A graph transformer-based foundation model for brain functional connectivity network
Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a found...
Saved in:
Published in | Pattern recognition Vol. 169; p. 111988 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2026
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 |
DOI | 10.1016/j.patcog.2025.111988 |
Cover
Abstract | Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 scans across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis. |
---|---|
AbstractList | Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 subjects across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis. Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 scans across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis. Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 subjects across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis.Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical practice. Brain functional connectivity (FC) analysis is central to understanding brain function and widely used in neuroscience. We propose a foundation model tailored for brain functional connectivity networks (FCN). Our graph transformer model integrates node and edge embeddings to extract FCN features and adapts flexibly to classification, regression, and clustering via task-specific adapters. We validate the model on fMRI data from 10,718 subjects across multiple tasks: gender classification, mental disorder classification (distinguishing schizophrenia or autism from healthy population), brain age prediction, and depressive and anxiety disorder biotyping. Compared to 14 competing methods, our model consistently outperforms them. Moreover, it facilitates biomarker discovery by identifying task-specific FC patterns. In summary, we present a novel, versatile foundation model for FCN that advances neuroimaging research through scalable and interpretable analysis. |
ArticleNumber | 111988 |
Author | Du, Yuhui Wang, Yulong Pearlson, Godfrey D van Erp, Theo G.M. Calhoun, Vince D Kochunov, Peter |
Author_xml | – sequence: 1 givenname: Yulong surname: Wang fullname: Wang, Yulong organization: School of Computer and Information Technology, Shanxi University, Taiyuan, PR China – sequence: 2 givenname: Vince D surname: Calhoun fullname: Calhoun, Vince D organization: Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA – sequence: 3 givenname: Godfrey D surname: Pearlson fullname: Pearlson, Godfrey D organization: Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA – sequence: 4 givenname: Peter surname: Kochunov fullname: Kochunov, Peter organization: Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA – sequence: 5 givenname: Theo G.M. surname: van Erp fullname: van Erp, Theo G.M. organization: Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA – sequence: 6 givenname: Yuhui orcidid: 0000-0002-0079-8177 surname: Du fullname: Du, Yuhui email: duyuhui@sxu.edu.cn organization: School of Computer and Information Technology, Shanxi University, Taiyuan, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40688537$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtPwzAMgHMYYg_4Bwj1yKUjj7ZrL0jTxEuaxGWcIzd1R0abjKQd2r8nUwdHTpbtz5b9TcnIWIOE3DA6Z5Rl97v5Hjplt3NOeTpnjBV5PiITSgWLBadiTKbe7yhlC5bwSzJOaJbnqVhMyGYZbR3sP6LOgfG1dS26uASPVVTb3lTQaWui1lbYhIKLSgfaRHVv1KkBTaSsMRiSg-6OkcHu27rPK3JRQ-Px-hxn5P3pcbN6iddvz6-r5TpWgokuVpznUKXhFJ5yhYxyBTxdUE4hK1LMSpaUAHmSJFQA51BnoctEJYq6UGXJxYzcDXv3zn716DvZaq-wacCg7b0UXLCCilwkAb09o33ZYiX3TrfgjvLXRACSAVDOeu-w_kMYlSfJcicHyfIkWQ6Sw9jDMIbhz4NGJ73SaBRW2gUtsrL6_wU_m6mIfQ |
Cites_doi | 10.1109/TMI.2024.3414476 10.1109/TPAMI.2024.3524440 10.1016/j.neubiorev.2024.105839 10.1038/s41586-024-07894-z 10.1016/j.knosys.2021.107564 10.1016/j.biopsych.2023.03.025 10.1016/j.media.2021.102233 10.1038/s41386-021-01132-0 10.1002/mds.29570 10.1016/j.neubiorev.2022.104701 10.1073/pnas.2221533120 10.1038/s42003-021-02592-2 10.1109/TMI.2022.3222093 10.1038/s41591-024-03185-2 10.1109/JBHI.2023.3274531 10.1016/j.patcog.2022.109106 10.1016/j.patcog.2023.110209 10.1038/s41586-018-0579-z |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.patcog.2025.111988 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 40688537 10_1016_j_patcog_2025_111988 S003132032500648X |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: U24 RR021992 – fundername: NIMH NIH HHS grantid: R01 MH123610 – fundername: NCRR NIH HHS grantid: U24 RR025736 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADMXK ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AAYXX ACLOT CITATION ~HD AFXIZ AGRNS BNPGV NPM RIG SSH 7X8 |
ID | FETCH-LOGICAL-c313t-c228ad5688252ce102ca257020a695e6b14baa844403a22af625713d39f9cbb23 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Fri Sep 05 15:38:10 EDT 2025 Fri Jul 25 01:50:34 EDT 2025 Wed Oct 01 05:39:41 EDT 2025 Sat Sep 13 17:01:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph Transformer Autoencoder Brain network Foundation model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-c228ad5688252ce102ca257020a695e6b14baa844403a22af625713d39f9cbb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0079-8177 |
PMID | 40688537 |
PQID | 3231903834 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3231903834 pubmed_primary_40688537 crossref_primary_10_1016_j_patcog_2025_111988 elsevier_sciencedirect_doi_10_1016_j_patcog_2025_111988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2026 2026-01-00 2026-Jan 20260101 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Pattern recognition |
PublicationTitleAlternate | Pattern Recognit |
PublicationYear | 2026 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Zhao, Marostica, Yuan, Jin, Zhang, Li, Tang, Wang, Li, Wang, Peng, Zhu, Zhang, Jackson, Zhang, Dillon, Lin, Sholl, Denize, Meredith, Ligon, Signoretti, Ogino, Golden, Nasrallah, Han, Yang, Yu (bib0001) 2024; 634 Zhang, Zhou, Adhikarla, Yan, Liu, Yu, Liu, Chen, Davison, Ren, Huang, Chen, Zhou, Fu, Liu, Liu, Li, Chen, He, Zou, Li, Liu, Sun (bib0002) 2024; 30 Wu, Zhao, Yang, Zhang, Nie, Jiang, Bian, Yan (bib0014) 2024 Ronde, van der Zee, Kas (bib0037) 2024; 164 Xie, Girshick, Farhadi (bib0034) 2016 Dwivedi, Bresson (bib0016) 2020 Cai, Gao, Liu (bib0018) 2022; 42 Lei, Zhu, Yu, Hu, Xu, Yue, Wang, Zhao, Chen, Yang, Song, Xiao, Wang (bib0004) 2023; 134 Passiatore, Antonucci, DeRamus, Fazio, Stolfa, Sportelli, Kikidis, Blasi, Chen, Dukart (bib0029) 2023; 120 A. Bryutkin, J. Huang, Z. Deng, G. Yang, C.-B. Schönlieb, A.I. Aviles-Rivero, HAMLET: Graph Transformer Neural Operator For Partial Differential Equations, Forty-first International Conference on Machine Learning. Li, Zhou, Dvornek, Zhang, Gao, Zhuang, Scheinost, Staib, Ventola, Duncan (bib0033) 2021; 74 Dhamala, Ooi, Chen, Ricard, Berkeley, Chopra, Qu, Zhang, Lawhead, Yeo (bib0030) 2023; 94 Jiao, Zhou, Li, Xia, Huang, Huang, Wang, Zhang, Zhou, Wang, Guo (bib0003) 2024 Aviles-Rivero, Runkel, Papadakis, Kourtzi, Schönlieb (bib0005) 2022 Gao, Zhang, Lin, Zhao, Du, Zou (bib0006) 2021 Han, Xue, Du, Gao (bib0007) 2024 Dondé, Kantrowitz, Medalia, Saperstein, Balla, Sehatpour, Martinez, O’Connell, Javitt (bib0036) 2023 Dai, Feng, Ma, Zhao, Gao (bib0026) 2025; 47 Kipf, Welling (bib0032) 2017 Yang, Ye, Su, Zhang, Chang, Chen, Chan, Yu, Ma (bib0010) 2024; 43 Zhuang, Xu, Zhang, Liu, Fan, Wang (bib0012) 2024 Mrabah, Bouguessa, Ksantini (bib0019) 2024; 149 Park, Lee, Chang, Lee, Choi (bib0022) 2019 Friedman, Robbins (bib0040) 2021; 47 Han, Xue, Feng, Feng, Du, Shi, Gao (bib0011) 2025 Wu, Jain, Wright, Mirhoseini, Gonzalez, Stoica (bib0013) 2021; 34 Wen, Cao, Liu, Yang, Zhang, Wang, Zaiane (bib0009) 2023; 27 Feng, Zhi, Feng, Jiang, Fu, Xu, Zhao, Yu, Stevens, Sun (bib0023) 2024 Kipf, Welling (bib0020) 2016 Briley, Webster, Boutry, Cottam, Auer, Liddle, Morriss (bib0039) 2022; 138 Bycroft, Freeman, Petkova, Band, Elliott, Sharp, Motyer, Vukcevic, Delaneau, O'Connell, Cortes, Welsh, Young, Effingham, McVean, Leslie, Allen, Donnelly, Marchini (bib0027) 2018; 562 Sun, Li, Ding, Zhang, Tang (bib0024) 2021; 234 Zuo, Anderson, Bellec, Birn, Biswal, Blautzik, Breitner, Buckner, Calhoun, Castellanos, Chen, Chen, Chen, Chen, Colcombe, Courtney, Craddock, Di Martino, Dong, Fu, Gong, Gorgolewski, Han, He, He, Ho, Holmes, Hou, Huckins, Jiang, Jiang, Kelley, Kelly, King, LaConte, Lainhart, Lei, Li, Li, Li, Lin, Liu, Liu, Liu, Liu, Lu, Lu, Luna, Luo, Lurie, Mao, Margulies, Mayer, Meindl, Meyerand, Nan, Nielsen, O’Connor, Paulsen, Prabhakaran, Qi, Qiu, Shao, Shehzad, Tang, Villringer, Wang, Wang, Wei, Wei, Weng, Wu, Xu, Yang, Yang, Zang, Zhang, Zhang, Zhang, Zhang, Zhao, Zhen, Zhou, Zhu, Milham (bib0035) 2014 Fang, Wu, Wang, Qiu, Bozoki, Liu (bib0008) 2025 Fu, Peng, He, Wang, Zou, Xu, Jing, You (bib0025) 2024 Du, Fu, Sui, Gao, Xing, Lin, Salman, Abrol, Rahaman, Chen (bib0028) 2020; 28 Van Cauwenberge, Delva, Vande Casteele, Laroy, Radwan, Vansteelandt, Van den Stock, Bouckaert, Van Laere, Emsell, Vandenberghe, Vandenbulcke (bib0038) 2023; 38 Kan, Dai, Cui, Zhang, Guo, Yang (bib0017) 2022; 35 Du, Fu, Xing, Lin, Pearlson, Kochunov, Hong, Qi, Salman, Abrol, Calhoun (bib0031) 2021; 4 Wang, Pan, Hu, Long, Jiang, Zhang (bib0021) 2019 Zhang (10.1016/j.patcog.2025.111988_bib0002) 2024; 30 Yang (10.1016/j.patcog.2025.111988_bib0010) 2024; 43 Friedman (10.1016/j.patcog.2025.111988_bib0040) 2021; 47 Van Cauwenberge (10.1016/j.patcog.2025.111988_bib0038) 2023; 38 Mrabah (10.1016/j.patcog.2025.111988_bib0019) 2024; 149 Xie (10.1016/j.patcog.2025.111988_bib0034) 2016 Zuo (10.1016/j.patcog.2025.111988_bib0035) 2014 Wu (10.1016/j.patcog.2025.111988_bib0014) 2024 Wang (10.1016/j.patcog.2025.111988_bib0001) 2024; 634 Park (10.1016/j.patcog.2025.111988_bib0022) 2019 Passiatore (10.1016/j.patcog.2025.111988_bib0029) 2023; 120 Kipf (10.1016/j.patcog.2025.111988_bib0020) 2016 Aviles-Rivero (10.1016/j.patcog.2025.111988_bib0005) 2022 Wen (10.1016/j.patcog.2025.111988_bib0009) 2023; 27 Lei (10.1016/j.patcog.2025.111988_bib0004) 2023; 134 Han (10.1016/j.patcog.2025.111988_bib0011) 2025 Zhuang (10.1016/j.patcog.2025.111988_bib0012) 2024 Fu (10.1016/j.patcog.2025.111988_bib0025) 2024 Fang (10.1016/j.patcog.2025.111988_bib0008) 2025 Du (10.1016/j.patcog.2025.111988_bib0031) 2021; 4 Wang (10.1016/j.patcog.2025.111988_bib0021) 2019 Jiao (10.1016/j.patcog.2025.111988_bib0003) 2024 Ronde (10.1016/j.patcog.2025.111988_bib0037) 2024; 164 Sun (10.1016/j.patcog.2025.111988_bib0024) 2021; 234 10.1016/j.patcog.2025.111988_bib0015 Dwivedi (10.1016/j.patcog.2025.111988_bib0016) 2020 Briley (10.1016/j.patcog.2025.111988_bib0039) 2022; 138 Cai (10.1016/j.patcog.2025.111988_bib0018) 2022; 42 Feng (10.1016/j.patcog.2025.111988_bib0023) 2024 Dai (10.1016/j.patcog.2025.111988_bib0026) 2025; 47 Du (10.1016/j.patcog.2025.111988_bib0028) 2020; 28 Han (10.1016/j.patcog.2025.111988_bib0007) 2024 Bycroft (10.1016/j.patcog.2025.111988_bib0027) 2018; 562 Wu (10.1016/j.patcog.2025.111988_bib0013) 2021; 34 Kan (10.1016/j.patcog.2025.111988_bib0017) 2022; 35 Kipf (10.1016/j.patcog.2025.111988_bib0032) 2017 Li (10.1016/j.patcog.2025.111988_bib0033) 2021; 74 Gao (10.1016/j.patcog.2025.111988_bib0006) 2021 Dhamala (10.1016/j.patcog.2025.111988_bib0030) 2023; 94 Dondé (10.1016/j.patcog.2025.111988_bib0036) 2023 |
References_xml | – start-page: 3670 year: 2019 end-page: 3676 ident: bib0021 article-title: Attributed graph clustering: a deep attentional embedding approach publication-title: International Joint Conference on Artificial Intelligence 2019 – start-page: 1 year: 2014 ident: bib0035 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Sci. Data – start-page: 77 year: 2024 ident: bib0023 article-title: Functional Imaging Derived ADHD Biotypes Based On Deep clustering: a Study On Personalized Medication Therapy Guidance – volume: 4 start-page: 1073 year: 2021 ident: bib0031 article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder publication-title: Commun. Biol. – volume: 47 start-page: 72 year: 2021 end-page: 89 ident: bib0040 article-title: The role of prefrontal cortex in cognitive control and executive function publication-title: Neuropsychopharmacology – start-page: 36 year: 2024 ident: bib0014 article-title: Simplifying and empowering transformers for large-graph representations publication-title: Adv. Neural Inf. Process. Syst. – volume: 234 year: 2021 ident: bib0024 article-title: Dual-decoder graph autoencoder for unsupervised graph representation learning publication-title: Knowl. Based Syst. – start-page: 1 year: 2017 end-page: 12 ident: bib0032 article-title: Semi-supervised classification with graph convolutional networks publication-title: The 5th International Conference on Learning Representations (ICLR 2017) – year: 2021 ident: bib0006 article-title: Hypergraph Learning: Methods and Practices – start-page: 1 year: 2025 end-page: 15 ident: bib0011 article-title: Hypergraph Foundation model for brain disease diagnosis publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 34 start-page: 13266 year: 2021 end-page: 13279 ident: bib0013 article-title: Representing long-range context for graph neural networks with global attention publication-title: Adv. Neural Inf. Process. Syst. – start-page: 216 year: 2024 end-page: 226 ident: bib0007 article-title: Inter-intra high-order brain network for ASD diagnosis via functional MRIs publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 157 year: 2025 ident: bib0008 article-title: Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis publication-title: Pattern Recognit.. – volume: 94 start-page: 479 year: 2023 end-page: 491 ident: bib0030 article-title: Brain-based predictions of psychiatric illness–linked behaviors across the sexes publication-title: Biol. Psychiatry – volume: 42 start-page: 456 year: 2022 end-page: 466 ident: bib0018 article-title: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation publication-title: IEEE Trans. Med. Imaging – reference: A. Bryutkin, J. Huang, Z. Deng, G. Yang, C.-B. Schönlieb, A.I. Aviles-Rivero, HAMLET: Graph Transformer Neural Operator For Partial Differential Equations, Forty-first International Conference on Machine Learning. – volume: 134 year: 2023 ident: bib0004 article-title: Multi-scale enhanced graph convolutional network for mild cognitive impairment detection publication-title: Pattern Recognit.. – year: 2024 ident: bib0025 article-title: Multilevel contrastive graph masked autoencoders for unsupervised graph-structure learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 35 start-page: 25586 year: 2022 end-page: 25599 ident: bib0017 article-title: Brain network transformer publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 year: 2020 ident: bib0028 article-title: NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders publication-title: NeuroImage: Clinical – start-page: 148 year: 2023 ident: bib0036 article-title: Early auditory processing dysfunction in schizophrenia: mechanisms and implications publication-title: Neurosci. Biobehav. Rev. – volume: 74 year: 2021 ident: bib0033 article-title: BrainGNN: interpretable Brain graph Neural Network for fMRI analysis publication-title: Med. Image Anal. – volume: 30 start-page: 3129 year: 2024 end-page: 3141 ident: bib0002 article-title: A generalist vision–language foundation model for diverse biomedical tasks publication-title: Nat. Med. – volume: 38 start-page: 1786 year: 2023 end-page: 1794 ident: bib0038 article-title: Mild motor signs in healthy aging are associated with lower synaptic density in the brain publication-title: Movem. Disord. – volume: 634 start-page: 970 year: 2024 end-page: 978 ident: bib0001 article-title: A pathology foundation model for cancer diagnosis and prognosis prediction publication-title: Nature – volume: 47 start-page: 2370 year: 2025 end-page: 2387 ident: bib0026 article-title: Cross-modal 3D shape retrieval via heterogeneous dynamic graph representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 120 year: 2023 ident: bib0029 article-title: Changes in patterns of age-related network connectivity are associated with risk for schizophrenia publication-title: Proceed. Natl. Acad. Sci. – volume: 164 year: 2024 ident: bib0037 article-title: Default mode network dynamics: an integrated neurocircuitry perspective on social dysfunction in human brain disorders publication-title: Neurosci. Biobehav. Rev. – start-page: 717 year: 2022 end-page: 727 ident: bib0005 article-title: Multi-modal hypergraph diffusion network with dual prior for alzheimer classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 96 year: 2024 ident: bib0003 article-title: USFM: a universal ultrasound foundation model generalized to tasks and organs towards label efficient image analysis publication-title: Med. Image Anal. – volume: 27 start-page: 4154 year: 2023 end-page: 4165 ident: bib0009 article-title: Graph self-supervised learning with application to brain networks analysis publication-title: IEEE J. Biomed. Health Inform. – volume: 149 year: 2024 ident: bib0019 article-title: A contrastive variational graph auto-encoder for node clustering publication-title: Pattern Recognit. – year: 2016 ident: bib0020 article-title: Variational Graph Auto-Encoders – volume: 43 start-page: 4004 year: 2024 end-page: 4016 ident: bib0010 article-title: BrainMass: advancing brain network analysis for diagnosis with large-scale self-supervised learning publication-title: IEEE Trans. Med. Imaging – volume: 562 start-page: 203 year: 2018 end-page: 209 ident: bib0027 article-title: The UK Biobank resource with deep phenotyping and genomic data publication-title: Nature – year: 2020 ident: bib0016 article-title: A Generalization of Transformer Networks to Graphs – start-page: 6519 year: 2019 end-page: 6528 ident: bib0022 article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning publication-title: Proceedings of the IEEE/CVF international conference on computer vision – volume: 138 start-page: 104701 year: 2022 end-page: 104713 ident: bib0039 article-title: Resting-state functional connectivity correlates of anxiety co-morbidity in major depressive disorder publication-title: Neurosci. Biobehav. Rev. – start-page: 143 year: 2024 end-page: 152 ident: bib0012 article-title: Anatomical Embedding-Based Training Method for Medical Image Segmentation Foundation Models, International Workshop On Foundation Models For General Medical AI – start-page: 478 year: 2016 end-page: 487 ident: bib0034 article-title: Unsupervised deep embedding for clustering analysis publication-title: International conference on machine learning – start-page: 143 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0012 – volume: 34 start-page: 13266 year: 2021 ident: 10.1016/j.patcog.2025.111988_bib0013 article-title: Representing long-range context for graph neural networks with global attention publication-title: Adv. Neural Inf. Process. Syst. – volume: 43 start-page: 4004 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0010 article-title: BrainMass: advancing brain network analysis for diagnosis with large-scale self-supervised learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2024.3414476 – volume: 35 start-page: 25586 year: 2022 ident: 10.1016/j.patcog.2025.111988_bib0017 article-title: Brain network transformer publication-title: Adv. Neural Inf. Process. Syst. – volume: 47 start-page: 2370 year: 2025 ident: 10.1016/j.patcog.2025.111988_bib0026 article-title: Cross-modal 3D shape retrieval via heterogeneous dynamic graph representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2024.3524440 – volume: 164 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0037 article-title: Default mode network dynamics: an integrated neurocircuitry perspective on social dysfunction in human brain disorders publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2024.105839 – year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0025 article-title: Multilevel contrastive graph masked autoencoders for unsupervised graph-structure learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2020 ident: 10.1016/j.patcog.2025.111988_bib0016 – volume: 634 start-page: 970 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0001 article-title: A pathology foundation model for cancer diagnosis and prognosis prediction publication-title: Nature doi: 10.1038/s41586-024-07894-z – volume: 234 year: 2021 ident: 10.1016/j.patcog.2025.111988_bib0024 article-title: Dual-decoder graph autoencoder for unsupervised graph representation learning publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107564 – start-page: 717 year: 2022 ident: 10.1016/j.patcog.2025.111988_bib0005 article-title: Multi-modal hypergraph diffusion network with dual prior for alzheimer classification – volume: 94 start-page: 479 year: 2023 ident: 10.1016/j.patcog.2025.111988_bib0030 article-title: Brain-based predictions of psychiatric illness–linked behaviors across the sexes publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2023.03.025 – start-page: 148 year: 2023 ident: 10.1016/j.patcog.2025.111988_bib0036 article-title: Early auditory processing dysfunction in schizophrenia: mechanisms and implications publication-title: Neurosci. Biobehav. Rev. – start-page: 77 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0023 – volume: 74 year: 2021 ident: 10.1016/j.patcog.2025.111988_bib0033 article-title: BrainGNN: interpretable Brain graph Neural Network for fMRI analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102233 – volume: 47 start-page: 72 year: 2021 ident: 10.1016/j.patcog.2025.111988_bib0040 article-title: The role of prefrontal cortex in cognitive control and executive function publication-title: Neuropsychopharmacology doi: 10.1038/s41386-021-01132-0 – start-page: 3670 year: 2019 ident: 10.1016/j.patcog.2025.111988_bib0021 article-title: Attributed graph clustering: a deep attentional embedding approach – volume: 38 start-page: 1786 year: 2023 ident: 10.1016/j.patcog.2025.111988_bib0038 article-title: Mild motor signs in healthy aging are associated with lower synaptic density in the brain publication-title: Movem. Disord. doi: 10.1002/mds.29570 – start-page: 6519 year: 2019 ident: 10.1016/j.patcog.2025.111988_bib0022 article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning – volume: 138 start-page: 104701 year: 2022 ident: 10.1016/j.patcog.2025.111988_bib0039 article-title: Resting-state functional connectivity correlates of anxiety co-morbidity in major depressive disorder publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2022.104701 – volume: 120 year: 2023 ident: 10.1016/j.patcog.2025.111988_bib0029 article-title: Changes in patterns of age-related network connectivity are associated with risk for schizophrenia publication-title: Proceed. Natl. Acad. Sci. doi: 10.1073/pnas.2221533120 – start-page: 1 year: 2014 ident: 10.1016/j.patcog.2025.111988_bib0035 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Sci. Data – volume: 4 start-page: 1073 year: 2021 ident: 10.1016/j.patcog.2025.111988_bib0031 article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder publication-title: Commun. Biol. doi: 10.1038/s42003-021-02592-2 – start-page: 1 year: 2025 ident: 10.1016/j.patcog.2025.111988_bib0011 article-title: Hypergraph Foundation model for brain disease diagnosis publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 42 start-page: 456 year: 2022 ident: 10.1016/j.patcog.2025.111988_bib0018 article-title: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3222093 – volume: 28 year: 2020 ident: 10.1016/j.patcog.2025.111988_bib0028 article-title: NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders publication-title: NeuroImage: Clinical – volume: 30 start-page: 3129 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0002 article-title: A generalist vision–language foundation model for diverse biomedical tasks publication-title: Nat. Med. doi: 10.1038/s41591-024-03185-2 – start-page: 216 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0007 article-title: Inter-intra high-order brain network for ASD diagnosis via functional MRIs – volume: 27 start-page: 4154 year: 2023 ident: 10.1016/j.patcog.2025.111988_bib0009 article-title: Graph self-supervised learning with application to brain networks analysis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2023.3274531 – volume: 134 year: 2023 ident: 10.1016/j.patcog.2025.111988_bib0004 article-title: Multi-scale enhanced graph convolutional network for mild cognitive impairment detection publication-title: Pattern Recognit.. doi: 10.1016/j.patcog.2022.109106 – start-page: 157 year: 2025 ident: 10.1016/j.patcog.2025.111988_bib0008 article-title: Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis publication-title: Pattern Recognit.. – start-page: 96 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0003 article-title: USFM: a universal ultrasound foundation model generalized to tasks and organs towards label efficient image analysis publication-title: Med. Image Anal. – year: 2016 ident: 10.1016/j.patcog.2025.111988_bib0020 – ident: 10.1016/j.patcog.2025.111988_bib0015 – volume: 149 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0019 article-title: A contrastive variational graph auto-encoder for node clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.110209 – volume: 562 start-page: 203 year: 2018 ident: 10.1016/j.patcog.2025.111988_bib0027 article-title: The UK Biobank resource with deep phenotyping and genomic data publication-title: Nature doi: 10.1038/s41586-018-0579-z – year: 2021 ident: 10.1016/j.patcog.2025.111988_bib0006 – start-page: 478 year: 2016 ident: 10.1016/j.patcog.2025.111988_bib0034 article-title: Unsupervised deep embedding for clustering analysis – start-page: 36 year: 2024 ident: 10.1016/j.patcog.2025.111988_bib0014 article-title: Simplifying and empowering transformers for large-graph representations publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2025.111988_bib0032 article-title: Semi-supervised classification with graph convolutional networks |
SSID | ssj0017142 |
Score | 2.495825 |
Snippet | Although foundation models have advanced many medical imaging fields, their absence in neuroimage analysis limits progress in neuroscience and clinical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 111988 |
SubjectTerms | Autoencoder Brain network Foundation model Graph Transformer |
Title | A graph transformer-based foundation model for brain functional connectivity network |
URI | https://dx.doi.org/10.1016/j.patcog.2025.111988 https://www.ncbi.nlm.nih.gov/pubmed/40688537 https://www.proquest.com/docview/3231903834 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0031-3203 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: Sciencedirect - Freedom Collection issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalu-yy96N7FA92zZrYzutYykq3sZ5a6M34ldEd0tKl1_32SXFSGGwMdoxJiJFs6ZMt6SPkPs4LwMUQlkS8yAIR2SzQMXbLyyPNneJWWLzRfZ0mk7l4XsSLDhm1tTCYVtnYfm_Ta2vdjAwaaQ7WyyXW-GLbwZCDEwe_mi2wgl0kmNb38LlL80B-b98xnMME4O22fK7O8VqDuVu9QZTIYrQdec2_8qN7-g1-1m5ofEQOGvxIh36Kx6TjyhNy2HIz0GarnpLZkNa9qGnVIlO3CdBlWVrsmJRozYMDAxuqkSqCopfzh4PUYAaM8dwStPTJ4mdkPn6cjSZBw6AQGJBNFRjGMmXjBGB0zIwDMGEU0taxUCV57BIdCa1UJoQIuWJMFRANQdRqOWjQaM34OemWq9JdEppwjR2MImtQf2mRu9QmoS5EaBOnVNQjQSs4ufaNMmSbQfYuvaAlClp6QfdI2kpXflO4BFv-x5d3rTIk7AW84FClW20_JAewmocQc4seufBa2s1FILtOzNOrf__3muzDU3P-ckO61WbrbgGRVLpfL7k-2Rs-vUymX6yA3-w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5NBeui_pqkKvJrYleTmG0JA0yymB3IRkySU9OCFN_r8jyw4UWgq9yhiLGevNG2k0D-CFpznyYkxLAponHgt04iluu-WlgaJGUs20PdGdTKPBnL0t-KIBvfoujC2rrLDfYXqJ1tVIp7JmZ71c2ju-tu2gTzGIY1xNFgfQYhwxuQmt7nA0mO4PE-KAuabhFOeAL9Q36MoyrzUi3uodE8WQW_hISwmWHyPUbwy0jET9UziuKCTpulmeQcMU53BSyzOQarVewKxLynbUZFuTU7PxbNTSJN-LKZFSCgcHNkRZtQhiA53bHySZLYLJnLwEKVy9-CXM-6-z3sCrRBS8DM2z9bIwTKTmETJpHmYG-UQmrXJd6Mso5SZSAVNSJowxn8owlDkmRJi4aopOzJQK6RU0i1VhboBEVNkmRoHOrAvjPDWxjnyVM19HRsqgDV5tOLF2vTJEXUT2IZyhhTW0cIZuQ1xbV3zzuUA4_-PN59oZApeDPeOQhVntPgVFvpr6mHazNlw7L-3nwqzADqfx7b-_-wSHg9lkLMbD6egOjvBJtR1zD83tZmcekKBs1WP1A34BUnTilw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph+transformer-based+foundation+model+for+brain+functional+connectivity+network&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Yulong&rft.au=Calhoun%2C+Vince+D&rft.au=Pearlson%2C+Godfrey+D&rft.au=Kochunov%2C+Peter&rft.date=2026-01-01&rft.issn=0031-3203&rft.volume=169&rft_id=info:doi/10.1016%2Fj.patcog.2025.111988&rft_id=info%3Apmid%2F40688537&rft.externalDocID=40688537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |