Mining educational data to predict students performance A comparative study of data mining techniques

Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various...

Full description

Saved in:
Bibliographic Details
Published inEducation and information technologies Vol. 26; no. 5; pp. 6051 - 6067
Main Authors Nahar, Khaledun, Shova, Boishakhe Islam, Ria, Tahmina, Rashid, Humayara Binte, Islam, A. H. M. Saiful
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer
Subjects
Online AccessGet full text
ISSN1360-2357
1573-7608
DOI10.1007/s10639-021-10575-3

Cover

Abstract Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the academic results and behavior of some engineering students. For this study, we collect data from 80 students from the CSE department. We gather data from mark sheets and other relevant factors that accelerate the results, collected through a survey. Our main goal is to predict the students’ performance. According to this prediction, the counseling department will guide them in advance so that those who are likely to have bad results can do better. The classification can be based on various aspects, as many factors improve the educational system. We have created two datasets focusing on two different angles. Our first dataset classifies and predicts the category of a student (good, bad, medium) on a specific course based on their prerequisite course performance. We have implemented this in the artificial intelligence course. Our second dataset also classifies and predicts the final grade (A, B, C) of any random subject, here we organize our data such a way where it will only focus on how their performance was till the midterm exam. We analyze and compare six classification algorithms. We have focused on all aspects of an algorithm, not only the accuracy level but also the complexity and cost. We have built two final models for two of our datasets based on a decision tree and the naive Bayes algorithms accordingly.
AbstractList Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the academic results and behavior of some engineering students. For this study, we collect data from 80 students from the CSE department. We gather data from mark sheets and other relevant factors that accelerate the results, collected through a survey. Our main goal is to predict the students' performance. According to this prediction, the counseling department will guide them in advance so that those who are likely to have bad results can do better. The classification can be based on various aspects, as many factors improve the educational system. We have created two datasets focusing on two different angles. Our first dataset classifies and predicts the category of a student (good, bad, medium) on a specific course based on their prerequisite course performance. We have implemented this in the artificial intelligence course. Our second dataset also classifies and predicts the final grade (A, B, C) of any random subject, here we organize our data such a way where it will only focus on how their performance was till the midterm exam. We analyze and compare six classification algorithms. We have focused on all aspects of an algorithm, not only the accuracy level but also the complexity and cost. We have built two final models for two of our datasets based on a decision tree and the naive Bayes algorithms accordingly.
Audience Higher Education
Postsecondary Education
Author Nahar, Khaledun
Rashid, Humayara Binte
Ria, Tahmina
Islam, A. H. M. Saiful
Shova, Boishakhe Islam
Author_xml – sequence: 1
  givenname: Khaledun
  surname: Nahar
  fullname: Nahar, Khaledun
  email: khaledunnahar03@gmail.com
  organization: Department of CSE, Notre Dame University Bangladesh
– sequence: 2
  givenname: Boishakhe Islam
  surname: Shova
  fullname: Shova, Boishakhe Islam
  organization: Department of CSE, Notre Dame University Bangladesh
– sequence: 3
  givenname: Tahmina
  surname: Ria
  fullname: Ria, Tahmina
  organization: Department of CSE, Notre Dame University Bangladesh
– sequence: 4
  givenname: Humayara Binte
  surname: Rashid
  fullname: Rashid, Humayara Binte
  organization: Department of CSE, Notre Dame University Bangladesh
– sequence: 5
  givenname: A. H. M. Saiful
  surname: Islam
  fullname: Islam, A. H. M. Saiful
  organization: Department of CSE, Notre Dame University Bangladesh
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1308787$$DView record in ERIC
BookMark eNp9kE1LAzEQhoNUsK3-AUHYPxCdJJvN7lFK_aLipfeQTSYlpc2WJD34711bvXjwNAPvPC_MMyOTOEQk5JbBPQNQD5lBIzoKnFEGUkkqLsiUSSWoaqCdjLtogHIh1RWZ5bwFgE7VfErUe4ghbip0R2tKGKLZVc4UU5WhOiR0wZYql6PDWHJ1wOSHtDfR4jW59GaX8eZnzsn6ablevNDVx_Pr4nFFrWCi0N5xy21tBKudAt5Bh7XsWw-Nb30rmx6QI3a-Q8nRN7WTDTDBbS_QSnRiTu7OtZiC1YcU9iZ96uUbE9CqVo15e85tGnJO6LUN5fRHSSbsNAP97Uef_ejRjz750WJE-R_0t_5fSJyhPB7HDSa9HY5plJb_o74ArTd5bQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3406252
crossref_primary_10_1007_s10639_021_10842_3
crossref_primary_10_3389_fnins_2022_1018005
crossref_primary_10_55529_jhmd_32_19_33
crossref_primary_10_1038_s41598_024_76596_3
crossref_primary_10_4108_eetsis_3727
crossref_primary_10_21015_vtcs_v12i2_1944
crossref_primary_10_30935_ojcmt_14367
crossref_primary_10_3390_educsci13010017
crossref_primary_10_1007_s11042_022_13331_y
crossref_primary_10_1007_s10639_023_11700_0
crossref_primary_10_7717_peerj_cs_1294
crossref_primary_10_1007_s10639_022_11170_w
crossref_primary_10_1016_j_caeai_2024_100254
crossref_primary_10_1038_s41598_024_75242_2
crossref_primary_10_3390_app13053267
crossref_primary_10_1057_s41270_024_00290_6
crossref_primary_10_1016_j_asoc_2024_111460
crossref_primary_10_31681_jetol_1334687
crossref_primary_10_55529_jlls_32_19_33
crossref_primary_10_22144_ctujoisd_2024_321
crossref_primary_10_3390_app12136787
crossref_primary_10_62486_latia20237
crossref_primary_10_62486_latia20238
crossref_primary_10_1007_s10639_021_10780_0
crossref_primary_10_3390_app112411845
crossref_primary_10_3390_electronics12061508
Cites_doi 10.1109/ICCITechn.2014.7073095
10.1109/SKIMA.2014.7083552
10.11591/ijeecs.v9.i2.pp447-459
10.1007/s10916-019-1295-4
10.1109/ICCITechn.2014.7073107
10.1109/TNN.2004.824261
10.1007/978-0-387-73003-5_293
10.1109/CEEE.2017.8412892
10.1007/978-3-319-10247-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
DOI 10.1007/s10639-021-10575-3
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
DatabaseTitle CrossRef
ERIC
DatabaseTitleList ERIC

Database_xml – sequence: 1
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
Computer Science
EISSN 1573-7608
ERIC EJ1308787
EndPage 6067
ExternalDocumentID EJ1308787
10_1007_s10639_021_10575_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-W8
-Y2
-~C
.86
.GO
.VR
0-V
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOPQ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACYUM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDJ
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICD
IEA
IER
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M0P
M2O
M4Y
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PQEDU
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SW
ABRTQ
BJH
BNH
BNI
BNJ
BNO
ERI
PET
PUEGO
REK
WWN
ID FETCH-LOGICAL-c313t-bd2c2c4a314d702909e45b8f06f8f856b0e2ee9f9e52ef64d560132cb3ec5ed3
IEDL.DBID AGYKE
ISSN 1360-2357
IngestDate Tue Sep 02 18:01:19 EDT 2025
Tue Jul 01 04:15:37 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Fri Feb 21 02:48:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Model building
Ensemble learning
Data mining techniques
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-bd2c2c4a314d702909e45b8f06f8f856b0e2ee9f9e52ef64d560132cb3ec5ed3
PageCount 17
ParticipantIDs eric_primary_EJ1308787
crossref_citationtrail_10_1007_s10639_021_10575_3
crossref_primary_10_1007_s10639_021_10575_3
springer_journals_10_1007_s10639_021_10575_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Official Journal of the IFIP Technical Committee on Education
PublicationTitle Education and information technologies
PublicationTitleAbbrev Educ Inf Technol
PublicationYear 2021
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References Pathan, A.A., & et al. (2014). Educational data mining: A mining model fordeveloping students’ programming skills. In The 8th International Conference onSoftware, Knowledge, Information Management and Applications (SKIMA 2014): IEEE.
BhargaviPJyothiSApplying naive bayes data mining technique for classification of agricultural land soils.International Journal of Computer Science and Network Security20099.8117122
Rahman, Md.H., & Islam, Md.R. (2017). Predict Student’s Academic Performance and Evaluate the Impact of Different Attributes on the Performance Using Data Mining Techniques. In 2017 2nd International Conference on Electrical and Electronic Engineering (ICEEE): IEEE.
Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. Pearson Education India.
Bhardwaj, B.K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. arXiv preprint arXiv:1201.3418.
GarcíaSLuengoJAnd Francisco Herrera. Data preprocessing in data mining2015ChamSpringer International Publishing
CaoYWuJDynamics of projective adaptive resonance theory model: the founda-tion of part algorithmIEEE Transactions on Neural Networks200415224526010.1109/TNN.2004.824261
Rashu, R.I., Haq, N., & Rahman, R.M. (2014). Data mining approaches to predict final grade by overcoming class imbalance problem. In 2014 17th International Conference on Computer and Information Technology (ICCIT): IEEE.
PriyamAComparative analysis of decision tree classification algorithms.International Journal of Current Engineering and Technology20133.2334337
KabraRRBichkarRSPerformance prediction of engineering students using decision treesInternational Journal of Computer Applications201136.11812
AlasadiSABhayaWSReview of data preprocessing techniques in data mining.Journal of Engineering and Applied Sciences201712.1641024107
VeeramuthuPPeriasamyRApplication of higher education system for predicting student using data mining techniquesInternational Journal of Innovative Research in Advanced Engineering (IJIRAE)20141.53638
FrancisBKBabuSSPredicting academic performance of students using a hybrid data mining approach.Journal of Medical Systems201943.616210.1007/s10916-019-1295-4
Ahmed, S., Paul, R., & Hoque, A.S.Md.L. (2014). Knowledge discovery from academic data using Association Rule Mining. In 2014 17th International Conference on Computer and Information Technology (ICCIT: IEEE.
HussainSEducational data mining and analysis of students’ academic performance using WEKA.Indonesian Journal of Electrical Engineering and Computer Science20189.244745910.11591/ijeecs.v9.i2.pp447-459
ZhouZ-HEnsemble learningEncyclopedia of Biometrics2009127027310.1007/978-0-387-73003-5_293
Y Cao (10575_CR5) 2004; 15
S García (10575_CR7) 2015
SA Alasadi (10575_CR2) 2017; 12.16
10575_CR3
BK Francis (10575_CR6) 2019; 43.6
RR Kabra (10575_CR9) 2011; 36.11
S Hussain (10575_CR8) 2018; 9.2
10575_CR12
P Veeramuthu (10575_CR15) 2014; 1.5
10575_CR1
10575_CR10
A Priyam (10575_CR11) 2013; 3.2
P Bhargavi (10575_CR4) 2009; 9.8
Z-H Zhou (10575_CR16) 2009; 1
10575_CR14
10575_CR13
References_xml – reference: BhargaviPJyothiSApplying naive bayes data mining technique for classification of agricultural land soils.International Journal of Computer Science and Network Security20099.8117122
– reference: GarcíaSLuengoJAnd Francisco Herrera. Data preprocessing in data mining2015ChamSpringer International Publishing
– reference: HussainSEducational data mining and analysis of students’ academic performance using WEKA.Indonesian Journal of Electrical Engineering and Computer Science20189.244745910.11591/ijeecs.v9.i2.pp447-459
– reference: Ahmed, S., Paul, R., & Hoque, A.S.Md.L. (2014). Knowledge discovery from academic data using Association Rule Mining. In 2014 17th International Conference on Computer and Information Technology (ICCIT: IEEE.
– reference: AlasadiSABhayaWSReview of data preprocessing techniques in data mining.Journal of Engineering and Applied Sciences201712.1641024107
– reference: ZhouZ-HEnsemble learningEncyclopedia of Biometrics2009127027310.1007/978-0-387-73003-5_293
– reference: Bhardwaj, B.K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. arXiv preprint arXiv:1201.3418.
– reference: FrancisBKBabuSSPredicting academic performance of students using a hybrid data mining approach.Journal of Medical Systems201943.616210.1007/s10916-019-1295-4
– reference: Pathan, A.A., & et al. (2014). Educational data mining: A mining model fordeveloping students’ programming skills. In The 8th International Conference onSoftware, Knowledge, Information Management and Applications (SKIMA 2014): IEEE.
– reference: Rahman, Md.H., & Islam, Md.R. (2017). Predict Student’s Academic Performance and Evaluate the Impact of Different Attributes on the Performance Using Data Mining Techniques. In 2017 2nd International Conference on Electrical and Electronic Engineering (ICEEE): IEEE.
– reference: CaoYWuJDynamics of projective adaptive resonance theory model: the founda-tion of part algorithmIEEE Transactions on Neural Networks200415224526010.1109/TNN.2004.824261
– reference: KabraRRBichkarRSPerformance prediction of engineering students using decision treesInternational Journal of Computer Applications201136.11812
– reference: VeeramuthuPPeriasamyRApplication of higher education system for predicting student using data mining techniquesInternational Journal of Innovative Research in Advanced Engineering (IJIRAE)20141.53638
– reference: Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. Pearson Education India.
– reference: PriyamAComparative analysis of decision tree classification algorithms.International Journal of Current Engineering and Technology20133.2334337
– reference: Rashu, R.I., Haq, N., & Rahman, R.M. (2014). Data mining approaches to predict final grade by overcoming class imbalance problem. In 2014 17th International Conference on Computer and Information Technology (ICCIT): IEEE.
– ident: 10575_CR13
  doi: 10.1109/ICCITechn.2014.7073095
– ident: 10575_CR10
  doi: 10.1109/SKIMA.2014.7083552
– volume: 3.2
  start-page: 334
  year: 2013
  ident: 10575_CR11
  publication-title: International Journal of Current Engineering and Technology
– volume: 9.8
  start-page: 117
  year: 2009
  ident: 10575_CR4
  publication-title: International Journal of Computer Science and Network Security
– volume: 9.2
  start-page: 447
  year: 2018
  ident: 10575_CR8
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
  doi: 10.11591/ijeecs.v9.i2.pp447-459
– ident: 10575_CR14
– volume: 12.16
  start-page: 4102
  year: 2017
  ident: 10575_CR2
  publication-title: Journal of Engineering and Applied Sciences
– volume: 43.6
  start-page: 162
  year: 2019
  ident: 10575_CR6
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-019-1295-4
– volume: 36.11
  start-page: 8
  year: 2011
  ident: 10575_CR9
  publication-title: International Journal of Computer Applications
– volume: 1.5
  start-page: 36
  year: 2014
  ident: 10575_CR15
  publication-title: International Journal of Innovative Research in Advanced Engineering (IJIRAE)
– ident: 10575_CR1
  doi: 10.1109/ICCITechn.2014.7073107
– volume: 15
  start-page: 245
  issue: 2
  year: 2004
  ident: 10575_CR5
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2004.824261
– volume: 1
  start-page: 270
  year: 2009
  ident: 10575_CR16
  publication-title: Encyclopedia of Biometrics
  doi: 10.1007/978-0-387-73003-5_293
– ident: 10575_CR3
– ident: 10575_CR12
  doi: 10.1109/CEEE.2017.8412892
– volume-title: And Francisco Herrera. Data preprocessing in data mining
  year: 2015
  ident: 10575_CR7
  doi: 10.1007/978-3-319-10247-4
SSID ssj0009742
Score 2.3718452
Snippet Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful...
SourceID eric
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 6051
SubjectTerms Academic Achievement
Accuracy
Artificial Intelligence
Bayesian Statistics
Classification
College Students
Comparative Analysis
Computer Appl. in Social and Behavioral Sciences
Computer Science
Computers and Education
Courses
Data Collection
Decision Making
Education
Educational Counseling
Educational Technology
Engineering Education
Grades (Scholastic)
Information Systems Applications (incl.Internet)
Learning Analytics
Prediction
Tests
User Interfaces and Human Computer Interaction
Subtitle A comparative study of data mining techniques
Title Mining educational data to predict students performance
URI https://link.springer.com/article/10.1007/s10639-021-10575-3
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1308787
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7608
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7608
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7608
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7608
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009742
  issn: 1360-2357
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AojyoDGxjFdpw4YwUtVaEsUKlMUeycF1CpaFj49dipQwGhSiyeLlZy52fuu-8DOIuRSl2onOSpCokrmyVS2Ubnics7GcOU-w85uo8H42g4ERNfFDav0e51SrJaqb8Vu9ndlDhIgdOmFYSvQ1O4C0oDmt2bp9vekmw3qURzKI9D4uhcfLHM37382JBqzPPPpGi11_S3YVy_5QJi8nz5XqpL_fGLwPG_n7EDW_7wGXQXo2UX1nDagu1a2CHw87zlpJw97KMFm98YC_cgGVWCEgHWBrY7BzINytdg9uaSPmUwX9BlzoPZsihhHx77vcerAfHaC0RzykuiCqaZjnJOoyIJWRqmGAklTRgbaaSIVYgMMTUpCoYmjgp3s-NMK45aYMEPoDF9neIhBDSVaBRVLEcbKyqkESgZKqUSpPaA1wZa-z_TnpfcyWO8ZEtGZeeyzLosq1yW8Tacfz0zW7ByrLQ-cGH9suwNqeNBlEkbLuoYZX7qzlf0c_Q_82PYYC7MFSDtBBrl2zue2hNMqTp2wF6P7h46fuB2qlu7bces-wmEPubg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhUJFeWZgA6PYzsMZK9RS-mBqpTJFsXNeQG3Vpgu_njh1WkAIiSXTxUrOdu6c--77AG4DpEKlMiFJJF1i2maJkPlFJaGpO2nNpPkPOXwJumOvN_EntilsWaLdy5Jk8aX-0uyWR1NiIAVGm9YnfBeqHhXCq0C19fTab2_JdsNCNIfywCWGzsU2y_w-yreAVGKevxdFi1jTqcG4fMo1xOTtYZXJB_Xxg8Dxv69xBIc2-XRa69VyDDs4rUOtFHZw7D6vGylnC_uow8EXxsITCIeFoISDpUE-nAGZOtnMmS9M0Sdzlmu6zKUz3zYlnMKo0x49donVXiCKU54RmTLFlJdw6qWhyyI3Qs-XQruBFlr4gXSRIUY6Qp-hDrzUnOw4U5Kj8jHlDahMZ1M8A4dGArWkkiWYHyapL7SPgqGUMkSaJ3hNoKX_Y2V5yY08xnu8ZVQ2Lotzl8WFy2LehLvNPfM1K8ef1g0zrRvLdo8aHkQRNuG-nKPYbt3lH-Oc_8_8Bva6o-EgHjy_9C9gn5kpL8Bpl1DJFiu8yrOZTF7bxfsJeMLmUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAoV5ZmBDSxiOw9nrKBVKbRiaKVuUZycJ9RGbfj_5PLoQ0KVWDJdbjjburPvvu8DePSQqzjREYsCbTOCzTKl808c-dR3MkZoeoccjrz-xBlM3ekGir-Ydq9bkiWmgViaZtlLmpiXDeBbnlkZjReQTq3L5D4cOHmupuvXRHTWtLt-IZ_DpWczInapYDN_-9hKTfX083Z7tMg6vTM4qcpFq1Ou7zns4awJp7UUg1WdzCaJL1eDGk043uAYvAB_WEhAWFgb5O5oLNTK5la6oDZNZi1Lgsulla5hBJcw7nXHr31WqSWwWHKZMZ2IWMROJLmT-LYI7AAdVytje0YZ5XraRoEYmABdgcZzErqLSRFribGLiWxBYzaf4RVYPFBoNNciwvz6x11lXFQCtdY-8rwkawOv4xTGFZM4CVp8h2sOZIptmMc2LGIbyjY8rf5JSx6NndYtCv_KsjvgxFyo_DY81wsSVodtucPP9f_MH-Dw660Xfr6PPm7gSNDWKKbJbqGRLX7wLi8_Mn1f7LBf3ALNnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+educational+data+to+predict+students+performance&rft.jtitle=Education+and+information+technologies&rft.au=Nahar%2C+Khaledun&rft.au=Shova%2C+Boishakhe+Islam&rft.au=Ria%2C+Tahmina&rft.au=Rashid%2C+Humayara+Binte&rft.date=2021-09-01&rft.issn=1360-2357&rft.eissn=1573-7608&rft.volume=26&rft.issue=5&rft.spage=6051&rft.epage=6067&rft_id=info:doi/10.1007%2Fs10639-021-10575-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10639_021_10575_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-2357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-2357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-2357&client=summon