
– volume: 153
  start-page: 115
  year: 2018
  ident: ref10
  article-title: An ensemble deep learning based approach for red lesion detection in fundus images
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2017.10.017
– volume: 6
  start-page: 9
  year: 2017
  ident: ref37
  article-title: Associations between optic nerve head-related anatomical parameters and refractive error over the full range of glaucoma severity
  publication-title: Translational Vision Science & Technology
  doi: 10.1167/tvst.6.4.9
– ident: ref42
– volume: 316
  start-page: 2402
  year: 2016
  ident: ref34
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
  doi: 10.1001/jama.2016.17216
– volume: 117
  start-page: 524
  year: 2010
  ident: ref36
  article-title: Are myopic eyes less likely to have diabetic retinopathy?
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.07.044
– start-page: 7132
  year: 2018
  ident: ref18
  article-title: Squeeze-and-excitation networks
– volume: 340
  start-page: 19
  year: 2019
  ident: ref30
  article-title: Semi-supervised and active learning through manifold reciprocal kNN graph for image retrieval
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.016
– volume: 59
  start-page: 1244
  year: 2010
  ident: ref1
  article-title: Effect of prior intensive therapy in type 1 diabetes on 10-year progression of retinopathy in the DCCT/EDIC: Comparison of Adults and Adolescents
  publication-title: Diabetes
  doi: 10.2337/db09-1216
– year: 2015
  ident: ref27
  article-title: Diabetic retinopathy using morphological operations and machine learning
– volume: 82
  start-page: 80
  year: 2017
  ident: ref6
  article-title: Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.01.018
– volume: 9
  start-page: 1327
  year: 2020
  ident: ref26
  article-title: Automatic diabetic retinopathy grading via self-knowledge distillation
  publication-title: Electronics
  doi: 10.3390/electronics9091337
– start-page: 1
  year: 2019
  ident: ref39
  article-title: Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs
  publication-title: JAMA Ophthalmology
– volume: 79
  start-page: 24949
  year: 2020
  ident: ref40
  article-title: An abnormality detection of retinal fundus images by deep convolutional neural networks
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-09217-6
– volume: 65
  start-page: 1382
  year: 2017
  ident: ref22
  article-title: An automated system for the detection and classification of retinal changes due to red lesions in fundus images
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2017.2752701
– volume: 111
  start-page: 5
  year: 2015
  ident: ref29
  article-title: Identifying abnormalities in the retinal images using SVM classifiers
  publication-title: International Journal of Computer Applications
  doi: 10.5120/19540-9686
– volume: 99
  start-page: 101694
  year: 2019
  ident: ref19
  article-title: Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2019.07.002
– volume: 149
  start-page: 708
  year: 2014
  ident: ref23
  article-title: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.059
SSID ssj0036390
Score 2.334782
Snippet Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1613
SubjectTerms Algorithms
Artificial neural networks
Bleeding
Blood vessels
Color vision
Deep learning
Diabetes
Diabetic retinopathy
Eye diseases
Image classification
Neural networks
Signs and symptoms
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZGeYCXsQ3QCmy6B15ASnET22keOzbEJoGqaZXgKfJPQJSkalNQ95_sv905cTs2TYM9JQ-Xk3U-5z6fz98Rso-bHpcwKyIpNI9YSnWkpE_AC25Szo2QzF8UPjsXp0P25YJfhHyHvwvz6PwegQVlR_rOEw3GtINYhbFkhawKjqi7RVaH54P-ZU2HykQUx3UqL7zH4UTyryp-j0C_YOXarBjL-YMcjR5FmJONhu5oWhMT-sKS286sUh39_Q_axucM_hV5GWAm9Bu_eE1e2OIN2Vi0cICwojfJj89LSs4KBhN_auNnCvqBahwQ00JTNXOj4au_H136JsZzqGsN4KO1YwidJ67gA4ZEA8dlcR8cGofg2T_qR11uPoX-6Kqc3FTXd6DmcGYxUkLpGs0SBtdl1XBoT7fI8OTTt-PTKHRriHTSTarIKCZ8PsnQNHMu05JR57ouSXBH1pWGcepoTxsaG5c6ya0RXMlUxaxnDaIgnWyTVlEW9i0BKmQv0Y4K6jKGMgr_FJnQWuluKqnQbXK0mMFcBypz31FjlOOWprZ8jpbPveXzxvJtcrD8YtzQePxDdm_hFHlY0NM8ZgjVMowOaZscLh3lSV07_yO8S9ZjXzFTJ3j2SKuazOw7hDyVeh-8_SdZkvpE
  priority: 102
  providerName: Unpaywall
Title Intelligent Prediction Approach for Diabetic Retinopathy Using Deep learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs
URI https://www.proquest.com/docview/2465895387
https://doi.org/10.32604/cmc.2020.013443
UnpaywallVersion publishedVersion
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6V9AAX3ohAQXPgApLJxvtwfEAoLa0KUqOoIlI5Wet9tEipHRoXlJ_Cv2XGXqdwKae9rFfWfrMzs7Mz3zD2Bi89QUivE6OtSmTGbVIaCsBr5TKlnDaSCoVPZvp4Ib-cqbMdNutrYSitsteJraJ2taUY-SiVaCtzPJ7Zx9WPhLpG0etq30LDxNYK7kNLMXaH7abEjDVgu_uHs_lpr5sF2uO2RFJJnaRo3bqHS3RhuBzZS6I0TPl79IqkFP8aqhvv8-51tTKbX2a5_MsQHT1k96MHCdMO8kdsx1eP2YO-OwPEw_qE_f68ZdtsYH5FDzIEAkwjiziguwpdQsx3C6dU-lxTf-INtGkE8Mn7FUT61XPYR2vn4KCufkZZxV8gYo92aDPJ1zBdnuOONReXUG7gxKMRhDp0KxuYX9RNR4-9fsoWR4dfD46T2IghsWIsmsSVUlOoyPEsDyG3RvIQxkEIvGyNjZOKBz6xjqcuZMEo77QqTVamcuIdOjhWPGODqq78cwZcm4mwgWsecolzSlQCuba2tOPMcG2HbNTvemEjSzk1y1gWeFtpcSoQp4JwKjqchuzt9otVx9Bxy9y9HsgintV1cSNZQ_ZuC-5_13px-1ov2b2U0l_aaM0eGzRX1_4V-i9N-ToKJY6L2Xz67Q-uLfG1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHOillD7EFgpzaA-tlK43dpzNAVXLS7uFXa0QSNxSxw-otCRbNhTtT-mf6W9jnDhLe6EnTrk4VpTPnm_GnvmGkA8Y9FjGjQikUFHAY6qCTLoDeBHpOIq0kNwVCg9Hon_Ov11EF0vkT1ML49IqG5tYGWpdKHdG3g45cmWC2zP-Ov0ZuK5R7na1aaEhfWsFvVtJjPnCjmMzv8MQbrY7OEC8P4bh0eHZfj_wXQYCxTqsDHTGhTsH0TROrE2U5NTajmUMI4mO1DyilnaVpqG2sZWR0SLKZJyFvGs0srdiOO8zssIZTzD4W9k7HI1PGy5gyP9VSWbERRAim9YXpegyUd5W105CMaRf0AvjnP1LjA_e7uptPpXzOzmZ_EV8Ry_JC--xQq9eYutkyeSvyFrTDQK8cXhNfg8W6p4ljG_cBZADHXpetRzQPYY6AeeHglNXal24fshzqNIW4MCYKXi510vYQ3bVsF_kv_zewE9wQiLVo8pcn0FvcokIlVfXkM1haJB0obD1zBLGV0VZy3HP3pDzJ4HkLVnOi9xsEKBCdpmyVFCbcByTodFJhFKZ6sSSCtUi7eavp8qrorvmHJMUo6MKpxRxSh1OaY1Ti3xavDGtFUEeGbvVAJl62zBLH1Zyi3xegPvfud49PtcOWe2fDU_Sk8HoeJM8D13qTXVStEWWy5tb8x59pzLb9gsUyPen3hP31KIt3g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZGeYCXsQ3QCmy6B15ASnET22keOzbEJoGqaZXgKfJPQJSkalNQ95_sv905cTs2TYM9JQ-Xk3U-5z6fz98Rso-bHpcwKyIpNI9YSnWkpE_AC25Szo2QzF8UPjsXp0P25YJfhHyHvwvz6PwegQVlR_rOEw3GtINYhbFkhawKjqi7RVaH54P-ZU2HykQUx3UqL7zH4UTyryp-j0C_YOXarBjL-YMcjR5FmJONhu5oWhMT-sKS286sUh39_Q_axucM_hV5GWAm9Bu_eE1e2OIN2Vi0cICwojfJj89LSs4KBhN_auNnCvqBahwQ00JTNXOj4au_H136JsZzqGsN4KO1YwidJ67gA4ZEA8dlcR8cGofg2T_qR11uPoX-6Kqc3FTXd6DmcGYxUkLpGs0SBtdl1XBoT7fI8OTTt-PTKHRriHTSTarIKCZ8PsnQNHMu05JR57ouSXBH1pWGcepoTxsaG5c6ya0RXMlUxaxnDaIgnWyTVlEW9i0BKmQv0Y4K6jKGMgr_FJnQWuluKqnQbXK0mMFcBypz31FjlOOWprZ8jpbPveXzxvJtcrD8YtzQePxDdm_hFHlY0NM8ZgjVMowOaZscLh3lSV07_yO8S9ZjXzFTJ3j2SKuazOw7hDyVeh-8_SdZkvpE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Prediction+Approach+for+Diabetic+Retinopathy+Using+Deep+learning+Based+Convolutional+Neural+Networks+Algorithm+by+Means+of+Retina+Photographs&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Arun+Sampaul+Thomas%2C+G.&rft.au=Harold+Robinson%2C+Y.&rft.au=Golden+Julie%2C+E.&rft.au=Shanmuganathan%2C+Vimal&rft.date=2021-01-01&rft.issn=1546-2226&rft.volume=66&rft.issue=2&rft.spage=1613&rft.epage=1629&rft_id=info:doi/10.32604%2Fcmc.2020.013443&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2020_013443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon