Mining educational data to predict students performance A comparative study of data mining techniques
Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various...
Saved in:
Published in | Education and information technologies Vol. 26; no. 5; pp. 6051 - 6067 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1360-2357 1573-7608 |
DOI | 10.1007/s10639-021-10575-3 |
Cover
Abstract | Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the academic results and behavior of some engineering students. For this study, we collect data from 80 students from the CSE department. We gather data from mark sheets and other relevant factors that accelerate the results, collected through a survey. Our main goal is to predict the students’ performance. According to this prediction, the counseling department will guide them in advance so that those who are likely to have bad results can do better. The classification can be based on various aspects, as many factors improve the educational system. We have created two datasets focusing on two different angles. Our first dataset classifies and predicts the category of a student (good, bad, medium) on a specific course based on their prerequisite course performance. We have implemented this in the artificial intelligence course. Our second dataset also classifies and predicts the final grade (A, B, C) of any random subject, here we organize our data such a way where it will only focus on how their performance was till the midterm exam. We analyze and compare six classification algorithms. We have focused on all aspects of an algorithm, not only the accuracy level but also the complexity and cost. We have built two final models for two of our datasets based on a decision tree and the naive Bayes algorithms accordingly. |
---|---|
AbstractList | Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the academic results and behavior of some engineering students. For this study, we collect data from 80 students from the CSE department. We gather data from mark sheets and other relevant factors that accelerate the results, collected through a survey. Our main goal is to predict the students' performance. According to this prediction, the counseling department will guide them in advance so that those who are likely to have bad results can do better. The classification can be based on various aspects, as many factors improve the educational system. We have created two datasets focusing on two different angles. Our first dataset classifies and predicts the category of a student (good, bad, medium) on a specific course based on their prerequisite course performance. We have implemented this in the artificial intelligence course. Our second dataset also classifies and predicts the final grade (A, B, C) of any random subject, here we organize our data such a way where it will only focus on how their performance was till the midterm exam. We analyze and compare six classification algorithms. We have focused on all aspects of an algorithm, not only the accuracy level but also the complexity and cost. We have built two final models for two of our datasets based on a decision tree and the naive Bayes algorithms accordingly. |
Audience | Higher Education Postsecondary Education |
Author | Nahar, Khaledun Rashid, Humayara Binte Ria, Tahmina Islam, A. H. M. Saiful Shova, Boishakhe Islam |
Author_xml | – sequence: 1 givenname: Khaledun surname: Nahar fullname: Nahar, Khaledun email: khaledunnahar03@gmail.com organization: Department of CSE, Notre Dame University Bangladesh – sequence: 2 givenname: Boishakhe Islam surname: Shova fullname: Shova, Boishakhe Islam organization: Department of CSE, Notre Dame University Bangladesh – sequence: 3 givenname: Tahmina surname: Ria fullname: Ria, Tahmina organization: Department of CSE, Notre Dame University Bangladesh – sequence: 4 givenname: Humayara Binte surname: Rashid fullname: Rashid, Humayara Binte organization: Department of CSE, Notre Dame University Bangladesh – sequence: 5 givenname: A. H. M. Saiful surname: Islam fullname: Islam, A. H. M. Saiful organization: Department of CSE, Notre Dame University Bangladesh |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1308787$$DView record in ERIC |
BookMark | eNp9kE1LAzEQhoNUsK3-AUHYPxCdJJvN7lFK_aLipfeQTSYlpc2WJD34711bvXjwNAPvPC_MMyOTOEQk5JbBPQNQD5lBIzoKnFEGUkkqLsiUSSWoaqCdjLtogHIh1RWZ5bwFgE7VfErUe4ghbip0R2tKGKLZVc4UU5WhOiR0wZYql6PDWHJ1wOSHtDfR4jW59GaX8eZnzsn6ablevNDVx_Pr4nFFrWCi0N5xy21tBKudAt5Bh7XsWw-Nb30rmx6QI3a-Q8nRN7WTDTDBbS_QSnRiTu7OtZiC1YcU9iZ96uUbE9CqVo15e85tGnJO6LUN5fRHSSbsNAP97Uef_ejRjz750WJE-R_0t_5fSJyhPB7HDSa9HY5plJb_o74ArTd5bQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3406252 crossref_primary_10_1007_s10639_021_10842_3 crossref_primary_10_3389_fnins_2022_1018005 crossref_primary_10_55529_jhmd_32_19_33 crossref_primary_10_1038_s41598_024_76596_3 crossref_primary_10_4108_eetsis_3727 crossref_primary_10_21015_vtcs_v12i2_1944 crossref_primary_10_30935_ojcmt_14367 crossref_primary_10_3390_educsci13010017 crossref_primary_10_1007_s11042_022_13331_y crossref_primary_10_1007_s10639_023_11700_0 crossref_primary_10_7717_peerj_cs_1294 crossref_primary_10_1007_s10639_022_11170_w crossref_primary_10_1016_j_caeai_2024_100254 crossref_primary_10_1038_s41598_024_75242_2 crossref_primary_10_3390_app13053267 crossref_primary_10_1057_s41270_024_00290_6 crossref_primary_10_1016_j_asoc_2024_111460 crossref_primary_10_31681_jetol_1334687 crossref_primary_10_55529_jlls_32_19_33 crossref_primary_10_22144_ctujoisd_2024_321 crossref_primary_10_3390_app12136787 crossref_primary_10_62486_latia20237 crossref_primary_10_62486_latia20238 crossref_primary_10_1007_s10639_021_10780_0 crossref_primary_10_3390_app112411845 crossref_primary_10_3390_electronics12061508 |
Cites_doi | 10.1109/ICCITechn.2014.7073095 10.1109/SKIMA.2014.7083552 10.11591/ijeecs.v9.i2.pp447-459 10.1007/s10916-019-1295-4 10.1109/ICCITechn.2014.7073107 10.1109/TNN.2004.824261 10.1007/978-0-387-73003-5_293 10.1109/CEEE.2017.8412892 10.1007/978-3-319-10247-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
DBID | AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN |
DOI | 10.1007/s10639-021-10575-3 |
DatabaseName | CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC |
DatabaseTitle | CrossRef ERIC |
DatabaseTitleList | ERIC |
Database_xml | – sequence: 1 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education Computer Science |
EISSN | 1573-7608 |
ERIC | EJ1308787 |
EndPage | 6067 |
ExternalDocumentID | EJ1308787 10_1007_s10639_021_10575_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -W8 -Y2 -~C .86 .GO .VR 0-V 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOPQ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACYUM ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDJ EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO ICD IEA IER IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M0P M2O M4Y MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PQEDU PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SW ABRTQ BJH BNH BNI BNJ BNO ERI PET PUEGO REK WWN |
ID | FETCH-LOGICAL-c313t-bd2c2c4a314d702909e45b8f06f8f856b0e2ee9f9e52ef64d560132cb3ec5ed3 |
IEDL.DBID | AGYKE |
ISSN | 1360-2357 |
IngestDate | Tue Sep 02 18:01:19 EDT 2025 Tue Jul 01 04:15:37 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Fri Feb 21 02:48:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | false |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Model building Ensemble learning Data mining techniques Prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-bd2c2c4a314d702909e45b8f06f8f856b0e2ee9f9e52ef64d560132cb3ec5ed3 |
PageCount | 17 |
ParticipantIDs | eric_primary_EJ1308787 crossref_citationtrail_10_1007_s10639_021_10575_3 crossref_primary_10_1007_s10639_021_10575_3 springer_journals_10_1007_s10639_021_10575_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | The Official Journal of the IFIP Technical Committee on Education |
PublicationTitle | Education and information technologies |
PublicationTitleAbbrev | Educ Inf Technol |
PublicationYear | 2021 |
Publisher | Springer US Springer |
Publisher_xml | – name: Springer US – name: Springer |
References | Pathan, A.A., & et al. (2014). Educational data mining: A mining model fordeveloping students’ programming skills. In The 8th International Conference onSoftware, Knowledge, Information Management and Applications (SKIMA 2014): IEEE. BhargaviPJyothiSApplying naive bayes data mining technique for classification of agricultural land soils.International Journal of Computer Science and Network Security20099.8117122 Rahman, Md.H., & Islam, Md.R. (2017). Predict Student’s Academic Performance and Evaluate the Impact of Different Attributes on the Performance Using Data Mining Techniques. In 2017 2nd International Conference on Electrical and Electronic Engineering (ICEEE): IEEE. Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. Pearson Education India. Bhardwaj, B.K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. arXiv preprint arXiv:1201.3418. GarcíaSLuengoJAnd Francisco Herrera. Data preprocessing in data mining2015ChamSpringer International Publishing CaoYWuJDynamics of projective adaptive resonance theory model: the founda-tion of part algorithmIEEE Transactions on Neural Networks200415224526010.1109/TNN.2004.824261 Rashu, R.I., Haq, N., & Rahman, R.M. (2014). Data mining approaches to predict final grade by overcoming class imbalance problem. In 2014 17th International Conference on Computer and Information Technology (ICCIT): IEEE. PriyamAComparative analysis of decision tree classification algorithms.International Journal of Current Engineering and Technology20133.2334337 KabraRRBichkarRSPerformance prediction of engineering students using decision treesInternational Journal of Computer Applications201136.11812 AlasadiSABhayaWSReview of data preprocessing techniques in data mining.Journal of Engineering and Applied Sciences201712.1641024107 VeeramuthuPPeriasamyRApplication of higher education system for predicting student using data mining techniquesInternational Journal of Innovative Research in Advanced Engineering (IJIRAE)20141.53638 FrancisBKBabuSSPredicting academic performance of students using a hybrid data mining approach.Journal of Medical Systems201943.616210.1007/s10916-019-1295-4 Ahmed, S., Paul, R., & Hoque, A.S.Md.L. (2014). Knowledge discovery from academic data using Association Rule Mining. In 2014 17th International Conference on Computer and Information Technology (ICCIT: IEEE. HussainSEducational data mining and analysis of students’ academic performance using WEKA.Indonesian Journal of Electrical Engineering and Computer Science20189.244745910.11591/ijeecs.v9.i2.pp447-459 ZhouZ-HEnsemble learningEncyclopedia of Biometrics2009127027310.1007/978-0-387-73003-5_293 Y Cao (10575_CR5) 2004; 15 S García (10575_CR7) 2015 SA Alasadi (10575_CR2) 2017; 12.16 10575_CR3 BK Francis (10575_CR6) 2019; 43.6 RR Kabra (10575_CR9) 2011; 36.11 S Hussain (10575_CR8) 2018; 9.2 10575_CR12 P Veeramuthu (10575_CR15) 2014; 1.5 10575_CR1 10575_CR10 A Priyam (10575_CR11) 2013; 3.2 P Bhargavi (10575_CR4) 2009; 9.8 Z-H Zhou (10575_CR16) 2009; 1 10575_CR14 10575_CR13 |
References_xml | – reference: BhargaviPJyothiSApplying naive bayes data mining technique for classification of agricultural land soils.International Journal of Computer Science and Network Security20099.8117122 – reference: GarcíaSLuengoJAnd Francisco Herrera. Data preprocessing in data mining2015ChamSpringer International Publishing – reference: HussainSEducational data mining and analysis of students’ academic performance using WEKA.Indonesian Journal of Electrical Engineering and Computer Science20189.244745910.11591/ijeecs.v9.i2.pp447-459 – reference: Ahmed, S., Paul, R., & Hoque, A.S.Md.L. (2014). Knowledge discovery from academic data using Association Rule Mining. In 2014 17th International Conference on Computer and Information Technology (ICCIT: IEEE. – reference: AlasadiSABhayaWSReview of data preprocessing techniques in data mining.Journal of Engineering and Applied Sciences201712.1641024107 – reference: ZhouZ-HEnsemble learningEncyclopedia of Biometrics2009127027310.1007/978-0-387-73003-5_293 – reference: Bhardwaj, B.K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. arXiv preprint arXiv:1201.3418. – reference: FrancisBKBabuSSPredicting academic performance of students using a hybrid data mining approach.Journal of Medical Systems201943.616210.1007/s10916-019-1295-4 – reference: Pathan, A.A., & et al. (2014). Educational data mining: A mining model fordeveloping students’ programming skills. In The 8th International Conference onSoftware, Knowledge, Information Management and Applications (SKIMA 2014): IEEE. – reference: Rahman, Md.H., & Islam, Md.R. (2017). Predict Student’s Academic Performance and Evaluate the Impact of Different Attributes on the Performance Using Data Mining Techniques. In 2017 2nd International Conference on Electrical and Electronic Engineering (ICEEE): IEEE. – reference: CaoYWuJDynamics of projective adaptive resonance theory model: the founda-tion of part algorithmIEEE Transactions on Neural Networks200415224526010.1109/TNN.2004.824261 – reference: KabraRRBichkarRSPerformance prediction of engineering students using decision treesInternational Journal of Computer Applications201136.11812 – reference: VeeramuthuPPeriasamyRApplication of higher education system for predicting student using data mining techniquesInternational Journal of Innovative Research in Advanced Engineering (IJIRAE)20141.53638 – reference: Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. Pearson Education India. – reference: PriyamAComparative analysis of decision tree classification algorithms.International Journal of Current Engineering and Technology20133.2334337 – reference: Rashu, R.I., Haq, N., & Rahman, R.M. (2014). Data mining approaches to predict final grade by overcoming class imbalance problem. In 2014 17th International Conference on Computer and Information Technology (ICCIT): IEEE. – ident: 10575_CR13 doi: 10.1109/ICCITechn.2014.7073095 – ident: 10575_CR10 doi: 10.1109/SKIMA.2014.7083552 – volume: 3.2 start-page: 334 year: 2013 ident: 10575_CR11 publication-title: International Journal of Current Engineering and Technology – volume: 9.8 start-page: 117 year: 2009 ident: 10575_CR4 publication-title: International Journal of Computer Science and Network Security – volume: 9.2 start-page: 447 year: 2018 ident: 10575_CR8 publication-title: Indonesian Journal of Electrical Engineering and Computer Science doi: 10.11591/ijeecs.v9.i2.pp447-459 – ident: 10575_CR14 – volume: 12.16 start-page: 4102 year: 2017 ident: 10575_CR2 publication-title: Journal of Engineering and Applied Sciences – volume: 43.6 start-page: 162 year: 2019 ident: 10575_CR6 publication-title: Journal of Medical Systems doi: 10.1007/s10916-019-1295-4 – volume: 36.11 start-page: 8 year: 2011 ident: 10575_CR9 publication-title: International Journal of Computer Applications – volume: 1.5 start-page: 36 year: 2014 ident: 10575_CR15 publication-title: International Journal of Innovative Research in Advanced Engineering (IJIRAE) – ident: 10575_CR1 doi: 10.1109/ICCITechn.2014.7073107 – volume: 15 start-page: 245 issue: 2 year: 2004 ident: 10575_CR5 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.824261 – volume: 1 start-page: 270 year: 2009 ident: 10575_CR16 publication-title: Encyclopedia of Biometrics doi: 10.1007/978-0-387-73003-5_293 – ident: 10575_CR3 – ident: 10575_CR12 doi: 10.1109/CEEE.2017.8412892 – volume-title: And Francisco Herrera. Data preprocessing in data mining year: 2015 ident: 10575_CR7 doi: 10.1007/978-3-319-10247-4 |
SSID | ssj0009742 |
Score | 2.3718452 |
Snippet | Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful... |
SourceID | eric crossref springer |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 6051 |
SubjectTerms | Academic Achievement Accuracy Artificial Intelligence Bayesian Statistics Classification College Students Comparative Analysis Computer Appl. in Social and Behavioral Sciences Computer Science Computers and Education Courses Data Collection Decision Making Education Educational Counseling Educational Technology Engineering Education Grades (Scholastic) Information Systems Applications (incl.Internet) Learning Analytics Prediction Tests User Interfaces and Human Computer Interaction |
Subtitle | A comparative study of data mining techniques |
Title | Mining educational data to predict students performance |
URI | https://link.springer.com/article/10.1007/s10639-021-10575-3 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1308787 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7608 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7608 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7608 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7608 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009742 issn: 1360-2357 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AojyoDGxjFdpw4YwUtVaEsUKlMUeycF1CpaFj49dipQwGhSiyeLlZy52fuu-8DOIuRSl2onOSpCokrmyVS2Ubnics7GcOU-w85uo8H42g4ERNfFDav0e51SrJaqb8Vu9ndlDhIgdOmFYSvQ1O4C0oDmt2bp9vekmw3qURzKI9D4uhcfLHM37382JBqzPPPpGi11_S3YVy_5QJi8nz5XqpL_fGLwPG_n7EDW_7wGXQXo2UX1nDagu1a2CHw87zlpJw97KMFm98YC_cgGVWCEgHWBrY7BzINytdg9uaSPmUwX9BlzoPZsihhHx77vcerAfHaC0RzykuiCqaZjnJOoyIJWRqmGAklTRgbaaSIVYgMMTUpCoYmjgp3s-NMK45aYMEPoDF9neIhBDSVaBRVLEcbKyqkESgZKqUSpPaA1wZa-z_TnpfcyWO8ZEtGZeeyzLosq1yW8Tacfz0zW7ByrLQ-cGH9suwNqeNBlEkbLuoYZX7qzlf0c_Q_82PYYC7MFSDtBBrl2zue2hNMqTp2wF6P7h46fuB2qlu7bces-wmEPubg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhUJFeWZgA6PYzsMZK9RS-mBqpTJFsXNeQG3Vpgu_njh1WkAIiSXTxUrOdu6c--77AG4DpEKlMiFJJF1i2maJkPlFJaGpO2nNpPkPOXwJumOvN_EntilsWaLdy5Jk8aX-0uyWR1NiIAVGm9YnfBeqHhXCq0C19fTab2_JdsNCNIfywCWGzsU2y_w-yreAVGKevxdFi1jTqcG4fMo1xOTtYZXJB_Xxg8Dxv69xBIc2-XRa69VyDDs4rUOtFHZw7D6vGylnC_uow8EXxsITCIeFoISDpUE-nAGZOtnMmS9M0Sdzlmu6zKUz3zYlnMKo0x49donVXiCKU54RmTLFlJdw6qWhyyI3Qs-XQruBFlr4gXSRIUY6Qp-hDrzUnOw4U5Kj8jHlDahMZ1M8A4dGArWkkiWYHyapL7SPgqGUMkSaJ3hNoKX_Y2V5yY08xnu8ZVQ2Lotzl8WFy2LehLvNPfM1K8ef1g0zrRvLdo8aHkQRNuG-nKPYbt3lH-Oc_8_8Bva6o-EgHjy_9C9gn5kpL8Bpl1DJFiu8yrOZTF7bxfsJeMLmUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAoV5ZmBDSxiOw9nrKBVKbRiaKVuUZycJ9RGbfj_5PLoQ0KVWDJdbjjburPvvu8DePSQqzjREYsCbTOCzTKl808c-dR3MkZoeoccjrz-xBlM3ekGir-Ydq9bkiWmgViaZtlLmpiXDeBbnlkZjReQTq3L5D4cOHmupuvXRHTWtLt-IZ_DpWczInapYDN_-9hKTfX083Z7tMg6vTM4qcpFq1Ou7zns4awJp7UUg1WdzCaJL1eDGk043uAYvAB_WEhAWFgb5O5oLNTK5la6oDZNZi1Lgsulla5hBJcw7nXHr31WqSWwWHKZMZ2IWMROJLmT-LYI7AAdVytje0YZ5XraRoEYmABdgcZzErqLSRFribGLiWxBYzaf4RVYPFBoNNciwvz6x11lXFQCtdY-8rwkawOv4xTGFZM4CVp8h2sOZIptmMc2LGIbyjY8rf5JSx6NndYtCv_KsjvgxFyo_DY81wsSVodtucPP9f_MH-Dw660Xfr6PPm7gSNDWKKbJbqGRLX7wLi8_Mn1f7LBf3ALNnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+educational+data+to+predict+students+performance&rft.jtitle=Education+and+information+technologies&rft.au=Nahar%2C+Khaledun&rft.au=Shova%2C+Boishakhe+Islam&rft.au=Ria%2C+Tahmina&rft.au=Rashid%2C+Humayara+Binte&rft.date=2021-09-01&rft.issn=1360-2357&rft.eissn=1573-7608&rft.volume=26&rft.issue=5&rft.spage=6051&rft.epage=6067&rft_id=info:doi/10.1007%2Fs10639-021-10575-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10639_021_10575_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon |