Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm

Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable control, and steady operation of the power system, adequate knowledge of the transmission line parameters resistance, inductance, capacitance, a...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 71; no. 1; pp. 269 - 285
Main Authors Sumesh, Shubha, Yearwood, John, Huda, Shamsul, Ahmad, Shafiq
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2022
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2022.021575

Cover

Abstract Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable control, and steady operation of the power system, adequate knowledge of the transmission line parameters resistance, inductance, capacitance, and conductance is of great importance. These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable. This paper presents a method to optimally estimate the parameters using the input-output quantities i.e., voltages, currents, and power factor of the transmission line. The equivalent π-network model is used and the terminal data i.e., sending-end and receiving-end quantities are assumed as available measured data. The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function. An improved particle swarm optimization (PSO) in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters. Two cases are considered for parameter estimation, the first case is when the line conductance is neglected and in the second case, the conductance is considered into account. The results obtained by the improved algorithm are compared with the standard version of the algorithm, firefly algorithm and artificial bee colony algorithm for 30 number of trials. It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis, comparatively.
AbstractList Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable control, and steady operation of the power system, adequate knowledge of the transmission line parameters resistance, inductance, capacitance, and conductance is of great importance. These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable. This paper presents a method to optimally estimate the parameters using the input-output quantities i.e., voltages, currents, and power factor of the transmission line. The equivalent π-network model is used and the terminal data i.e., sending-end and receiving-end quantities are assumed as available measured data. The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function. An improved particle swarm optimization (PSO) in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters. Two cases are considered for parameter estimation, the first case is when the line conductance is neglected and in the second case, the conductance is considered into account. The results obtained by the improved algorithm are compared with the standard version of the algorithm, firefly algorithm and artificial bee colony algorithm for 30 number of trials. It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis, comparatively.
Author Yearwood, John
Ahmad, Shafiq
Sumesh, Shubha
Huda, Shamsul
Author_xml – sequence: 1
  givenname: Shubha
  surname: Sumesh
  fullname: Sumesh, Shubha
– sequence: 2
  givenname: John
  surname: Yearwood
  fullname: Yearwood, John
– sequence: 3
  givenname: Shamsul
  surname: Huda
  fullname: Huda, Shamsul
– sequence: 4
  givenname: Shafiq
  surname: Ahmad
  fullname: Ahmad, Shafiq
BookMark eNqNkEtrwkAURodioWq773Kg69h5JDFZithWEBSq3YZrvKMjySSdGSn21zcxXZRCoat58J2Pe8-A9ExlkJB7zkZSxCx8zMt8JJgQIyZ4NI6uSJ9HYRwIIeLej_sNGTh3ZEzGMmV9opa11yUUdAUWSvRo6cy1P15XhlaKri0YV2rn2vdCG6Qbp82eTg9QeZ3TudFeQ6E_cUfXusTgDey5Daxel3RS7Cur_aG8JdcKCod33-eQbJ5m6-lLsFg-z6eTRZBLLn2wZQIwZ3mIkCocc5HwVMoQZZiiAs7ShEmJAHInx2ECiKiSOJKwRRVFDSmHhHe9J1PD-QOKIqtts409Z5xlF1FZIyprRWWdqIZ56JjaVu8ndD47VidrmjGzNp8mIY9Fk2JdKreVcxbVf4rjX0iu_UWst6CLv8EvsvqMng
CitedBy_id crossref_primary_10_32604_cmc_2023_039244
Cites_doi 10.1016/j.asoc.2014.10.010
10.1007/s00521-014-1751-5
10.1016/j.ijepes.2007.08.003
10.1016/j.enconman.2016.09.085
10.1007/s00521-014-1613-1
10.1007/s00500-020-05093-2
10.1080/10798587.2017.1293881
10.1108/K-11-2012-0108
10.1080/0952813X.2015.1020568
10.3390/electronics7110300
10.1109/TPWRD.2017.2711262
10.1007/s00521-015-2037-2
10.1109/TPAS.1985.319051
10.1109/TIM.2016.2556920
10.3390/en10081213
10.1007/s00500-015-1726-1
10.1109/TPWRS.2020.3037997
10.1016/j.ins.2014.02.123
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2022.021575
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 285
ExternalDocumentID 10.32604/cmc.2022.021575
10_32604_cmc_2022_021575
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c313t-b02aec0c4ea9fe712819334e349efa1098033eaa3d3748aeeef8653abef55aec3
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Tue Aug 19 20:45:15 EDT 2025
Sun Jun 29 16:35:49 EDT 2025
Wed Oct 01 02:38:59 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-b02aec0c4ea9fe712819334e349efa1098033eaa3d3748aeeef8653abef55aec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2604984162?pq-origsite=%requestingapplication%&accountid=15518
PQID 2604984162
PQPubID 2048737
PageCount 17
ParticipantIDs unpaywall_primary_10_32604_cmc_2022_021575
proquest_journals_2604984162
crossref_primary_10_32604_cmc_2022_021575
crossref_citationtrail_10_32604_cmc_2022_021575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Dommel (ref6) 1985; PAS-104
karaboga (ref29) 2007
Jordehi (ref14) 2015; 26
Dobakhshari (ref10) 2021; 36
Jordehi (ref13) 2020; 24
Asprou (ref5) 2015; 2
Mughal (ref27) 2018
Wang (ref19) 2014; 274
Jordehi (ref16) 2015; 26
Mughal (ref25) 2018; 7
Ritzmann (ref1) 2016; 65
Wang (ref21) 2013; 42
Jordehi (ref18) 2015; 27
Wang (ref20) 2016; 20
Indulkar (ref23) 2008; 30
Penshanwar (ref8) 2015
Tian (ref26) 2018; 24
Gurbiel (ref9) 2011; 3
Jordehi (ref24) 2016; 129
Jordehi (ref17) 2014; 25
Lopes (ref2) 2018; 33
Davis (ref4) 2013
Bento (ref11) 2021; 3203
Yang (ref28) 2010
Zaborszky (ref3) 1954; 1
Heidari (ref15) 2017; 28
Mughal (ref12) 2017; 10
Handschin (ref7) 1972
Wang (ref22) 2014
References_xml – volume: 26
  start-page: 523
  year: 2015
  ident: ref14
  article-title: Chaotic bat swarm optimisation (CBSO)
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.10.010
– year: 1972
  ident: ref7
  publication-title: Real-time Control of Electric Power Systems
– start-page: 391
  year: 2018
  ident: ref27
  article-title: Parameter estimation of DC motor using chaotic initialized particle swarm optimization
– volume: 26
  start-page: 827
  year: 2015
  ident: ref16
  article-title: A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1751-5
– volume: 30
  start-page: 337
  year: 2008
  ident: ref23
  article-title: Estimation of transmission line parameters from measurements
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2007.08.003
– volume: 129
  start-page: 262
  year: 2016
  ident: ref24
  article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Conversion & Management
  doi: 10.1016/j.enconman.2016.09.085
– start-page: 2151
  year: 2013
  ident: ref4
  article-title: Estimation of transmission line parameters from historical data
– volume: 25
  start-page: 1329
  year: 2014
  ident: ref17
  article-title: A chaotic-based big bang–big crunch algorithm for solving global optimisation problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1613-1
– volume: 24
  start-page: 18573
  year: 2020
  ident: ref13
  article-title: Particle swarm optimisation with opposition learning-based strategy: An efficient optimisation algorithm for day-ahead scheduling and reconfiguration in active distribution systems
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05093-2
– start-page: 64
  year: 2014
  ident: ref22
  article-title: A novel cuckoo search with chaos theory and elitism scheme
– volume: 24
  start-page: 331
  year: 2018
  ident: ref26
  article-title: Particle swarm optimization with chaos-based initialization for numerical optimization
  publication-title: Intelligent Automation & Soft Computing
  doi: 10.1080/10798587.2017.1293881
– volume: 3
  start-page: 1
  year: 2011
  ident: ref9
  article-title: Usage of phasor measurement units for industrial applications
  publication-title: IEEE Power Energy Society General Meeting
– volume: 42
  start-page: 962
  year: 2013
  ident: ref21
  article-title: A chaotic particle-swarm krill herd algorithm for global numerical optimization
  publication-title: Kybernetes
  doi: 10.1108/K-11-2012-0108
– year: 2010
  ident: ref28
  publication-title: Nature-inspired Metaheuristic Algorithms
– start-page: 789
  year: 2007
  ident: ref29
  article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems
– volume: 27
  start-page: 753
  year: 2015
  ident: ref18
  article-title: Seeker optimisation (human group optimisation) algorithm with chaos
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2015.1020568
– volume: 7
  start-page: 1
  year: 2018
  ident: ref25
  article-title: Metaheuristic regression equations for split-ring resonator using time-varying particle swarm optimization algorithm
  publication-title: Electronics
  doi: 10.3390/electronics7110300
– start-page: 318
  year: 2015
  ident: ref8
  article-title: Phasor measurement unit technology and its applications-a review
– volume: 3203
  start-page: 1
  year: 2021
  ident: ref11
  article-title: A hybrid particle swarm optimization algorithm for the wide-area damping control design
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 33
  start-page: 873
  year: 2018
  ident: ref2
  article-title: Accurate two-terminal transmission line fault location using traveling waves
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2017.2711262
– volume: 28
  start-page: 57
  year: 2017
  ident: ref15
  article-title: An efficient chaotic water cycle algorithm for optimization tasks
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-2037-2
– volume: PAS-104
  start-page: 366
  year: 1985
  ident: ref6
  article-title: Overhead line parameters from handbook formulas and computer programs
  publication-title: IEEE Transactions on Power Apparatus and Systems
  doi: 10.1109/TPAS.1985.319051
– volume: 65
  start-page: 2204
  year: 2016
  ident: ref1
  article-title: A method for accurate transmission line impedance parameter estimation
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2016.2556920
– volume: 10
  start-page: 1
  year: 2017
  ident: ref12
  article-title: Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing
  publication-title: Energies
  doi: 10.3390/en10081213
– volume: 20
  start-page: 3349
  year: 2016
  ident: ref20
  article-title: Chaotic cuckoo search
  publication-title: Soft Computing
  doi: 10.1007/s00500-015-1726-1
– volume: 1
  start-page: 175
  year: 1954
  ident: ref3
  publication-title: Electric Power Transmission: The Power System in the Steady State
– volume: 36
  start-page: 2632
  year: 2021
  ident: ref10
  article-title: Online non-iterative estimation of transmission line and transformer parameters by SCADA data
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2020.3037997
– volume: 274
  start-page: 17
  year: 2014
  ident: ref19
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.123
– volume: 2
  start-page: 1
  year: 2015
  ident: ref5
  article-title: Estimation of transmission line parameters using PMU measurements
  publication-title: IEEE Power & Energy Society General Meeting
SSID ssj0036390
Score 2.2564113
Snippet Transmission line is a vital part of the power system that connects two major points, the generation, and the distribution. For an efficient design, stable...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 269
SubjectTerms Algorithms
Error analysis
Heuristic methods
Inductance
Parameter estimation
Particle swarm optimization
Power factor
Search algorithms
Statistical analysis
Time varying control
Transmission lines
Underground cables
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELZYedjTYBvTihjyAy9MchPHdlo_VgjEJgGVtk7wFDnJeUxr06qkIPj1u0schvYwxFuUnK0k39n3nX13Zuwgj7VWI1-K0gxjQXEXAmmIEzHINMmtLGST5Xp2np5O9ddLc7nBoi4XhsIqqXppmP_brIZ5Ed0OZSUjbZA_RMvSv2KbqUHy3WOb0_PJ-KqpiqpTkSTNil64TsLGJFKUWFM36A8myYDMHMUVPjVEf9nl63W1dPd3bjZ7YmhOttike8U2vuT3YF3ng-Lhn-qNL_iGbfYmkE4-brXkLduA6h3b6g504GF8v2f-AieQOUpOHMVs0bPjG7pD6PGF541lQ82gJTaObizwJuSAH127BfbNv1AoEjL7Byg5JZeIH25FeVR88u2Cj2c_F6tf9fV8h01Pjr8fnYpwEIMolFS1yOPEQREXGpz1MGw235TSoLQF72RsR7FS4JwqqZiNAwA_So1yOXhjsKX6wHrVooKPjLtSWnSKysLmCn1Jb0sLI2dQY6jOs5F9FnWoZEWoUk6HZcwy9FYaHDP8lRnhmLU49tnhY4tlW6HjP7J7HdBZGKs3GQla2n1N-uzzI_jP9rX7EuE91qtXa_iEBKbO94PS_gGa7u6l
  priority: 102
  providerName: Unpaywall
Title Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm
URI https://www.proquest.com/docview/2604984162
https://www.techscience.com/cmc/v71n1/45416/pdf
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGOMCFN2K8lAMXkMLaph3LAaGBNg0kxgQMwalKG5cd9gKGEPx67D4YJzhValMf7MSP2P4McBA5vq_qiZU2OHEk111IckOMdNCteZF2Yzftcr3u1No9_-oxeCxBp-iF4bLKQiemitqOY74jr5Lf7WvOkXlnkxfJU6M4u1qM0DD5aAV7mkKMzcG8x8hYZZg_b3a6t4VuVmSP0xbJwK9Jj6xblrhUTLwaDxnS0POO2Qxy3eFvQzXzPhfeRxPz-WEGg1-GqLUCS7kHKRqZyFehhKM1WC6mM4j8sK5DckPaYEgru4YLsPhb843fsCjEOBGpmSIx832ZoJgURVo_IC76Zky0xSXXFZGb_oVWcKeIfDCv3BQlunc3ojF4Ju5M-8MN6LWa9xdtmU9VkLFy1VRGjmcwdmIfjU7wJM2kKeWj8jUmxnV03VEKjVGWkWkMIib1WqBMhEkQ0J9qE8qj8Qi3QBjraopwbKwjRYFhoq3GuglI_AzaHLgVqBYsDOMccpwnXwxCCj1SpofE9JCZHmZMr8Dhzx-TDG7jj7W7hVTC_OC9hbNtUoGjH0n9S2v7b1o7sMiLs6uXXShPX99xj5yRabSf7zB69jrdxtM3_PDd-g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTttAcMTjAJfyaFFToOyBHlppG9u7DtkDQkCDEh4hagFxM2vvuBzyKglC9OP4NmY2NnCCE1d7ZyTPjOex8wLYTAOtVT130sVbgeS6C0luiJUBhrUoNWEW-i7Xk3atea4PL-PLKXgoe2G4rLLUiV5Ru0HGd-RV8ru14RxZtDP8J3lrFGdXyxUatlit4Lb9iLGiseMI7-8ohBttt34Rv79F0UHjbL8piy0DMlOhGss0iCxmQabRmhy3fGZJKY1KG8xtGJh6oBRaqxxParGImNdrsbIp5nFMkIrwTsOspvMU_M3uNdqd36UtUGT_fUtmrGsyIms6SZQq_phq1uMRilH0k80u1zm-NIzP3u7cbX9o7-9st_vC8B0swofCYxW7ExFbginsL8NCuQ1CFMrhI-SnpH16dLJjueCL3zVG_IRZLwa58GaRxIrv5wTFwCh8vYLYv7YDwi1aXMdEYcF_dII7U-SFveEmLNH5cyp2u3-JG-Pr3ic4fxf6rsBMf9DHzyCsCw1FVC4zqaJANDfOYN3GJG48JDoOK1AtSZhkxYhz3rTRTSjU8URPiOgJEz2ZEL0C358ghpPxHq-cXSu5khQ_-ih5FssK_Hji1Ju4vryOawPmmmcnx8lxq320CvMM6K99zBrMjG9ucZ0coXH6tZA2AVfvLeCPl1Ia5w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELZYedjTYBvTihjyAy9MchPHdlo_VgjEJgGVtk7wFDnJeUxr06qkIPj1u0schvYwxFuUnK0k39n3nX13Zuwgj7VWI1-K0gxjQXEXAmmIEzHINMmtLGST5Xp2np5O9ddLc7nBoi4XhsIqqXppmP_brIZ5Ed0OZSUjbZA_RMvSv2KbqUHy3WOb0_PJ-KqpiqpTkSTNil64TsLGJFKUWFM36A8myYDMHMUVPjVEf9nl63W1dPd3bjZ7YmhOttike8U2vuT3YF3ng-Lhn-qNL_iGbfYmkE4-brXkLduA6h3b6g504GF8v2f-AieQOUpOHMVs0bPjG7pD6PGF541lQ82gJTaObizwJuSAH127BfbNv1AoEjL7Byg5JZeIH25FeVR88u2Cj2c_F6tf9fV8h01Pjr8fnYpwEIMolFS1yOPEQREXGpz1MGw235TSoLQF72RsR7FS4JwqqZiNAwA_So1yOXhjsKX6wHrVooKPjLtSWnSKysLmCn1Jb0sLI2dQY6jOs5F9FnWoZEWoUk6HZcwy9FYaHDP8lRnhmLU49tnhY4tlW6HjP7J7HdBZGKs3GQla2n1N-uzzI_jP9rX7EuE91qtXa_iEBKbO94PS_gGa7u6l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Parameter+Estimation+of+Transmission+Line+Using+Chaotic+Initialized+Time-Varying+PSO+Algorithm&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Sumesh%2C+Shubha&rft.au=Yearwood%2C+John&rft.au=Huda%2C+Shamsul&rft.au=Ahmad%2C+Shafiq&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=1&rft.spage=269&rft.epage=285&rft_id=info:doi/10.32604%2Fcmc.2022.021575&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_021575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon