A graph transformer-based foundation model for brain functional connectivity network

Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a found...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 169; p. 111988
Main Authors Wang, Yulong, Calhoun, Vince D, Pearlson, Godfrey D, Kochunov, Peter, van Erp, Theo G.M., Du, Yuhui
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2026
Subjects
Online AccessGet full text
ISSN0031-3203
DOI10.1016/j.patcog.2025.111988

Cover

Abstract Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 scans across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis.
AbstractList Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 subjects across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis.
Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 scans across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis.
Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 subjects across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis.Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 subjects across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis.
ArticleNumber 111988
Author Du, Yuhui
Wang, Yulong
Pearlson, Godfrey D
van Erp, Theo G.M.
Calhoun, Vince D
Kochunov, Peter
Author_xml – sequence: 1
  givenname: Yulong
  surname: Wang
  fullname: Wang, Yulong
  organization: School of Computer and Information Technology, Shanxi University, Taiyuan, PR China
– sequence: 2
  givenname: Vince D
  surname: Calhoun
  fullname: Calhoun, Vince D
  organization: Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
– sequence: 3
  givenname: Godfrey D
  surname: Pearlson
  fullname: Pearlson, Godfrey D
  organization: Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
– sequence: 4
  givenname: Peter
  surname: Kochunov
  fullname: Kochunov, Peter
  organization: Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
– sequence: 5
  givenname: Theo G.M.
  surname: van Erp
  fullname: van Erp, Theo G.M.
  organization: Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
– sequence: 6
  givenname: Yuhui
  orcidid: 0000-0002-0079-8177
  surname: Du
  fullname: Du, Yuhui
  email: duyuhui@sxu.edu.cn
  organization: School of Computer and Information Technology, Shanxi University, Taiyuan, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40688537$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPwzAMgHMYYg_4Bwj1yKUjj7ZrL0jTxEuaxGWcIzd1R0abjKQd2r8nUwdHTpbtz5b9TcnIWIOE3DA6Z5Rl97v5Hjplt3NOeTpnjBV5PiITSgWLBadiTKbe7yhlC5bwSzJOaJbnqVhMyGYZbR3sP6LOgfG1dS26uASPVVTb3lTQaWui1lbYhIKLSgfaRHVv1KkBTaSsMRiSg-6OkcHu27rPK3JRQ-Px-hxn5P3pcbN6iddvz6-r5TpWgokuVpznUKXhFJ5yhYxyBTxdUE4hK1LMSpaUAHmSJFQA51BnoctEJYq6UGXJxYzcDXv3zn716DvZaq-wacCg7b0UXLCCilwkAb09o33ZYiX3TrfgjvLXRACSAVDOeu-w_kMYlSfJcicHyfIkWQ6Sw9jDMIbhz4NGJ73SaBRW2gUtsrL6_wU_m6mIfQ
Cites_doi 10.1109/TMI.2024.3414476
10.1109/TPAMI.2024.3524440
10.1016/j.neubiorev.2024.105839
10.1038/s41586-024-07894-z
10.1016/j.knosys.2021.107564
10.1016/j.biopsych.2023.03.025
10.1016/j.media.2021.102233
10.1038/s41386-021-01132-0
10.1002/mds.29570
10.1016/j.neubiorev.2022.104701
10.1073/pnas.2221533120
10.1038/s42003-021-02592-2
10.1109/TMI.2022.3222093
10.1038/s41591-024-03185-2
10.1109/JBHI.2023.3274531
10.1016/j.patcog.2022.109106
10.1016/j.patcog.2023.110209
10.1038/s41586-018-0579-z
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.patcog.2025.111988
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 40688537
10_1016_j_patcog_2025_111988
S003132032500648X
Genre Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: U24 RR021992
– fundername: NIMH NIH HHS
  grantid: R01 MH123610
– fundername: NCRR NIH HHS
  grantid: U24 RR025736
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AAYXX
ACLOT
CITATION
~HD
AFXIZ
AGRNS
BNPGV
NPM
RIG
SSH
7X8
ID FETCH-LOGICAL-c313t-c228ad5688252ce102ca257020a695e6b14baa844403a22af625713d39f9cbb23
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Fri Sep 05 15:38:10 EDT 2025
Fri Jul 25 01:50:34 EDT 2025
Wed Oct 01 05:39:41 EDT 2025
Sat Sep 13 17:01:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph
Transformer
Autoencoder
Brain network
Foundation model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-c228ad5688252ce102ca257020a695e6b14baa844403a22af625713d39f9cbb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0079-8177
PMID 40688537
PQID 3231903834
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3231903834
pubmed_primary_40688537
crossref_primary_10_1016_j_patcog_2025_111988
elsevier_sciencedirect_doi_10_1016_j_patcog_2025_111988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
2026-Jan
20260101
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Pattern recognition
PublicationTitleAlternate Pattern Recognit
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Zhao, Marostica, Yuan, Jin, Zhang, Li, Tang, Wang, Li, Wang, Peng, Zhu, Zhang, Jackson, Zhang, Dillon, Lin, Sholl, Denize, Meredith, Ligon, Signoretti, Ogino, Golden, Nasrallah, Han, Yang, Yu (bib0001) 2024; 634
Zhang, Zhou, Adhikarla, Yan, Liu, Yu, Liu, Chen, Davison, Ren, Huang, Chen, Zhou, Fu, Liu, Liu, Li, Chen, He, Zou, Li, Liu, Sun (bib0002) 2024; 30
Wu, Zhao, Yang, Zhang, Nie, Jiang, Bian, Yan (bib0014) 2024
Ronde, van der Zee, Kas (bib0037) 2024; 164
Xie, Girshick, Farhadi (bib0034) 2016
Dwivedi, Bresson (bib0016) 2020
Cai, Gao, Liu (bib0018) 2022; 42
Lei, Zhu, Yu, Hu, Xu, Yue, Wang, Zhao, Chen, Yang, Song, Xiao, Wang (bib0004) 2023; 134
Passiatore, Antonucci, DeRamus, Fazio, Stolfa, Sportelli, Kikidis, Blasi, Chen, Dukart (bib0029) 2023; 120
A. Bryutkin, J. Huang, Z. Deng, G. Yang, C.-B. Schönlieb, A.I. Aviles-Rivero, HAMLET: Graph Transformer Neural Operator For Partial Differential Equations, Forty-first International Conference on Machine Learning.
Li, Zhou, Dvornek, Zhang, Gao, Zhuang, Scheinost, Staib, Ventola, Duncan (bib0033) 2021; 74
Dhamala, Ooi, Chen, Ricard, Berkeley, Chopra, Qu, Zhang, Lawhead, Yeo (bib0030) 2023; 94
Jiao, Zhou, Li, Xia, Huang, Huang, Wang, Zhang, Zhou, Wang, Guo (bib0003) 2024
Aviles-Rivero, Runkel, Papadakis, Kourtzi, Schönlieb (bib0005) 2022
Gao, Zhang, Lin, Zhao, Du, Zou (bib0006) 2021
Han, Xue, Du, Gao (bib0007) 2024
Dondé, Kantrowitz, Medalia, Saperstein, Balla, Sehatpour, Martinez, O’Connell, Javitt (bib0036) 2023
Dai, Feng, Ma, Zhao, Gao (bib0026) 2025; 47
Kipf, Welling (bib0032) 2017
Yang, Ye, Su, Zhang, Chang, Chen, Chan, Yu, Ma (bib0010) 2024; 43
Zhuang, Xu, Zhang, Liu, Fan, Wang (bib0012) 2024
Mrabah, Bouguessa, Ksantini (bib0019) 2024; 149
Park, Lee, Chang, Lee, Choi (bib0022) 2019
Friedman, Robbins (bib0040) 2021; 47
Han, Xue, Feng, Feng, Du, Shi, Gao (bib0011) 2025
Wu, Jain, Wright, Mirhoseini, Gonzalez, Stoica (bib0013) 2021; 34
Wen, Cao, Liu, Yang, Zhang, Wang, Zaiane (bib0009) 2023; 27
Feng, Zhi, Feng, Jiang, Fu, Xu, Zhao, Yu, Stevens, Sun (bib0023) 2024
Kipf, Welling (bib0020) 2016
Briley, Webster, Boutry, Cottam, Auer, Liddle, Morriss (bib0039) 2022; 138
Bycroft, Freeman, Petkova, Band, Elliott, Sharp, Motyer, Vukcevic, Delaneau, O'Connell, Cortes, Welsh, Young, Effingham, McVean, Leslie, Allen, Donnelly, Marchini (bib0027) 2018; 562
Sun, Li, Ding, Zhang, Tang (bib0024) 2021; 234
Zuo, Anderson, Bellec, Birn, Biswal, Blautzik, Breitner, Buckner, Calhoun, Castellanos, Chen, Chen, Chen, Chen, Colcombe, Courtney, Craddock, Di Martino, Dong, Fu, Gong, Gorgolewski, Han, He, He, Ho, Holmes, Hou, Huckins, Jiang, Jiang, Kelley, Kelly, King, LaConte, Lainhart, Lei, Li, Li, Li, Lin, Liu, Liu, Liu, Liu, Lu, Lu, Luna, Luo, Lurie, Mao, Margulies, Mayer, Meindl, Meyerand, Nan, Nielsen, O’Connor, Paulsen, Prabhakaran, Qi, Qiu, Shao, Shehzad, Tang, Villringer, Wang, Wang, Wei, Wei, Weng, Wu, Xu, Yang, Yang, Zang, Zhang, Zhang, Zhang, Zhang, Zhao, Zhen, Zhou, Zhu, Milham (bib0035) 2014
Fang, Wu, Wang, Qiu, Bozoki, Liu (bib0008) 2025
Fu, Peng, He, Wang, Zou, Xu, Jing, You (bib0025) 2024
Du, Fu, Sui, Gao, Xing, Lin, Salman, Abrol, Rahaman, Chen (bib0028) 2020; 28
Van Cauwenberge, Delva, Vande Casteele, Laroy, Radwan, Vansteelandt, Van den Stock, Bouckaert, Van Laere, Emsell, Vandenberghe, Vandenbulcke (bib0038) 2023; 38
Kan, Dai, Cui, Zhang, Guo, Yang (bib0017) 2022; 35
Du, Fu, Xing, Lin, Pearlson, Kochunov, Hong, Qi, Salman, Abrol, Calhoun (bib0031) 2021; 4
Wang, Pan, Hu, Long, Jiang, Zhang (bib0021) 2019
Zhang (10.1016/j.patcog.2025.111988_bib0002) 2024; 30
Yang (10.1016/j.patcog.2025.111988_bib0010) 2024; 43
Friedman (10.1016/j.patcog.2025.111988_bib0040) 2021; 47
Van Cauwenberge (10.1016/j.patcog.2025.111988_bib0038) 2023; 38
Mrabah (10.1016/j.patcog.2025.111988_bib0019) 2024; 149
Xie (10.1016/j.patcog.2025.111988_bib0034) 2016
Zuo (10.1016/j.patcog.2025.111988_bib0035) 2014
Wu (10.1016/j.patcog.2025.111988_bib0014) 2024
Wang (10.1016/j.patcog.2025.111988_bib0001) 2024; 634
Park (10.1016/j.patcog.2025.111988_bib0022) 2019
Passiatore (10.1016/j.patcog.2025.111988_bib0029) 2023; 120
Kipf (10.1016/j.patcog.2025.111988_bib0020) 2016
Aviles-Rivero (10.1016/j.patcog.2025.111988_bib0005) 2022
Wen (10.1016/j.patcog.2025.111988_bib0009) 2023; 27
Lei (10.1016/j.patcog.2025.111988_bib0004) 2023; 134
Han (10.1016/j.patcog.2025.111988_bib0011) 2025
Zhuang (10.1016/j.patcog.2025.111988_bib0012) 2024
Fu (10.1016/j.patcog.2025.111988_bib0025) 2024
Fang (10.1016/j.patcog.2025.111988_bib0008) 2025
Du (10.1016/j.patcog.2025.111988_bib0031) 2021; 4
Wang (10.1016/j.patcog.2025.111988_bib0021) 2019
Jiao (10.1016/j.patcog.2025.111988_bib0003) 2024
Ronde (10.1016/j.patcog.2025.111988_bib0037) 2024; 164
Sun (10.1016/j.patcog.2025.111988_bib0024) 2021; 234
10.1016/j.patcog.2025.111988_bib0015
Dwivedi (10.1016/j.patcog.2025.111988_bib0016) 2020
Briley (10.1016/j.patcog.2025.111988_bib0039) 2022; 138
Cai (10.1016/j.patcog.2025.111988_bib0018) 2022; 42
Feng (10.1016/j.patcog.2025.111988_bib0023) 2024
Dai (10.1016/j.patcog.2025.111988_bib0026) 2025; 47
Du (10.1016/j.patcog.2025.111988_bib0028) 2020; 28
Han (10.1016/j.patcog.2025.111988_bib0007) 2024
Bycroft (10.1016/j.patcog.2025.111988_bib0027) 2018; 562
Wu (10.1016/j.patcog.2025.111988_bib0013) 2021; 34
Kan (10.1016/j.patcog.2025.111988_bib0017) 2022; 35
Kipf (10.1016/j.patcog.2025.111988_bib0032) 2017
Li (10.1016/j.patcog.2025.111988_bib0033) 2021; 74
Gao (10.1016/j.patcog.2025.111988_bib0006) 2021
Dhamala (10.1016/j.patcog.2025.111988_bib0030) 2023; 94
Dondé (10.1016/j.patcog.2025.111988_bib0036) 2023
References_xml – start-page: 3670
  year: 2019
  end-page: 3676
  ident: bib0021
  article-title: Attributed graph clustering: a deep attentional embedding approach
  publication-title: International Joint Conference on Artificial Intelligence 2019
– start-page: 1
  year: 2014
  ident: bib0035
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
  publication-title: Sci. Data
– start-page: 77
  year: 2024
  ident: bib0023
  article-title: Functional Imaging Derived ADHD Biotypes Based On Deep clustering: a Study On Personalized Medication Therapy Guidance
– volume: 4
  start-page: 1073
  year: 2021
  ident: bib0031
  article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
  publication-title: Commun. Biol.
– volume: 47
  start-page: 72
  year: 2021
  end-page: 89
  ident: bib0040
  article-title: The role of prefrontal cortex in cognitive control and executive function
  publication-title: Neuropsychopharmacology
– start-page: 36
  year: 2024
  ident: bib0014
  article-title: Simplifying and empowering transformers for large-graph representations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 234
  year: 2021
  ident: bib0024
  article-title: Dual-decoder graph autoencoder for unsupervised graph representation learning
  publication-title: Knowl. Based Syst.
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib0032
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: The 5th International Conference on Learning Representations (ICLR 2017)
– year: 2021
  ident: bib0006
  article-title: Hypergraph Learning: Methods and Practices
– start-page: 1
  year: 2025
  end-page: 15
  ident: bib0011
  article-title: Hypergraph Foundation model for brain disease diagnosis
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 34
  start-page: 13266
  year: 2021
  end-page: 13279
  ident: bib0013
  article-title: Representing long-range context for graph neural networks with global attention
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 216
  year: 2024
  end-page: 226
  ident: bib0007
  article-title: Inter-intra high-order brain network for ASD diagnosis via functional MRIs
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 157
  year: 2025
  ident: bib0008
  article-title: Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis
  publication-title: Pattern Recognit..
– volume: 94
  start-page: 479
  year: 2023
  end-page: 491
  ident: bib0030
  article-title: Brain-based predictions of psychiatric illness–linked behaviors across the sexes
  publication-title: Biol. Psychiatry
– volume: 42
  start-page: 456
  year: 2022
  end-page: 466
  ident: bib0018
  article-title: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation
  publication-title: IEEE Trans. Med. Imaging
– reference: A. Bryutkin, J. Huang, Z. Deng, G. Yang, C.-B. Schönlieb, A.I. Aviles-Rivero, HAMLET: Graph Transformer Neural Operator For Partial Differential Equations, Forty-first International Conference on Machine Learning.
– volume: 134
  year: 2023
  ident: bib0004
  article-title: Multi-scale enhanced graph convolutional network for mild cognitive impairment detection
  publication-title: Pattern Recognit..
– year: 2024
  ident: bib0025
  article-title: Multilevel contrastive graph masked autoencoders for unsupervised graph-structure learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 35
  start-page: 25586
  year: 2022
  end-page: 25599
  ident: bib0017
  article-title: Brain network transformer
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  year: 2020
  ident: bib0028
  article-title: NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage: Clinical
– start-page: 148
  year: 2023
  ident: bib0036
  article-title: Early auditory processing dysfunction in schizophrenia: mechanisms and implications
  publication-title: Neurosci. Biobehav. Rev.
– volume: 74
  year: 2021
  ident: bib0033
  article-title: BrainGNN: interpretable Brain graph Neural Network for fMRI analysis
  publication-title: Med. Image Anal.
– volume: 30
  start-page: 3129
  year: 2024
  end-page: 3141
  ident: bib0002
  article-title: A generalist vision–language foundation model for diverse biomedical tasks
  publication-title: Nat. Med.
– volume: 38
  start-page: 1786
  year: 2023
  end-page: 1794
  ident: bib0038
  article-title: Mild motor signs in healthy aging are associated with lower synaptic density in the brain
  publication-title: Movem. Disord.
– volume: 634
  start-page: 970
  year: 2024
  end-page: 978
  ident: bib0001
  article-title: A pathology foundation model for cancer diagnosis and prognosis prediction
  publication-title: Nature
– volume: 47
  start-page: 2370
  year: 2025
  end-page: 2387
  ident: bib0026
  article-title: Cross-modal 3D shape retrieval via heterogeneous dynamic graph representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 120
  year: 2023
  ident: bib0029
  article-title: Changes in patterns of age-related network connectivity are associated with risk for schizophrenia
  publication-title: Proceed. Natl. Acad. Sci.
– volume: 164
  year: 2024
  ident: bib0037
  article-title: Default mode network dynamics: an integrated neurocircuitry perspective on social dysfunction in human brain disorders
  publication-title: Neurosci. Biobehav. Rev.
– start-page: 717
  year: 2022
  end-page: 727
  ident: bib0005
  article-title: Multi-modal hypergraph diffusion network with dual prior for alzheimer classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 96
  year: 2024
  ident: bib0003
  article-title: USFM: a universal ultrasound foundation model generalized to tasks and organs towards label efficient image analysis
  publication-title: Med. Image Anal.
– volume: 27
  start-page: 4154
  year: 2023
  end-page: 4165
  ident: bib0009
  article-title: Graph self-supervised learning with application to brain networks analysis
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 149
  year: 2024
  ident: bib0019
  article-title: A contrastive variational graph auto-encoder for node clustering
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0020
  article-title: Variational Graph Auto-Encoders
– volume: 43
  start-page: 4004
  year: 2024
  end-page: 4016
  ident: bib0010
  article-title: BrainMass: advancing brain network analysis for diagnosis with large-scale self-supervised learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  ident: bib0027
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
– year: 2020
  ident: bib0016
  article-title: A Generalization of Transformer Networks to Graphs
– start-page: 6519
  year: 2019
  end-page: 6528
  ident: bib0022
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– volume: 138
  start-page: 104701
  year: 2022
  end-page: 104713
  ident: bib0039
  article-title: Resting-state functional connectivity correlates of anxiety co-morbidity in major depressive disorder
  publication-title: Neurosci. Biobehav. Rev.
– start-page: 143
  year: 2024
  end-page: 152
  ident: bib0012
  article-title: Anatomical Embedding-Based Training Method for Medical Image Segmentation Foundation Models, International Workshop On Foundation Models For General Medical AI
– start-page: 478
  year: 2016
  end-page: 487
  ident: bib0034
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: International conference on machine learning
– start-page: 143
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0012
– volume: 34
  start-page: 13266
  year: 2021
  ident: 10.1016/j.patcog.2025.111988_bib0013
  article-title: Representing long-range context for graph neural networks with global attention
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 4004
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0010
  article-title: BrainMass: advancing brain network analysis for diagnosis with large-scale self-supervised learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2024.3414476
– volume: 35
  start-page: 25586
  year: 2022
  ident: 10.1016/j.patcog.2025.111988_bib0017
  article-title: Brain network transformer
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 47
  start-page: 2370
  year: 2025
  ident: 10.1016/j.patcog.2025.111988_bib0026
  article-title: Cross-modal 3D shape retrieval via heterogeneous dynamic graph representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2024.3524440
– volume: 164
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0037
  article-title: Default mode network dynamics: an integrated neurocircuitry perspective on social dysfunction in human brain disorders
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2024.105839
– year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0025
  article-title: Multilevel contrastive graph masked autoencoders for unsupervised graph-structure learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2020
  ident: 10.1016/j.patcog.2025.111988_bib0016
– volume: 634
  start-page: 970
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0001
  article-title: A pathology foundation model for cancer diagnosis and prognosis prediction
  publication-title: Nature
  doi: 10.1038/s41586-024-07894-z
– volume: 234
  year: 2021
  ident: 10.1016/j.patcog.2025.111988_bib0024
  article-title: Dual-decoder graph autoencoder for unsupervised graph representation learning
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107564
– start-page: 717
  year: 2022
  ident: 10.1016/j.patcog.2025.111988_bib0005
  article-title: Multi-modal hypergraph diffusion network with dual prior for alzheimer classification
– volume: 94
  start-page: 479
  year: 2023
  ident: 10.1016/j.patcog.2025.111988_bib0030
  article-title: Brain-based predictions of psychiatric illness–linked behaviors across the sexes
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2023.03.025
– start-page: 148
  year: 2023
  ident: 10.1016/j.patcog.2025.111988_bib0036
  article-title: Early auditory processing dysfunction in schizophrenia: mechanisms and implications
  publication-title: Neurosci. Biobehav. Rev.
– start-page: 77
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0023
– volume: 74
  year: 2021
  ident: 10.1016/j.patcog.2025.111988_bib0033
  article-title: BrainGNN: interpretable Brain graph Neural Network for fMRI analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102233
– volume: 47
  start-page: 72
  year: 2021
  ident: 10.1016/j.patcog.2025.111988_bib0040
  article-title: The role of prefrontal cortex in cognitive control and executive function
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-021-01132-0
– start-page: 3670
  year: 2019
  ident: 10.1016/j.patcog.2025.111988_bib0021
  article-title: Attributed graph clustering: a deep attentional embedding approach
– volume: 38
  start-page: 1786
  year: 2023
  ident: 10.1016/j.patcog.2025.111988_bib0038
  article-title: Mild motor signs in healthy aging are associated with lower synaptic density in the brain
  publication-title: Movem. Disord.
  doi: 10.1002/mds.29570
– start-page: 6519
  year: 2019
  ident: 10.1016/j.patcog.2025.111988_bib0022
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
– volume: 138
  start-page: 104701
  year: 2022
  ident: 10.1016/j.patcog.2025.111988_bib0039
  article-title: Resting-state functional connectivity correlates of anxiety co-morbidity in major depressive disorder
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2022.104701
– volume: 120
  year: 2023
  ident: 10.1016/j.patcog.2025.111988_bib0029
  article-title: Changes in patterns of age-related network connectivity are associated with risk for schizophrenia
  publication-title: Proceed. Natl. Acad. Sci.
  doi: 10.1073/pnas.2221533120
– start-page: 1
  year: 2014
  ident: 10.1016/j.patcog.2025.111988_bib0035
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
  publication-title: Sci. Data
– volume: 4
  start-page: 1073
  year: 2021
  ident: 10.1016/j.patcog.2025.111988_bib0031
  article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02592-2
– start-page: 1
  year: 2025
  ident: 10.1016/j.patcog.2025.111988_bib0011
  article-title: Hypergraph Foundation model for brain disease diagnosis
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 42
  start-page: 456
  year: 2022
  ident: 10.1016/j.patcog.2025.111988_bib0018
  article-title: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3222093
– volume: 28
  year: 2020
  ident: 10.1016/j.patcog.2025.111988_bib0028
  article-title: NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage: Clinical
– volume: 30
  start-page: 3129
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0002
  article-title: A generalist vision–language foundation model for diverse biomedical tasks
  publication-title: Nat. Med.
  doi: 10.1038/s41591-024-03185-2
– start-page: 216
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0007
  article-title: Inter-intra high-order brain network for ASD diagnosis via functional MRIs
– volume: 27
  start-page: 4154
  year: 2023
  ident: 10.1016/j.patcog.2025.111988_bib0009
  article-title: Graph self-supervised learning with application to brain networks analysis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2023.3274531
– volume: 134
  year: 2023
  ident: 10.1016/j.patcog.2025.111988_bib0004
  article-title: Multi-scale enhanced graph convolutional network for mild cognitive impairment detection
  publication-title: Pattern Recognit..
  doi: 10.1016/j.patcog.2022.109106
– start-page: 157
  year: 2025
  ident: 10.1016/j.patcog.2025.111988_bib0008
  article-title: Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis
  publication-title: Pattern Recognit..
– start-page: 96
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0003
  article-title: USFM: a universal ultrasound foundation model generalized to tasks and organs towards label efficient image analysis
  publication-title: Med. Image Anal.
– year: 2016
  ident: 10.1016/j.patcog.2025.111988_bib0020
– ident: 10.1016/j.patcog.2025.111988_bib0015
– volume: 149
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0019
  article-title: A contrastive variational graph auto-encoder for node clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.110209
– volume: 562
  start-page: 203
  year: 2018
  ident: 10.1016/j.patcog.2025.111988_bib0027
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– year: 2021
  ident: 10.1016/j.patcog.2025.111988_bib0006
– start-page: 478
  year: 2016
  ident: 10.1016/j.patcog.2025.111988_bib0034
  article-title: Unsupervised deep embedding for clustering analysis
– start-page: 36
  year: 2024
  ident: 10.1016/j.patcog.2025.111988_bib0014
  article-title: Simplifying and empowering transformers for large-graph representations
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2017
  ident: 10.1016/j.patcog.2025.111988_bib0032
  article-title: Semi-supervised classification with graph convolutional networks
SSID ssj0017142
Score 2.495825
Snippet Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 111988
SubjectTerms Autoencoder
Brain network
Foundation model
Graph
Transformer
Title A graph transformer-based foundation model for brain functional connectivity network
URI https://dx.doi.org/10.1016/j.patcog.2025.111988
https://www.ncbi.nlm.nih.gov/pubmed/40688537
https://www.proquest.com/docview/3231903834
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0031-3203
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0031-3203
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0031-3203
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Sciencedirect - Freedom Collection
  issn: 0031-3203
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0031-3203
  databaseCode: AKRWK
  dateStart: 19680101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalu-yy96N7FA92zZrYzutYykq3sZ5a6M34ldEd0tKl1_32SXFSGGwMdoxJiJFs6ZMt6SPkPs4LwMUQlkS8yAIR2SzQMXbLyyPNneJWWLzRfZ0mk7l4XsSLDhm1tTCYVtnYfm_Ta2vdjAwaaQ7WyyXW-GLbwZCDEwe_mi2wgl0kmNb38LlL80B-b98xnMME4O22fK7O8VqDuVu9QZTIYrQdec2_8qN7-g1-1m5ofEQOGvxIh36Kx6TjyhNy2HIz0GarnpLZkNa9qGnVIlO3CdBlWVrsmJRozYMDAxuqkSqCopfzh4PUYAaM8dwStPTJ4mdkPn6cjSZBw6AQGJBNFRjGMmXjBGB0zIwDMGEU0taxUCV57BIdCa1UJoQIuWJMFRANQdRqOWjQaM34OemWq9JdEppwjR2MImtQf2mRu9QmoS5EaBOnVNQjQSs4ufaNMmSbQfYuvaAlClp6QfdI2kpXflO4BFv-x5d3rTIk7AW84FClW20_JAewmocQc4seufBa2s1FILtOzNOrf__3muzDU3P-ckO61WbrbgGRVLpfL7k-2Rs-vUymX6yA3-w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5NBeui_pqkKvJrYleTmG0JA0yymB3IRkySU9OCFN_r8jyw4UWgq9yhiLGevNG2k0D-CFpznyYkxLAponHgt04iluu-WlgaJGUs20PdGdTKPBnL0t-KIBvfoujC2rrLDfYXqJ1tVIp7JmZ71c2ju-tu2gTzGIY1xNFgfQYhwxuQmt7nA0mO4PE-KAuabhFOeAL9Q36MoyrzUi3uodE8WQW_hISwmWHyPUbwy0jET9UziuKCTpulmeQcMU53BSyzOQarVewKxLynbUZFuTU7PxbNTSJN-LKZFSCgcHNkRZtQhiA53bHySZLYLJnLwEKVy9-CXM-6-z3sCrRBS8DM2z9bIwTKTmETJpHmYG-UQmrXJd6Mso5SZSAVNSJowxn8owlDkmRJi4aopOzJQK6RU0i1VhboBEVNkmRoHOrAvjPDWxjnyVM19HRsqgDV5tOLF2vTJEXUT2IZyhhTW0cIZuQ1xbV3zzuUA4_-PN59oZApeDPeOQhVntPgVFvpr6mHazNlw7L-3nwqzADqfx7b-_-wSHg9lkLMbD6egOjvBJtR1zD83tZmcekKBs1WP1A34BUnTilw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph+transformer-based+foundation+model+for+brain+functional+connectivity+network&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Yulong&rft.au=Calhoun%2C+Vince+D&rft.au=Pearlson%2C+Godfrey+D&rft.au=Kochunov%2C+Peter&rft.date=2026-01-01&rft.issn=0031-3203&rft.volume=169&rft_id=info:doi/10.1016%2Fj.patcog.2025.111988&rft_id=info%3Apmid%2F40688537&rft.externalDocID=40688537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon