Frequency dependence of quantum path interference in non-collinear high-order harmonic generation
High-order harmonic generation(HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependenc...
Saved in:
| Published in | Chinese physics B Vol. 25; no. 2; pp. 129 - 134 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.02.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 1741-4199 |
| DOI | 10.1088/1674-1056/25/2/023301 |
Cover
| Summary: | High-order harmonic generation(HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders.This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. |
|---|---|
| Bibliography: | High-order harmonic generation(HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders.This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. Shi-Yang Zhong, Xin-Kui He, Hao Teng, Peng Ye, Wel Li-Feng Wang, Peng He, and Zhi-Yi Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1 O0190, China high harmonic generation, non-collinear, dipole phase, ultrafast optics 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-1056 2058-3834 1741-4199 |
| DOI: | 10.1088/1674-1056/25/2/023301 |