Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm
Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable control, and steady operation of the power system, adequate knowledge of the transmission line parameters resistance, inductance, capacitance, a...
Saved in:
| Published in | Computers, materials & continua Vol. 71; no. 1; pp. 269 - 285 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1546-2226 1546-2218 1546-2226 |
| DOI | 10.32604/cmc.2022.021575 |
Cover
| Abstract | Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable control, and steady operation of the power system, adequate knowledge of the transmission line parameters resistance, inductance, capacitance, and conductance is of great importance. These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable. This paper presents a method to optimally estimate the parameters using the input-output quantities i.e., voltages, currents, and power factor of the transmission line. The equivalent π-network model is used and the terminal data i.e., sending-end and receiving-end quantities are assumed as available measured data. The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function. An improved particle swarm optimization (PSO) in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters. Two cases are considered for parameter estimation, the first case is when the line conductance is neglected and in the second case, the conductance is considered into account. The results obtained by the improved algorithm are compared with the standard version of the algorithm, firefly algorithm and artificial bee colony algorithm for 30 number of trials. It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis, comparatively. |
|---|---|
| AbstractList | Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable control, and steady operation of the power system, adequate knowledge of the transmission line parameters resistance, inductance, capacitance, and conductance is of great importance. These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable. This paper presents a method to optimally estimate the parameters using the input-output quantities i.e., voltages, currents, and power factor of the transmission line. The equivalent π-network model is used and the terminal data i.e., sending-end and receiving-end quantities are assumed as available measured data. The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function. An improved particle swarm optimization (PSO) in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters. Two cases are considered for parameter estimation, the first case is when the line conductance is neglected and in the second case, the conductance is considered into account. The results obtained by the improved algorithm are compared with the standard version of the algorithm, firefly algorithm and artificial bee colony algorithm for 30 number of trials. It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis, comparatively. |
| Author | Yearwood, John Ahmad, Shafiq Sumesh, Shubha Huda, Shamsul |
| Author_xml | – sequence: 1 givenname: Shubha surname: Sumesh fullname: Sumesh, Shubha – sequence: 2 givenname: John surname: Yearwood fullname: Yearwood, John – sequence: 3 givenname: Shamsul surname: Huda fullname: Huda, Shamsul – sequence: 4 givenname: Shafiq surname: Ahmad fullname: Ahmad, Shafiq |
| BookMark | eNqNkEtrwkAURodioWq773Kg69h5JDFZithWEBSq3YZrvKMjySSdGSn21zcxXZRCoat58J2Pe8-A9ExlkJB7zkZSxCx8zMt8JJgQIyZ4NI6uSJ9HYRwIIeLej_sNGTh3ZEzGMmV9opa11yUUdAUWSvRo6cy1P15XhlaKri0YV2rn2vdCG6Qbp82eTg9QeZ3TudFeQ6E_cUfXusTgDey5Daxel3RS7Cur_aG8JdcKCod33-eQbJ5m6-lLsFg-z6eTRZBLLn2wZQIwZ3mIkCocc5HwVMoQZZiiAs7ShEmJAHInx2ECiKiSOJKwRRVFDSmHhHe9J1PD-QOKIqtts409Z5xlF1FZIyprRWWdqIZ56JjaVu8ndD47VidrmjGzNp8mIY9Fk2JdKreVcxbVf4rjX0iu_UWst6CLv8EvsvqMng |
| CitedBy_id | crossref_primary_10_32604_cmc_2023_039244 |
| Cites_doi | 10.1016/j.asoc.2014.10.010 10.1007/s00521-014-1751-5 10.1016/j.ijepes.2007.08.003 10.1016/j.enconman.2016.09.085 10.1007/s00521-014-1613-1 10.1007/s00500-020-05093-2 10.1080/10798587.2017.1293881 10.1108/K-11-2012-0108 10.1080/0952813X.2015.1020568 10.3390/electronics7110300 10.1109/TPWRD.2017.2711262 10.1007/s00521-015-2037-2 10.1109/TPAS.1985.319051 10.1109/TIM.2016.2556920 10.3390/en10081213 10.1007/s00500-015-1726-1 10.1109/TPWRS.2020.3037997 10.1016/j.ins.2014.02.123 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.32604/cmc.2022.021575 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 285 |
| ExternalDocumentID | 10.32604/cmc.2022.021575 10_32604_cmc_2022_021575 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c313t-b02aec0c4ea9fe712819334e349efa1098033eaa3d3748aeeef8653abef55aec3 |
| IEDL.DBID | BENPR |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Tue Aug 19 20:45:15 EDT 2025 Sun Jun 29 16:35:49 EDT 2025 Wed Oct 01 02:38:59 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-b02aec0c4ea9fe712819334e349efa1098033eaa3d3748aeeef8653abef55aec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2604984162?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2604984162 |
| PQPubID | 2048737 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2022_021575 proquest_journals_2604984162 crossref_primary_10_32604_cmc_2022_021575 crossref_citationtrail_10_32604_cmc_2022_021575 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2022 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Dommel (ref6) 1985; PAS-104 karaboga (ref29) 2007 Jordehi (ref14) 2015; 26 Dobakhshari (ref10) 2021; 36 Jordehi (ref13) 2020; 24 Asprou (ref5) 2015; 2 Mughal (ref27) 2018 Wang (ref19) 2014; 274 Jordehi (ref16) 2015; 26 Mughal (ref25) 2018; 7 Ritzmann (ref1) 2016; 65 Wang (ref21) 2013; 42 Jordehi (ref18) 2015; 27 Wang (ref20) 2016; 20 Indulkar (ref23) 2008; 30 Penshanwar (ref8) 2015 Tian (ref26) 2018; 24 Gurbiel (ref9) 2011; 3 Jordehi (ref24) 2016; 129 Jordehi (ref17) 2014; 25 Lopes (ref2) 2018; 33 Davis (ref4) 2013 Bento (ref11) 2021; 3203 Yang (ref28) 2010 Zaborszky (ref3) 1954; 1 Heidari (ref15) 2017; 28 Mughal (ref12) 2017; 10 Handschin (ref7) 1972 Wang (ref22) 2014 |
| References_xml | – volume: 26 start-page: 523 year: 2015 ident: ref14 article-title: Chaotic bat swarm optimisation (CBSO) publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.10.010 – year: 1972 ident: ref7 publication-title: Real-time Control of Electric Power Systems – start-page: 391 year: 2018 ident: ref27 article-title: Parameter estimation of DC motor using chaotic initialized particle swarm optimization – volume: 26 start-page: 827 year: 2015 ident: ref16 article-title: A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1751-5 – volume: 30 start-page: 337 year: 2008 ident: ref23 article-title: Estimation of transmission line parameters from measurements publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2007.08.003 – volume: 129 start-page: 262 year: 2016 ident: ref24 article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules publication-title: Energy Conversion & Management doi: 10.1016/j.enconman.2016.09.085 – start-page: 2151 year: 2013 ident: ref4 article-title: Estimation of transmission line parameters from historical data – volume: 25 start-page: 1329 year: 2014 ident: ref17 article-title: A chaotic-based big bang–big crunch algorithm for solving global optimisation problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1613-1 – volume: 24 start-page: 18573 year: 2020 ident: ref13 article-title: Particle swarm optimisation with opposition learning-based strategy: An efficient optimisation algorithm for day-ahead scheduling and reconfiguration in active distribution systems publication-title: Soft Computing doi: 10.1007/s00500-020-05093-2 – start-page: 64 year: 2014 ident: ref22 article-title: A novel cuckoo search with chaos theory and elitism scheme – volume: 24 start-page: 331 year: 2018 ident: ref26 article-title: Particle swarm optimization with chaos-based initialization for numerical optimization publication-title: Intelligent Automation & Soft Computing doi: 10.1080/10798587.2017.1293881 – volume: 3 start-page: 1 year: 2011 ident: ref9 article-title: Usage of phasor measurement units for industrial applications publication-title: IEEE Power Energy Society General Meeting – volume: 42 start-page: 962 year: 2013 ident: ref21 article-title: A chaotic particle-swarm krill herd algorithm for global numerical optimization publication-title: Kybernetes doi: 10.1108/K-11-2012-0108 – year: 2010 ident: ref28 publication-title: Nature-inspired Metaheuristic Algorithms – start-page: 789 year: 2007 ident: ref29 article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems – volume: 27 start-page: 753 year: 2015 ident: ref18 article-title: Seeker optimisation (human group optimisation) algorithm with chaos publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/0952813X.2015.1020568 – volume: 7 start-page: 1 year: 2018 ident: ref25 article-title: Metaheuristic regression equations for split-ring resonator using time-varying particle swarm optimization algorithm publication-title: Electronics doi: 10.3390/electronics7110300 – start-page: 318 year: 2015 ident: ref8 article-title: Phasor measurement unit technology and its applications-a review – volume: 3203 start-page: 1 year: 2021 ident: ref11 article-title: A hybrid particle swarm optimization algorithm for the wide-area damping control design publication-title: IEEE Transactions on Industrial Informatics – volume: 33 start-page: 873 year: 2018 ident: ref2 article-title: Accurate two-terminal transmission line fault location using traveling waves publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2017.2711262 – volume: 28 start-page: 57 year: 2017 ident: ref15 article-title: An efficient chaotic water cycle algorithm for optimization tasks publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-2037-2 – volume: PAS-104 start-page: 366 year: 1985 ident: ref6 article-title: Overhead line parameters from handbook formulas and computer programs publication-title: IEEE Transactions on Power Apparatus and Systems doi: 10.1109/TPAS.1985.319051 – volume: 65 start-page: 2204 year: 2016 ident: ref1 article-title: A method for accurate transmission line impedance parameter estimation publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2016.2556920 – volume: 10 start-page: 1 year: 2017 ident: ref12 article-title: Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing publication-title: Energies doi: 10.3390/en10081213 – volume: 20 start-page: 3349 year: 2016 ident: ref20 article-title: Chaotic cuckoo search publication-title: Soft Computing doi: 10.1007/s00500-015-1726-1 – volume: 1 start-page: 175 year: 1954 ident: ref3 publication-title: Electric Power Transmission: The Power System in the Steady State – volume: 36 start-page: 2632 year: 2021 ident: ref10 article-title: Online non-iterative estimation of transmission line and transformer parameters by SCADA data publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2020.3037997 – volume: 274 start-page: 17 year: 2014 ident: ref19 article-title: Chaotic krill herd algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2014.02.123 – volume: 2 start-page: 1 year: 2015 ident: ref5 article-title: Estimation of transmission line parameters using PMU measurements publication-title: IEEE Power & Energy Society General Meeting |
| SSID | ssj0036390 |
| Score | 2.2564113 |
| Snippet | Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 269 |
| SubjectTerms | Algorithms Error analysis Heuristic methods Inductance Parameter estimation Particle swarm optimization Power factor Search algorithms Statistical analysis Time varying control Transmission lines Underground cables |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELZYedjTYBvTihjyAy9MchPHdlo_VgjEJgGVtk7wFDnJeUxr06qkIPj1u0schvYwxFuUnK0k39n3nX13Zuwgj7VWI1-K0gxjQXEXAmmIEzHINMmtLGST5Xp2np5O9ddLc7nBoi4XhsIqqXppmP_brIZ5Ed0OZSUjbZA_RMvSv2KbqUHy3WOb0_PJ-KqpiqpTkSTNil64TsLGJFKUWFM36A8myYDMHMUVPjVEf9nl63W1dPd3bjZ7YmhOttike8U2vuT3YF3ng-Lhn-qNL_iGbfYmkE4-brXkLduA6h3b6g504GF8v2f-AieQOUpOHMVs0bPjG7pD6PGF541lQ82gJTaObizwJuSAH127BfbNv1AoEjL7Byg5JZeIH25FeVR88u2Cj2c_F6tf9fV8h01Pjr8fnYpwEIMolFS1yOPEQREXGpz1MGw235TSoLQF72RsR7FS4JwqqZiNAwA_So1yOXhjsKX6wHrVooKPjLtSWnSKysLmCn1Jb0sLI2dQY6jOs5F9FnWoZEWoUk6HZcwy9FYaHDP8lRnhmLU49tnhY4tlW6HjP7J7HdBZGKs3GQla2n1N-uzzI_jP9rX7EuE91qtXa_iEBKbO94PS_gGa7u6l priority: 102 providerName: Unpaywall |
| Title | Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm |
| URI | https://www.proquest.com/docview/2604984162 https://www.techscience.com/cmc/v71n1/45416/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGOMCFN2K8lAMXkMLaph3LAaGBNg0kxgQMwalKG5cd9gKGEPx67D4YJzhValMf7MSP2P4McBA5vq_qiZU2OHEk111IckOMdNCteZF2Yzftcr3u1No9_-oxeCxBp-iF4bLKQiemitqOY74jr5Lf7WvOkXlnkxfJU6M4u1qM0DD5aAV7mkKMzcG8x8hYZZg_b3a6t4VuVmSP0xbJwK9Jj6xblrhUTLwaDxnS0POO2Qxy3eFvQzXzPhfeRxPz-WEGg1-GqLUCS7kHKRqZyFehhKM1WC6mM4j8sK5DckPaYEgru4YLsPhb843fsCjEOBGpmSIx832ZoJgURVo_IC76Zky0xSXXFZGb_oVWcKeIfDCv3BQlunc3ojF4Ju5M-8MN6LWa9xdtmU9VkLFy1VRGjmcwdmIfjU7wJM2kKeWj8jUmxnV03VEKjVGWkWkMIib1WqBMhEkQ0J9qE8qj8Qi3QBjraopwbKwjRYFhoq3GuglI_AzaHLgVqBYsDOMccpwnXwxCCj1SpofE9JCZHmZMr8Dhzx-TDG7jj7W7hVTC_OC9hbNtUoGjH0n9S2v7b1o7sMiLs6uXXShPX99xj5yRabSf7zB69jrdxtM3_PDd-g |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTttAcMTjAJfyaFFToOyBHlppG9u7DtkDQkCDEh4hagFxM2vvuBzyKglC9OP4NmY2NnCCE1d7ZyTPjOex8wLYTAOtVT130sVbgeS6C0luiJUBhrUoNWEW-i7Xk3atea4PL-PLKXgoe2G4rLLUiV5Ru0HGd-RV8ru14RxZtDP8J3lrFGdXyxUatlit4Lb9iLGiseMI7-8ohBttt34Rv79F0UHjbL8piy0DMlOhGss0iCxmQabRmhy3fGZJKY1KG8xtGJh6oBRaqxxParGImNdrsbIp5nFMkIrwTsOspvMU_M3uNdqd36UtUGT_fUtmrGsyIms6SZQq_phq1uMRilH0k80u1zm-NIzP3u7cbX9o7-9st_vC8B0swofCYxW7ExFbginsL8NCuQ1CFMrhI-SnpH16dLJjueCL3zVG_IRZLwa58GaRxIrv5wTFwCh8vYLYv7YDwi1aXMdEYcF_dII7U-SFveEmLNH5cyp2u3-JG-Pr3ic4fxf6rsBMf9DHzyCsCw1FVC4zqaJANDfOYN3GJG48JDoOK1AtSZhkxYhz3rTRTSjU8URPiOgJEz2ZEL0C358ghpPxHq-cXSu5khQ_-ih5FssK_Hji1Ju4vryOawPmmmcnx8lxq320CvMM6K99zBrMjG9ucZ0coXH6tZA2AVfvLeCPl1Ia5w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELZYedjTYBvTihjyAy9MchPHdlo_VgjEJgGVtk7wFDnJeUxr06qkIPj1u0schvYwxFuUnK0k39n3nX13Zuwgj7VWI1-K0gxjQXEXAmmIEzHINMmtLGST5Xp2np5O9ddLc7nBoi4XhsIqqXppmP_brIZ5Ed0OZSUjbZA_RMvSv2KbqUHy3WOb0_PJ-KqpiqpTkSTNil64TsLGJFKUWFM36A8myYDMHMUVPjVEf9nl63W1dPd3bjZ7YmhOttike8U2vuT3YF3ng-Lhn-qNL_iGbfYmkE4-brXkLduA6h3b6g504GF8v2f-AieQOUpOHMVs0bPjG7pD6PGF541lQ82gJTaObizwJuSAH127BfbNv1AoEjL7Byg5JZeIH25FeVR88u2Cj2c_F6tf9fV8h01Pjr8fnYpwEIMolFS1yOPEQREXGpz1MGw235TSoLQF72RsR7FS4JwqqZiNAwA_So1yOXhjsKX6wHrVooKPjLtSWnSKysLmCn1Jb0sLI2dQY6jOs5F9FnWoZEWoUk6HZcwy9FYaHDP8lRnhmLU49tnhY4tlW6HjP7J7HdBZGKs3GQla2n1N-uzzI_jP9rX7EuE91qtXa_iEBKbO94PS_gGa7u6l |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Parameter+Estimation+of+Transmission+Line+Using+Chaotic+Initialized+Time-Varying+PSO+Algorithm&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Sumesh%2C+Shubha&rft.au=Yearwood%2C+John&rft.au=Huda%2C+Shamsul&rft.au=Ahmad%2C+Shafiq&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=1&rft.spage=269&rft.epage=285&rft_id=info:doi/10.32604%2Fcmc.2022.021575&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_021575 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |