Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study

Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared. Th...

Full description

Saved in:
Bibliographic Details
Published inDiabetes care Vol. 41; no. 11; pp. 2385 - 2395
Main Authors Leiva-Gea, Isabel, Sánchez-Alcoholado, Lidia, Martín-Tejedor, Beatriz, Castellano-Castillo, Daniel, Moreno-Indias, Isabel, Urda-Cardona, Antonio, Tinahones, Francisco J., Fernández-García, José Carlos, Queipo-Ortuño, María Isabel
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.11.2018
Subjects
Online AccessGet full text
ISSN0149-5992
1935-5548
1935-5548
DOI10.2337/dc18-0253

Cover

Abstract Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared. This was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors modifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing. Compared with healthy control subjects, type 1 diabetes was associated with a significantly lower microbiota diversity, a significantly higher relative abundance of , , , , and genera, and a lower relative abundance of , , , and . Children with MODY2 showed a significantly higher abundance and a lower and abundance. Proinflammatory cytokines and lipopolysaccharides were increased in type 1 diabetes, and gut permeability (determined by zonulin levels) was significantly increased in type 1 diabetes and MODY2. The PICRUSt analysis found an increment of genes related to lipid and amino acid metabolism, ABC transport, lipopolysaccharide biosynthesis, arachidonic acid metabolism, antigen processing and presentation, and chemokine signaling pathways in type 1 diabetes. Gut microbiota in type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy subjects but fundamentally with regard to a model of nonautoimmune diabetes. Future longitudinal studies should be aimed at evaluating if the modulation of gut microbiota in patients with a high risk of type 1 diabetes could modify the natural history of this autoimmune disease.
AbstractList Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared. This was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors modifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing. Compared with healthy control subjects, type 1 diabetes was associated with a significantly lower microbiota diversity, a significantly higher relative abundance of , , , , and genera, and a lower relative abundance of , , , and . Children with MODY2 showed a significantly higher abundance and a lower and abundance. Proinflammatory cytokines and lipopolysaccharides were increased in type 1 diabetes, and gut permeability (determined by zonulin levels) was significantly increased in type 1 diabetes and MODY2. The PICRUSt analysis found an increment of genes related to lipid and amino acid metabolism, ABC transport, lipopolysaccharide biosynthesis, arachidonic acid metabolism, antigen processing and presentation, and chemokine signaling pathways in type 1 diabetes. Gut microbiota in type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy subjects but fundamentally with regard to a model of nonautoimmune diabetes. Future longitudinal studies should be aimed at evaluating if the modulation of gut microbiota in patients with a high risk of type 1 diabetes could modify the natural history of this autoimmune disease.
OBJECTIVE Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared. RESEARCH DESIGN AND METHODS This was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors modifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing. RESULTS Compared with healthy control subjects, type 1 diabetes was associated with a significantly lower microbiota diversity, a significantly higher relative abundance of Bacteroides, Ruminococcus, Veillonella, Blautia, and Streptococcus genera, and a lower relative abundance of Bifidobacterium, Roseburia, Faecalibacterium, and Lachnospira. Children with MODY2 showed a significantly higher Prevotella abundance and a lower Ruminococcus and Bacteroides abundance. Proinflammatory cytokines and lipopolysaccharides were increased in type 1 diabetes, and gut permeability (determined by zonulin levels) was significantly increased in type 1 diabetes and MODY2. The PICRUSt analysis found an increment of genes related to lipid and amino acid metabolism, ABC transport, lipopolysaccharide biosynthesis, arachidonic acid metabolism, antigen processing and presentation, and chemokine signaling pathways in type 1 diabetes. CONCLUSIONS Gut microbiota in type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy subjects but fundamentally with regard to a model of nonautoimmune diabetes. Future longitudinal studies should be aimed at evaluating if the modulation of gut microbiota in patients with a high risk of type 1 diabetes could modify the natural history of this autoimmune disease.
Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared.OBJECTIVEType 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes of the young 2 (MODY2), a monogenic cause of diabetes. Gut microbiota of type 1 diabetes, MODY2, and healthy control subjects was compared.This was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors modifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing.RESEARCH DESIGN AND METHODSThis was a case-control study in 15 children with type 1 diabetes, 15 children with MODY2, and 13 healthy children. Metabolic control and potential factors modifying gut microbiota were controlled. Microbiome composition was determined by 16S rRNA pyrosequencing.Compared with healthy control subjects, type 1 diabetes was associated with a significantly lower microbiota diversity, a significantly higher relative abundance of Bacteroides, Ruminococcus, Veillonella, Blautia, and Streptococcus genera, and a lower relative abundance of Bifidobacterium, Roseburia, Faecalibacterium, and Lachnospira. Children with MODY2 showed a significantly higher Prevotella abundance and a lower Ruminococcus and Bacteroides abundance. Proinflammatory cytokines and lipopolysaccharides were increased in type 1 diabetes, and gut permeability (determined by zonulin levels) was significantly increased in type 1 diabetes and MODY2. The PICRUSt analysis found an increment of genes related to lipid and amino acid metabolism, ABC transport, lipopolysaccharide biosynthesis, arachidonic acid metabolism, antigen processing and presentation, and chemokine signaling pathways in type 1 diabetes.RESULTSCompared with healthy control subjects, type 1 diabetes was associated with a significantly lower microbiota diversity, a significantly higher relative abundance of Bacteroides, Ruminococcus, Veillonella, Blautia, and Streptococcus genera, and a lower relative abundance of Bifidobacterium, Roseburia, Faecalibacterium, and Lachnospira. Children with MODY2 showed a significantly higher Prevotella abundance and a lower Ruminococcus and Bacteroides abundance. Proinflammatory cytokines and lipopolysaccharides were increased in type 1 diabetes, and gut permeability (determined by zonulin levels) was significantly increased in type 1 diabetes and MODY2. The PICRUSt analysis found an increment of genes related to lipid and amino acid metabolism, ABC transport, lipopolysaccharide biosynthesis, arachidonic acid metabolism, antigen processing and presentation, and chemokine signaling pathways in type 1 diabetes.Gut microbiota in type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy subjects but fundamentally with regard to a model of nonautoimmune diabetes. Future longitudinal studies should be aimed at evaluating if the modulation of gut microbiota in patients with a high risk of type 1 diabetes could modify the natural history of this autoimmune disease.CONCLUSIONSGut microbiota in type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy subjects but fundamentally with regard to a model of nonautoimmune diabetes. Future longitudinal studies should be aimed at evaluating if the modulation of gut microbiota in patients with a high risk of type 1 diabetes could modify the natural history of this autoimmune disease.
Author Leiva-Gea, Isabel
Sánchez-Alcoholado, Lidia
Martín-Tejedor, Beatriz
Fernández-García, José Carlos
Castellano-Castillo, Daniel
Moreno-Indias, Isabel
Urda-Cardona, Antonio
Queipo-Ortuño, María Isabel
Tinahones, Francisco J.
Author_xml – sequence: 1
  givenname: Isabel
  surname: Leiva-Gea
  fullname: Leiva-Gea, Isabel
  organization: Pediatric Endocrinology, Hospital Materno-Infantil, Málaga, Spain
– sequence: 2
  givenname: Lidia
  surname: Sánchez-Alcoholado
  fullname: Sánchez-Alcoholado, Lidia
  organization: Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
– sequence: 3
  givenname: Beatriz
  surname: Martín-Tejedor
  fullname: Martín-Tejedor, Beatriz
  organization: Pediatric Endocrinology, Hospital Materno-Infantil, Málaga, Spain
– sequence: 4
  givenname: Daniel
  surname: Castellano-Castillo
  fullname: Castellano-Castillo, Daniel
  organization: Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain, Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
– sequence: 5
  givenname: Isabel
  surname: Moreno-Indias
  fullname: Moreno-Indias, Isabel
  organization: Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain, Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
– sequence: 6
  givenname: Antonio
  surname: Urda-Cardona
  fullname: Urda-Cardona, Antonio
  organization: Pediatric Endocrinology, Hospital Materno-Infantil, Málaga, Spain
– sequence: 7
  givenname: Francisco J.
  surname: Tinahones
  fullname: Tinahones, Francisco J.
  organization: Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain, Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
– sequence: 8
  givenname: José Carlos
  orcidid: 0000-0003-2229-8488
  surname: Fernández-García
  fullname: Fernández-García, José Carlos
  organization: Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain, Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
– sequence: 9
  givenname: María Isabel
  surname: Queipo-Ortuño
  fullname: Queipo-Ortuño, María Isabel
  organization: Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain, Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30224347$$D View this record in MEDLINE/PubMed
BookMark eNptkc9O3DAQxi1EVRbaAy-ALHGhhxT_S2Jzg6VAJRCHUlWcItuZaL3KxovtqMqr9GnrAOWAepoZzW8-ab5vH-0OfgCEDin5yjivT1tLZUFYyXfQgipeFmUp5C5aECpUUSrF9tB-jGtCiBBSfkR7nDAmuKgX6M_1mPCds8Eb55PGl67rIETsBrz0m62PLjk_YD20-Goc7Dzo3qUJX0D6DZCplevbkJtfLq3ww7QFTLOKNpAgPt_d3V8-sufuBnSfVlNWHlLwPf4xmjXYFM_wOV7qCMXbIo3t9Al96HQf4fNrPUA_r749LG-K2_vr78vz28JyylOhTUVsbSop8ncVNW1piNVKSC6ppVxWnekMMzUrq1boujMtNcCkkUYLIo3iB-jkRXcb_NMIMTUbFy30vR7Aj7FhlCjOmZJlRo_foWs_huzITGVTa6IUydTRKzWaDbTNNriNDlPzz_UMfHkBsu0xBujeEEqaOdFmTrSZE83s6TvWuqTnHFLQrv_PxV8EkqHj
CitedBy_id crossref_primary_10_1007_s00592_023_02157_1
crossref_primary_10_2147_IJGM_S361169
crossref_primary_10_3389_fimmu_2021_667097
crossref_primary_10_1016_j_jep_2019_112225
crossref_primary_10_1039_D1FO03646G
crossref_primary_10_1016_j_jneuroim_2019_577126
crossref_primary_10_1039_C9MD00301K
crossref_primary_10_1111_1753_0407_13542
crossref_primary_10_3389_fendo_2023_1121303
crossref_primary_10_12677_hjbm_2025_151024
crossref_primary_10_3389_fcimb_2022_859708
crossref_primary_10_2174_1389450122666210623125603
crossref_primary_10_3390_ijms222312661
crossref_primary_10_1017_erm_2021_8
crossref_primary_10_1016_j_ijbiomac_2023_123767
crossref_primary_10_15252_embr_202052316
crossref_primary_10_7717_peerj_15193
crossref_primary_10_1016_j_lfs_2024_123187
crossref_primary_10_2147_DMSO_S412872
crossref_primary_10_3390_app112411871
crossref_primary_10_3389_fimmu_2022_869846
crossref_primary_10_1210_jc_2019_00481
crossref_primary_10_3389_fendo_2022_938358
crossref_primary_10_1021_acs_jafc_0c04429
crossref_primary_10_3390_microorganisms11071813
crossref_primary_10_2174_1573399816666201103144231
crossref_primary_10_1016_j_ebiom_2023_104567
crossref_primary_10_1042_BST20220004
crossref_primary_10_1155_2020_3936247
crossref_primary_10_3389_fendo_2023_1192216
crossref_primary_10_1007_s00125_021_05464_w
crossref_primary_10_1016_j_cell_2022_11_023
crossref_primary_10_1111_cbdd_14251
crossref_primary_10_1024_0300_9831_a000801
crossref_primary_10_3389_fendo_2020_00125
crossref_primary_10_3390_ijms251910611
crossref_primary_10_3389_fped_2021_752250
crossref_primary_10_3390_microorganisms9071490
crossref_primary_10_1038_s41401_020_00532_0
crossref_primary_10_3390_microorganisms8121907
crossref_primary_10_1371_journal_pone_0213548
crossref_primary_10_1186_s40168_022_01373_1
crossref_primary_10_3389_fcimb_2021_603291
crossref_primary_10_1155_2021_6676962
crossref_primary_10_2337_dc19_1162
crossref_primary_10_1371_journal_pone_0261103
crossref_primary_10_3389_fcell_2021_706755
crossref_primary_10_1002_1873_3468_14107
crossref_primary_10_1111_jdi_13293
crossref_primary_10_1016_j_diabres_2024_111615
crossref_primary_10_1016_j_isci_2023_107188
crossref_primary_10_1111_1753_0407_13323
crossref_primary_10_1002_mnfr_202100784
crossref_primary_10_1016_j_biopha_2020_110954
crossref_primary_10_3389_fimmu_2021_628741
crossref_primary_10_3389_fnut_2022_941969
crossref_primary_10_3390_ijms24054519
crossref_primary_10_3390_microorganisms12020370
crossref_primary_10_1016_j_ecoenv_2023_114518
crossref_primary_10_29219_fnr_v66_7974
crossref_primary_10_1007_s00592_020_01563_z
crossref_primary_10_1111_jcmm_14880
crossref_primary_10_3390_microorganisms9030516
crossref_primary_10_1016_j_molimm_2020_03_008
crossref_primary_10_3389_fendo_2023_1106812
crossref_primary_10_3390_ijms22179641
crossref_primary_10_3390_j6040040
crossref_primary_10_1007_s12020_021_02721_1
crossref_primary_10_1002_jsfa_11782
crossref_primary_10_3390_nu15214504
crossref_primary_10_1111_1753_0407_13438
crossref_primary_10_1152_ajpgi_00107_2019
crossref_primary_10_1016_j_eng_2020_12_014
crossref_primary_10_3390_metabo13020250
crossref_primary_10_2337_dc21_1656
crossref_primary_10_3390_ijms22010125
crossref_primary_10_1042_BST20190686
crossref_primary_10_1016_j_diabres_2022_109189
crossref_primary_10_2147_DMSO_S477494
crossref_primary_10_1016_j_ejphar_2024_176582
crossref_primary_10_1016_j_ejps_2021_105833
crossref_primary_10_3390_ijms22052763
crossref_primary_10_1016_j_ebiom_2019_06_031
crossref_primary_10_1016_j_metop_2020_100040
crossref_primary_10_1080_07388551_2019_1576025
crossref_primary_10_1007_s12223_023_01119_y
crossref_primary_10_1016_j_eclinm_2023_102132
crossref_primary_10_3389_fcimb_2021_701109
crossref_primary_10_1007_s00253_020_10620_0
crossref_primary_10_1007_s40200_022_01068_2
crossref_primary_10_1038_s41598_024_58985_w
crossref_primary_10_3390_microorganisms9071436
crossref_primary_10_1021_acs_jafc_1c07851
crossref_primary_10_1136_bmjopen_2024_089206
crossref_primary_10_1155_2020_3452625
crossref_primary_10_3389_fcimb_2023_1135428
crossref_primary_10_3389_fped_2024_1382466
crossref_primary_10_3390_microorganisms12102004
crossref_primary_10_3389_fendo_2023_1265696
crossref_primary_10_3389_fimmu_2021_746998
crossref_primary_10_1016_j_dsx_2025_103203
crossref_primary_10_1146_annurev_publhealth_040119_094423
crossref_primary_10_3390_ijms231911990
crossref_primary_10_1080_10408398_2020_1803198
crossref_primary_10_3390_biom14070880
crossref_primary_10_1186_s12884_024_06423_0
crossref_primary_10_1097_MPG_0000000000002491
crossref_primary_10_3389_fnut_2020_612377
crossref_primary_10_1016_j_ebiom_2023_104641
crossref_primary_10_1073_pnas_2200551119
crossref_primary_10_30629_0023_2149_2024_102_4_297_308
crossref_primary_10_1016_j_biopha_2021_111736
crossref_primary_10_1038_s41598_021_90024_w
crossref_primary_10_1177_20406223221117449
crossref_primary_10_1186_s13098_023_01175_x
crossref_primary_10_1080_21688370_2021_2000299
crossref_primary_10_3390_jpm11020135
crossref_primary_10_3390_ijms232415982
crossref_primary_10_1007_s40200_020_00502_7
crossref_primary_10_1007_s00203_020_02144_y
crossref_primary_10_4103_ijem_ijem_22_22
crossref_primary_10_31083_j_jin2305092
crossref_primary_10_3389_fnut_2022_814269
crossref_primary_10_2217_fmb_2022_0045
crossref_primary_10_2147_DMSO_S304497
crossref_primary_10_2174_1573396318666220409001955
crossref_primary_10_3389_fcimb_2021_757718
crossref_primary_10_1080_19490976_2021_1926841
crossref_primary_10_1016_j_tifs_2019_09_005
crossref_primary_10_1136_bmjopen_2020_047941
crossref_primary_10_1016_j_numecd_2022_11_017
crossref_primary_10_3389_fendo_2021_716692
crossref_primary_10_1007_s11427_021_2103_5
crossref_primary_10_3390_genes14040857
crossref_primary_10_2478_jtim_2023_0116
crossref_primary_10_1007_s12602_023_10087_1
crossref_primary_10_3390_jcm9082448
crossref_primary_10_2139_ssrn_4175219
crossref_primary_10_3389_fimmu_2019_02233
crossref_primary_10_1016_j_lfs_2023_121414
crossref_primary_10_3390_nu14030414
crossref_primary_10_1080_1744666X_2023_2150612
crossref_primary_10_1099_mgen_0_001365
crossref_primary_10_3390_ijms25105561
crossref_primary_10_1155_2020_8842651
crossref_primary_10_14341_DM12994
crossref_primary_10_3389_fimmu_2021_722206
crossref_primary_10_3389_fendo_2022_890833
crossref_primary_10_3389_fendo_2023_1270855
crossref_primary_10_1590_1984_0462_2024_42_2023097
crossref_primary_10_1038_s41392_022_00974_4
crossref_primary_10_3390_nu16234221
crossref_primary_10_1038_s41467_022_33656_4
crossref_primary_10_3390_ijms23147744
crossref_primary_10_1016_j_fshw_2021_07_004
crossref_primary_10_2174_1573399817666210503133747
crossref_primary_10_3389_fcimb_2022_1075201
crossref_primary_10_1007_s12275_021_0454_8
crossref_primary_10_3389_fmicb_2024_1332105
crossref_primary_10_3390_biom9120850
crossref_primary_10_26599_FSHW_2022_9250142
crossref_primary_10_1093_bfgp_elae004
crossref_primary_10_3389_fmicb_2021_724449
crossref_primary_10_3389_fmicb_2022_1029890
crossref_primary_10_1177_00469580231222649
crossref_primary_10_1016_j_biopha_2021_112448
crossref_primary_10_1142_S0192415X21500567
crossref_primary_10_1186_s40168_022_01425_6
crossref_primary_10_3389_fimmu_2021_644982
crossref_primary_10_3389_fimmu_2021_642166
crossref_primary_10_3390_nu16111675
crossref_primary_10_1186_s13099_019_0332_7
crossref_primary_10_1016_j_jdiacomp_2019_107449
crossref_primary_10_1007_s12519_022_00655_w
crossref_primary_10_3390_jpm10040192
crossref_primary_10_1155_2022_2980228
crossref_primary_10_2337_dc21_0099
crossref_primary_10_3389_fcimb_2023_1163898
crossref_primary_10_3389_fcell_2022_913305
crossref_primary_10_3390_math10121994
crossref_primary_10_3748_wjg_v27_i19_2394
crossref_primary_10_3389_fmicb_2024_1451054
Cites_doi 10.1042/BJ20082222
10.1038/ismej.2009.5
10.3389/fmicb.2017.01936
10.1016/j.cmet.2016.06.013
10.1007/s00125-009-1626-y
10.1038/srep38887
10.1016/j.nutres.2015.03.002
10.1007/s00125-006-0465-3
10.1038/nrendo.2015.218
10.1017/S0007114516001045
10.1038/icb.2011.115
10.2217/fmb-2016-0130
10.2337/db12-0827
10.3389/fmicb.2016.00660
10.2337/db12-0526
10.1038/cmi.2010.67
10.1073/pnas.0804812105
10.1038/ismej.2010.92
10.1900/RDS.2012.9.251
10.2337/dc17-S005
10.1542/peds.2014-0819
10.4103/0366-6999.182841
10.1016/j.chom.2015.01.001
10.2337/dc10-2197
10.1371/journal.pone.0025792
10.1186/1741-7015-11-46
10.1097/MOG.0b013e32830e6d98
10.1111/j.1600-065X.2011.01084.x
10.1038/srep03814
10.1007/s11892-013-0409-5
10.1016/S0140-6736(16)30507-4
10.1126/science.aag3042
10.1186/s12876-014-0189-7
10.2337/dc09-0467
10.2337/dc11-0035
10.1007/s00125-012-2564-7
10.1073/pnas.0500178102
10.1097/MPG.0b013e3181dd913a
10.1073/pnas.1108924108
10.1016/j.clim.2015.05.013
ContentType Journal Article
Copyright 2018 by the American Diabetes Association.
Copyright American Diabetes Association Nov 1, 2018
Copyright_xml – notice: 2018 by the American Diabetes Association.
– notice: Copyright American Diabetes Association Nov 1, 2018
DBID AAYXX
CITATION
NPM
K9.
NAPCQ
7X8
DOI 10.2337/dc18-0253
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1935-5548
EndPage 2395
ExternalDocumentID 30224347
10_2337_dc18_0253
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
..I
.XZ
08P
0R~
18M
29F
2WC
4.4
53G
5GY
5RE
5RS
5VS
6PF
8R4
8R5
AAFWJ
AAIKC
AAMNW
AAWTL
AAYEP
AAYXX
ABOCM
ABPPZ
ACGFO
ACGOD
ADBBV
AEGXH
AENEX
AERZD
AFOSN
AFRAH
AHMBA
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BENPR
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
GX1
H13
HZ~
IAO
IEA
IHR
INH
INR
IOF
IPO
KQ8
L7B
M0K
M5~
O5R
O5S
O9-
OK1
OVD
P2P
PCD
Q2X
RHI
SV3
TDI
TEORI
TR2
TWZ
VVN
W8F
WH7
WOQ
WOW
YHG
YOC
ZCG
~KM
.55
.GJ
3O-
3V.
41~
7RV
7X2
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
AAKAS
AAQOH
AAQQT
AAYJJ
ABUWG
ADZCM
AFFNX
AFKRA
AI.
AN0
AQUVI
ATCPS
AZQEC
BCR
BCU
BEC
BHPHI
BKEYQ
BKNYI
BLC
BNQBC
BPHCQ
BVXVI
C1A
CCPQU
DWQXO
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
IAG
IGG
ITC
J5H
K9-
M0R
M0T
M1P
M2O
M2P
M2Q
N4W
NAPCQ
NPM
PEA
PQQKQ
PROAC
PSQYO
RHF
S0X
SJFOW
UKHRP
VH1
VXZ
WHG
X7M
ZGI
ZXP
K9.
7X8
ID FETCH-LOGICAL-c313t-ab60c7b68404461bd5b0ca948381c1386fbfb2b7256d4a7fbd1be28b8ba408b93
ISSN 0149-5992
1935-5548
IngestDate Fri Sep 05 10:19:30 EDT 2025
Mon Jun 30 08:12:29 EDT 2025
Wed Feb 19 02:36:28 EST 2025
Tue Jul 01 04:11:55 EDT 2025
Thu Apr 24 23:13:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2018 by the American Diabetes Association.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-ab60c7b68404461bd5b0ca948381c1386fbfb2b7256d4a7fbd1be28b8ba408b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2229-8488
PMID 30224347
PQID 2130270990
PQPubID 47715
PageCount 11
ParticipantIDs proquest_miscellaneous_2109332985
proquest_journals_2130270990
pubmed_primary_30224347
crossref_primary_10_2337_dc18_0253
crossref_citationtrail_10_2337_dc18_0253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Diabetes care
PublicationTitleAlternate Diabetes Care
PublicationYear 2018
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Roesch (2022031301223066900_B4) 2009; 3
de Goffau (2022031301223066900_B19) 2013; 62
Nymark (2022031301223066900_B36) 2009; 32
Vaarala (2022031301223066900_B9) 2008; 24
Rewers (2022031301223066900_B2) 2016; 387
Kriegel (2022031301223066900_B5) 2011; 108
Vaarala (2022031301223066900_B29) 2012; 9
Lopez (2022031301223066900_B32) 2016; 353
Knip (2022031301223066900_B43) 2016; 12
Sanchez-Alcoholado (2022031301223066900_B17) 2017; 8
Fajans (2022031301223066900_B15) 2011; 34
Sokol (2022031301223066900_B24) 2008; 105
Lee (2022031301223066900_B35) 2010; 53
Vaarala (2022031301223066900_B31) 2013; 13
Candela (2022031301223066900_B42) 2016; 116
Burger-van Paassen (2022031301223066900_B27) 2009; 420
Puddu (2022031301223066900_B39) 2014
Bosi (2022031301223066900_B10) 2006; 49
Nyunt (2022031301223066900_B14) 2009; 30
Tamanai-Shacoori (2022031301223066900_B25) 2017; 12
Vaarala (2022031301223066900_B6) 2012; 90
Qi (2022031301223066900_B40) 2016; 129
Gülden (2022031301223066900_B34) 2015; 159
He (2022031301223066900_B7) 2015; 35
Giongo (2022031301223066900_B41) 2011; 5
Spégel (2022031301223066900_B13) 2013; 62
Bischoff (2022031301223066900_B26) 2014; 14
Kostic (2022031301223066900_B20) 2015; 17
Watts (2022031301223066900_B33) 2005; 102
Lassenius (2022031301223066900_B38) 2016; 6
Brown (2022031301223066900_B22) 2011; 6
Mathis (2022031301223066900_B11) 2012; 245
Li (2022031301223066900_B28) 2010; 51
American Diabetes Association (2022031301223066900_B16) 2017; 40
Murri (2022031301223066900_B8) 2013; 11
Hansen (2022031301223066900_B3) 2012; 55
De Vadder (2022031301223066900_B30) 2016; 24
Khashan (2022031301223066900_B1) 2014; 134
Zak-Gołąb (2022031301223066900_B12) 2013
Mejía-León (2022031301223066900_B21) 2014; 4
Tlaskalová-Hogenová (2022031301223066900_B23) 2011; 8
Bhute (2022031301223066900_B18) 2016; 7
Lassenius (2022031301223066900_B37) 2011; 34
References_xml – volume: 30
  start-page: 67
  year: 2009
  ident: 2022031301223066900_B14
  article-title: Investigating maturity onset diabetes of the young
  publication-title: Clin Biochem Rev
– volume: 420
  start-page: 211
  year: 2009
  ident: 2022031301223066900_B27
  article-title: The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection
  publication-title: Biochem J
  doi: 10.1042/BJ20082222
– volume: 3
  start-page: 536
  year: 2009
  ident: 2022031301223066900_B4
  article-title: Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model
  publication-title: ISME J
  doi: 10.1038/ismej.2009.5
– volume: 8
  start-page: 1936
  year: 2017
  ident: 2022031301223066900_B17
  article-title: Role of gut microbiota on cardio-metabolic parameters and immunity in coronary artery disease patients with and without type-2 diabetes mellitus
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01936
– volume: 24
  start-page: 151
  year: 2016
  ident: 2022031301223066900_B30
  article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.06.013
– volume: 53
  start-page: 741
  year: 2010
  ident: 2022031301223066900_B35
  article-title: Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-009-1626-y
– volume: 6
  start-page: 38887
  year: 2016
  ident: 2022031301223066900_B38
  article-title: Endotoxins are associated with visceral fat mass in type 1 diabetes
  publication-title: Sci Rep
  doi: 10.1038/srep38887
– volume: 35
  start-page: 361
  year: 2015
  ident: 2022031301223066900_B7
  article-title: Targeting gut microbiota as a possible therapy for diabetes
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2015.03.002
– volume: 49
  start-page: 2824
  year: 2006
  ident: 2022031301223066900_B10
  article-title: Increased intestinal permeability precedes clinical onset of type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0465-3
– volume: 12
  start-page: 154
  year: 2016
  ident: 2022031301223066900_B43
  article-title: The role of the intestinal microbiota in type 1 diabetes mellitus
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2015.218
– volume: 116
  start-page: 80
  year: 2016
  ident: 2022031301223066900_B42
  article-title: Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet
  publication-title: Br J Nutr
  doi: 10.1017/S0007114516001045
– volume: 90
  start-page: 271
  year: 2012
  ident: 2022031301223066900_B6
  article-title: Is the origin of type 1 diabetes in the gut
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2011.115
– start-page: 162021
  volume-title: Mediators Inflamm
  year: 2014
  ident: 2022031301223066900_B39
  article-title: Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes
– volume: 12
  start-page: 157
  year: 2017
  ident: 2022031301223066900_B25
  article-title: Roseburia spp.: a marker of health
  publication-title: Future Microbiol
  doi: 10.2217/fmb-2016-0130
– volume: 62
  start-page: 653
  year: 2013
  ident: 2022031301223066900_B13
  article-title: Metabolite profiling reveals normal metabolic control in carriers of mutations in the glucokinase gene (MODY2)
  publication-title: Diabetes
  doi: 10.2337/db12-0827
– volume: 7
  start-page: 660
  year: 2016
  ident: 2022031301223066900_B18
  article-title: Molecular characterization and meta-analysis of gut microbial communities illustrate enrichment of Prevotella and Megasphaera in Indian subjects
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.00660
– volume: 62
  start-page: 1238
  year: 2013
  ident: 2022031301223066900_B19
  article-title: Fecal microbiota composition differs between children with β-cell autoimmunity and those without
  publication-title: Diabetes
  doi: 10.2337/db12-0526
– volume: 8
  start-page: 110
  year: 2011
  ident: 2022031301223066900_B23
  article-title: The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2010.67
– volume: 105
  start-page: 16731
  year: 2008
  ident: 2022031301223066900_B24
  article-title: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804812105
– volume: 5
  start-page: 82
  year: 2011
  ident: 2022031301223066900_B41
  article-title: Toward defining the autoimmune microbiome for type 1 diabetes
  publication-title: ISME J
  doi: 10.1038/ismej.2010.92
– start-page: 674106
  volume-title: Int J Endocrinol
  year: 2013
  ident: 2022031301223066900_B12
  article-title: Gut microbiota, microinflammation, metabolic profile, and zonulin concentration in obese and normal weight subjects
– volume: 9
  start-page: 251
  year: 2012
  ident: 2022031301223066900_B29
  article-title: Gut microbiota and type 1 diabetes
  publication-title: Rev Diabet Stud
  doi: 10.1900/RDS.2012.9.251
– volume: 40
  start-page: S11
  year: 2017
  ident: 2022031301223066900_B16
  article-title: Classification and diagnosis of diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc17-S005
– volume: 134
  start-page: e806
  year: 2014
  ident: 2022031301223066900_B1
  article-title: Mode of obstetrical delivery and type 1 diabetes: a sibling design study
  publication-title: Pediatrics
  doi: 10.1542/peds.2014-0819
– volume: 129
  start-page: 1298
  year: 2016
  ident: 2022031301223066900_B40
  article-title: Imbalance of fecal microbiota at newly diagnosed type 1 diabetes in Chinese children
  publication-title: Chin Med J (Engl)
  doi: 10.4103/0366-6999.182841
– volume: 17
  start-page: 260
  year: 2015
  ident: 2022031301223066900_B20
  article-title: The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.01.001
– volume: 34
  start-page: 1809
  year: 2011
  ident: 2022031301223066900_B37
  article-title: Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation
  publication-title: Diabetes Care
  doi: 10.2337/dc10-2197
– volume: 6
  start-page: e25792
  year: 2011
  ident: 2022031301223066900_B22
  article-title: Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025792
– volume: 11
  start-page: 46
  year: 2013
  ident: 2022031301223066900_B8
  article-title: Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study
  publication-title: BMC Med
  doi: 10.1186/1741-7015-11-46
– volume: 24
  start-page: 701
  year: 2008
  ident: 2022031301223066900_B9
  article-title: Leaking gut in type 1 diabetes
  publication-title: Curr Opin Gastroenterol
  doi: 10.1097/MOG.0b013e32830e6d98
– volume: 245
  start-page: 239
  year: 2012
  ident: 2022031301223066900_B11
  article-title: The influence of the microbiota on type-1 diabetes: on the threshold of a leap forward in our understanding
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2011.01084.x
– volume: 4
  start-page: 3814
  year: 2014
  ident: 2022031301223066900_B21
  article-title: Fecal microbiota imbalance in Mexican children with type 1 diabetes
  publication-title: Sci Rep
  doi: 10.1038/srep03814
– volume: 13
  start-page: 601
  year: 2013
  ident: 2022031301223066900_B31
  article-title: Human intestinal microbiota and type 1 diabetes
  publication-title: Curr Diab Rep
  doi: 10.1007/s11892-013-0409-5
– volume: 387
  start-page: 2340
  year: 2016
  ident: 2022031301223066900_B2
  article-title: Environmental risk factors for type 1 diabetes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30507-4
– volume: 353
  start-page: 1249
  year: 2016
  ident: 2022031301223066900_B32
  article-title: Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration
  publication-title: Science
  doi: 10.1126/science.aag3042
– volume: 14
  start-page: 189
  year: 2014
  ident: 2022031301223066900_B26
  article-title: Intestinal permeability--a new target for disease prevention and therapy
  publication-title: BMC Gastroenterol
  doi: 10.1186/s12876-014-0189-7
– volume: 32
  start-page: 1689
  year: 2009
  ident: 2022031301223066900_B36
  article-title: Serum lipopolysaccharide activity is associated with the progression of kidney disease in Finnish patients with type 1 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc09-0467
– volume: 34
  start-page: 1878
  year: 2011
  ident: 2022031301223066900_B15
  article-title: MODY: history, genetics, pathophysiology, and clinical decision making
  publication-title: Diabetes Care
  doi: 10.2337/dc11-0035
– volume: 55
  start-page: 2285
  year: 2012
  ident: 2022031301223066900_B3
  article-title: Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2564-7
– volume: 102
  start-page: 2916
  year: 2005
  ident: 2022031301223066900_B33
  article-title: Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0500178102
– volume: 51
  start-page: 414
  year: 2010
  ident: 2022031301223066900_B28
  article-title: Butyrate and type 1 diabetes mellitus: can we fix the intestinal leak
  publication-title: J Pediatr Gastroenterol Nutr
  doi: 10.1097/MPG.0b013e3181dd913a
– volume: 108
  start-page: 11548
  year: 2011
  ident: 2022031301223066900_B5
  article-title: Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1108924108
– volume: 159
  start-page: 143
  year: 2015
  ident: 2022031301223066900_B34
  article-title: The gut microbiota and type 1 diabetes
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2015.05.013
SSID ssj0004488
Score 2.645293
Snippet Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset diabetes...
OBJECTIVE Type 1 diabetes is associated with compositional differences in gut microbiota. To date, no microbiome studies have been performed in maturity-onset...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2385
SubjectTerms Abundance
Amino acids
Antigen presentation
Antigen processing
Arachidonic acid
Autoimmune diseases
Bacteroides
Biosynthesis
Children
Composition
Correlation analysis
Cytokines
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Genera
Health risks
Inflammation
Lipid metabolism
Lipids
Lipopolysaccharides
Longitudinal studies
Metabolism
Microbiota
Pancreas
Pediatrics
Permeability
Relative abundance
Research design
rRNA 16S
Title Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study
URI https://www.ncbi.nlm.nih.gov/pubmed/30224347
https://www.proquest.com/docview/2130270990
https://www.proquest.com/docview/2109332985
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIlW9IN5dKMggDkiVIY7zcLgtXfoAFQ5sRTlFtpOVFtFsxWY57E_h3_DPmPEjm1atBFwiK3ZiKfNl_Hk8D0JeyEylcaVilhXSwAaFp6yoK0x4mUhuZG60QnvH8cfs8CR5f5qeDga_e15Ly1a_Mqsr40r-R6pwD-SKUbL_INnupXAD2iBfuIKE4fpXMj5Ytuj3blMptQrUFxY7WbhAvrPgjmWPB_Zh-XJWP2Tdb71z1l6I5P6C1ljcku7y3XGwxloXjE_jr7FtuXglVCDOtx00DppwFj60HRZD1nV1KWs96-1eiX5maxeg2U_FDmrLXo8WMKJz9vhsj-95A4BasZEr4ququbMhVLNuJcEcCHbouGGT-htWTbF4rbHuwGp9vLLAUBnVzBk2Z_60yQXX960eXPrwP7toOU1diJQBF5J9Ve5yaAXI8r5iFq4y0OUVIxY250BlYAqgf6I_Bj7g-ZmFjkCmI1xq0EvpuUPXDXIzzoG-IS8_-rAOzQUF6RJa4Uyvu3m2yGZ48iIjumabY-nO5Da55fcpdORAd4cM6uYu2Tz2nhj3yC_AHl1jj3rs0VlDe9ijgBx6AXvUY48G7FHEHkXsUU4DUOxzFnu25bFHPcBowN4bOqJ95FGLvPvkZP_dZO-Q-TofzAguWqZ0FplcY9qhJMm4rlIdGVUkEtik4UJmUz3Vsc6BnVeJyqe64rqOpZZaJZHUhXhANpp5U28TOk2MAM6suIqmSR4ZGUv47oprpYUuuB6Sl-Fbl8YnwcdaLN9L2AyjhEqUUIkSGpLn3dBzl_nlqkE7QWClVwyLMrbOAHjiPCTPum5Q28aCvZ4vcQyaEuNCpkPy0Am6myUA49G1PY_J1vqn2CEb7Y9l_QTIcaufWvj9Acu9urs
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Microbiota+Differs+in+Composition+and+Functionality+Between+Children+With+Type+1+Diabetes+and+MODY2+and+Healthy+Control+Subjects%3A+A+Case-Control+Study&rft.jtitle=Diabetes+care&rft.au=Leiva-Gea%2C+Isabel&rft.au=S%C3%A1nchez-Alcoholado%2C+Lidia&rft.au=Mart%C3%ADn-Tejedor%2C+Beatriz&rft.au=Castellano-Castillo%2C+Daniel&rft.date=2018-11-01&rft.eissn=1935-5548&rft.volume=41&rft.issue=11&rft.spage=2385&rft_id=info:doi/10.2337%2Fdc18-0253&rft_id=info%3Apmid%2F30224347&rft.externalDocID=30224347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon