Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm

In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse dise...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 77; no. 1; pp. 1209 - 1226
Main Authors Kalaiselvi, P., Anusuya, S.
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2023.040264

Cover

Abstract In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing and treating liver diseases. The anticipated model is assessed on a Computed Tomography (CT) scan dataset containing both benign and malignant liver tumors. The proposed approach achieved high accuracy in predicting liver tumors, outperforming other state-of-the-art methods. Additionally, advanced attention mechanisms were incorporated into the CNN model to enable the identification and highlighting of regions of the CT scans most relevant to predicting liver tumors. The results suggest that incorporating attention mechanisms and a depth-based variant search algorithm into the CNN model is a promising approach for improving the accuracy and robustness of liver tumor prediction. It can assist radiologists in their diagnosis and treatment planning. The proposed system achieved a high accuracy of 95.5% in predicting liver tumors, outperforming other state-of-the-art methods.
AbstractList In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing and treating liver diseases. The anticipated model is assessed on a Computed Tomography (CT) scan dataset containing both benign and malignant liver tumors. The proposed approach achieved high accuracy in predicting liver tumors, outperforming other state-of-the-art methods. Additionally, advanced attention mechanisms were incorporated into the CNN model to enable the identification and highlighting of regions of the CT scans most relevant to predicting liver tumors. The results suggest that incorporating attention mechanisms and a depth-based variant search algorithm into the CNN model is a promising approach for improving the accuracy and robustness of liver tumor prediction. It can assist radiologists in their diagnosis and treatment planning. The proposed system achieved a high accuracy of 95.5% in predicting liver tumors, outperforming other state-of-the-art methods.
Author Kalaiselvi, P.
Anusuya, S.
Author_xml – sequence: 1
  givenname: P.
  surname: Kalaiselvi
  fullname: Kalaiselvi, P.
– sequence: 2
  givenname: S.
  surname: Anusuya
  fullname: Anusuya, S.
BookMark eNqFkM1PwjAYhxujiYDePTbxPOzHGOsR8YsEo4notXnXdVCydbMtEP57N_BgPOilbX5vf0_ePH10amurEbqiZMhZQuIbVakhI4wPSUxYEp-gHh3FScQYS05_vM9R3_s1ITzhgvRQMzdb7fBiU9UOvzqdGxVMbfHOhBWe5FuwSud4EoK2h_xZqxVY4yuPZzbopYPQzo0NNQZ8p5uwim7Bt9EHOAM24DcNTrWoclm7llldoLMCSq8vv-8Ben-4X0yfovnL42w6mUeKUx4iAMbHMYvZSFPBUkEoh1ylVGWKZCMuVBzzNiGCiiwbp1wALWjGkzQrVDICygeIHrkb28B-B2UpG2cqcHtJiTwok60y2SmTR2Vt5_rYaVz9udE-yHW9cbZdU3IqRNodHTk5_lKu9t7pQioToLMTHJjyLzz5Vfx3oy_Xxo7O
CitedBy_id crossref_primary_10_1016_j_mex_2025_103276
Cites_doi 10.14445/23488379/IJEEE-V10I1P105
10.1016/j.ejmp.2021.02.006
10.1016/j.knosys.2019.04.013
10.1007/s11227-022-04517-0
10.32604/iasc.2022.024509
10.1148/radiol.2020192224
10.1016/j.mri.2020.02.002
10.1109/TASL.2011.2134090
10.14445/23488379/IJEEE-V10I1P104
10.1117/1.JMI.6.3.031409
10.1016/j.neucom.2022.03.046
10.14445/22315381/IJETT-V70I3P232
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2023.040264
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 1226
ExternalDocumentID 10.32604/cmc.2023.040264
10_32604_cmc_2023_040264
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c313t-aa23742425e19289013adc81cbc0b539c4433ad0919bb7839a1f1b368bfc65a13
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Sun Oct 26 04:05:17 EDT 2025
Mon Jun 30 07:46:02 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Wed Oct 01 06:49:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-aa23742425e19289013adc81cbc0b539c4433ad0919bb7839a1f1b368bfc65a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199831991?pq-origsite=%requestingapplication%&accountid=15518
PQID 3199831991
PQPubID 2048737
PageCount 18
ParticipantIDs unpaywall_primary_10_32604_cmc_2023_040264
proquest_journals_3199831991
crossref_citationtrail_10_32604_cmc_2023_040264
crossref_primary_10_32604_cmc_2023_040264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Arul Kumar (ref29) 2022
Castiglioni (ref4) 2021; 83
Xie (ref28) 2019; 178
Cui (ref18) 2020; 28
Selvaraj (ref32) 2023; 10
Liao (ref23) 2020; 33
Ge (ref1) 2012; 20
Xie (ref3) 2022; 491
Liu (ref11) 2019; 23
Joe Prathap (ref27) 2022; 70
Wang (ref15) 2020; 70
Udhaya Sankar (ref34) 2023
Wu (ref17) 2020; 8
Sudharson (ref22) 2022
Kuo (ref14) 2020; 10
Khanna (ref25) 2022
Willemink (ref5) 2020; 295
Zhang (ref12) 2020; 78
Choi (ref13) 2020; 10
Ding (ref10) 2017; 48
Maier (ref2) 2021; 29
Zhong (ref16) 2019; 66
Zainuddin (ref6) 2019; 11
Dhinakaran (ref21) 2023; 492
Gomathy (ref20) 2022
Dhinakaran (ref24) 2022; 78
Catherine Bel (ref31) 2022
Dhinakaran (ref30) 2022; 33
Li (ref19) 2019; 43
Lang (ref7) 2019; 178
Hu (ref26) 2021; 34
Agarwal (ref8) 2019; 6
Monica (ref33) 2023
Srinivasan (ref9) 2023; 10
References_xml – volume: 10
  start-page: 53
  year: 2023
  ident: ref32
  article-title: Outsourced analysis of encrypted graphs in the cloud with privacy protection
  publication-title: SSRG International Journal of Electrical and Electronics Engineering
  doi: 10.14445/23488379/IJEEE-V10I1P105
– volume: 178
  start-page: 1
  year: 2019
  ident: ref28
  article-title: Liver tumor segmentation based on convolutional neural network with hard sample mining and 3D refinement
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 83
  start-page: 9
  year: 2021
  ident: ref4
  article-title: AI applications to medical images: From machine learning to deep learning
  publication-title: Physica Medica
  doi: 10.1016/j.ejmp.2021.02.006
– volume: 178
  start-page: 48
  year: 2019
  ident: ref7
  article-title: WekaDeeplearning4j: A deep learning package for WEKA based on Deeplearning4j
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.04.013
– volume: 78
  start-page: 17559
  year: 2022
  ident: ref24
  article-title: Protection of data privacy from vulnerability using two-fish technique with Apriori algorithm in data mining
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-022-04517-0
– start-page: 538
  year: 2022
  ident: ref31
  article-title: Trustworthy cloud storage data protection based on blockchain technology
– start-page: 629
  year: 2022
  ident: ref20
  article-title: Automatic waste management based on IoT using a wireless sensor network
– volume: 78
  start-page: 101688
  year: 2020
  ident: ref12
  article-title: Multi-task deep neural network for automatic liver tumor detection and classification
  publication-title: Computerized Medical Imaging and Graphics
– volume: 29
  start-page: 86
  year: 2021
  ident: ref2
  article-title: Systematic mapping study of AI/machine learning in healthcare and future directions
  publication-title: Zeitschrift fur MedizinischePhysik
– volume: 34
  start-page: 859
  year: 2021
  ident: ref26
  article-title: Liver tumor segmentation in CT images with adversarial learning
  publication-title: Journal of Digital Imaging
– volume: 33
  start-page: 1877
  year: 2022
  ident: ref30
  article-title: Preserving data confidentiality in association rule mining using data share allocator algorithm
  publication-title: Intelligent Automation & Soft Computing
  doi: 10.32604/iasc.2022.024509
– volume: 295
  start-page: 4
  year: 2020
  ident: ref5
  article-title: Preparing medical imaging data for machine learning
  publication-title: Radiology
  doi: 10.1148/radiol.2020192224
– volume: 70
  start-page: 136
  year: 2020
  ident: ref15
  article-title: Liver tumor histological classification using convolutional neural networks based on MRI images
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2020.02.002
– start-page: 55
  year: 2023
  ident: ref34
  article-title: Machine learning system for indolence perception
– volume: 492
  start-page: 1
  year: 2023
  ident: ref21
  article-title: Assistive system for the blind with voice output based on optical character recognition
– volume: 23
  start-page: 343
  year: 2019
  ident: ref11
  article-title: Multi-phase liver tumor segmentation using 3D fully convolutional networks
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 10
  start-page: 1
  year: 2020
  ident: ref14
  article-title: A combination of 2D and 3D convolutional neural networks for liver tumor detection and segmentation in CT images
  publication-title: Scientific Reports
– volume: 20
  start-page: 30
  year: 2012
  ident: ref1
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2011.2134090
– volume: 48
  start-page: 289
  year: 2017
  ident: ref10
  article-title: 3D deep learning for detecting multiple types of liver lesions in CT images
  publication-title: IEEE Transactions on Cybernetics
– volume: 66
  start-page: 1706
  year: 2019
  ident: ref16
  article-title: Liver tumor segmentation in ultrasound images using a deep learning approach
  publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
– volume: 10
  start-page: 41
  year: 2023
  ident: ref9
  article-title: IoT-based solution for paraplegic sufferer to send signals to physician via internet
  publication-title: SSRG International Journal of Electrical and Electronics Engineering
  doi: 10.14445/23488379/IJEEE-V10I1P104
– start-page: 223
  year: 2022
  ident: ref25
  article-title: Secure android location tracking application with privacy enhanced technique
– start-page: 61
  year: 2022
  ident: ref29
  article-title: Recommendation system for research studies based on GCR
– volume: 6
  start-page: 031409
  year: 2019
  ident: ref8
  article-title: Automatic mass detection in mammograms using deep convolutional neural networks
  publication-title: Journal of Medical Imaging
  doi: 10.1117/1.JMI.6.3.031409
– volume: 28
  start-page: 1001
  year: 2020
  ident: ref18
  article-title: Network for liver CT image registration
  publication-title: Journal of X-Ray Science and Technology
– volume: 491
  start-page: 160
  year: 2022
  ident: ref3
  article-title: Automated design of CNN architecture based on efficient evolutionary search
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.03.046
– volume: 70
  start-page: 284
  year: 2022
  ident: ref27
  article-title: Mining privacy-preserving association rules based on parallel processing in cloud computing
  publication-title: International Journal of Engineering Trends and Technology
  doi: 10.14445/22315381/IJETT-V70I3P232
– volume: 43
  start-page: 32
  year: 2019
  ident: ref19
  article-title: Deep belief network for liver tumor classification and diagnosis using ultrasound images
  publication-title: Journal of Medical Systems
– volume: 33
  start-page: 1014
  year: 2020
  ident: ref23
  article-title: Computer-aided diagnosis of liver tumors using deep learning and contrast-enhanced CT images
  publication-title: Journal of Digital Imaging
– volume: 11
  start-page: 1
  year: 2019
  ident: ref6
  article-title: Deep learning for image processing in WEKA environment
  publication-title: International Journal of Advances in Soft Computing and its Applications
– volume: 8
  start-page: 77757
  year: 2020
  ident: ref17
  article-title: Liver tumor segmentation in CT images using convolutional neural networks and an enhanced loss function
  publication-title: IEEE Access
– start-page: 1
  year: 2022
  ident: ref22
  article-title: Hybrid deep learning neural system for brain tumor detection
– start-page: 924
  year: 2023
  ident: ref33
  article-title: MEMS based sensor robot for immobilized persons
– volume: 10
  start-page: 3142
  year: 2020
  ident: ref13
  article-title: Convolutional neural network-based MRI liver tumor classification using multiscale-ROI with attention mechanism
  publication-title: Applied Sciences
SSID ssj0036390
Score 2.2789495
Snippet In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1209
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Computed tomography
Computer vision
Deep learning
Liver diseases
Machine learning
Predictive control
Robustness
Search algorithms
Tumors
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9sgFEZdethpbfdDS9VVHHrZJBxjbGIfvbRVWy1VpCVTdkKAYauaOFbiaOr--j5s3LU7bNphFwsQBgFP730PHh8InfCYUhsVjGTaDkmcKk6UzBJirc1CbUJrjHMUx9f8YhZfzZP5Dpp3d2EcG1Hg6Eu9AWiUtSvcDPRSO1edDaafJ2I0HgEwJLTLCPCDePw0F1SFfYZ2eQIovYd2Z9eT_GtDnxpzEkXN1p9PR_4EE7BMGLuOAtdREDbNPLVYv2Do821ZybsfcrF4ZJHO99BdN5Y2EOU22NYq0D9_o3n8H4PdRy88jMV5K3cHaMeUL9Fe90QE9hrjFao-ubgPPN0uV2s8WbtTIScJ2G3_4tzHH-C8rtuoSzw27ibyzWa5wZcdkUWBb8p6hSU-NVX9nXwEu1vgL-Djg1DgNlwa54tvqzW0uXyNZudn09EF8Y88EM0oq4mUEQP3HFSHAbCZAjxhstAp1UqHKmGZjmMGJQBrMqWGAOcktVQxniqreSIpe4N65ao0bxFO1dAWAEAyAGHgtibK8EirxEqleBYNZR8NuoUU2jOgu4c4FgI8oWbpBUy7cNMu2qXvo_cPf1Qt-8cf6h51siG8HtgI5q4wug_tow8P8vLXtg7_pfIR6tXrrXkH4KhWx17O7wGuuglC
  priority: 102
  providerName: Unpaywall
Title Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm
URI https://www.proquest.com/docview/3199831991
https://file.techscience.com/files/cmc/2023/TSP_CMC-77-1/TSP_CMC_40264/TSP_CMC_40264.pdf
UnpaywallVersion publishedVersion
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07b9swED6kztAuebQN6rzAoUsLsLZEiZaGIFBeSIrGMIq4SCaBpMg6gC0rtowg_z53lpTHkiwSIFAc7sH7jvcC-C4Dz3N-JnhsXI8HkZZcqzjkzrm4a2zXWUuO4mVfng-D39fh9Qr0m1oYSqtszsTlQZ1NDd2RdwQVg9HDOyzuOE2NouhqM0JD1aMVsoNli7EPsOpTZ6wWrB6d9gd_m7NZoD1elkiGgeQ-WrcqcIkQpht0zIRaGvriF8q1L4PXhuoZfX5c5IV6uFfj8QtDdLYBazWCZEnF8k1YsflnWG-mM7BaWb9A8YdSLtjVYjKdscGMAjLEBEY3ryypQ_8sKcsq4ZFdWioCvp1P5uyi6SGRsdu8nDLFTmxRjvgRmryM_UP3GvnBqkxlloz_I53K0eQrDM9Or47PeT1fgRvhiZIr5Qv0jFFrLeK8CJGBUJmJPKNNV4ciNkEg8AsiiljrHiIp5TlPCxlpZ2SoPLEFrXya22_AIt1zGdr-GPEPeoyhttI3OnRKaxn7PdWGTkPM1NTNx2kGxjhFJ2RJ_hTJnxL504r8bfjx9EdRNd54Y-1uw5-0VsF5-iwwbfj5xLN399p-e68d-ESLq0uYXWiVs4XdQ1hS6v1a1vA97A-Sm0cZtOGs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lAuvBEpBXyAA0gmWdvr7B4qlNJWCU2iCqWot8X22rRSstkmG1X9c_w2xllvC5dy6mUP1tqHmbG_b-x5ALyXIoocyzlNjetSkWhJtUpj6pxLO8Z2nLXeURyNZf9UfDuLzzbgd5ML48MqmzNxfVDnc-PvyNvcJ4P5T_SlvKS-a5R_XW1aaKjQWiHfW5cYC4kdx_b6Cl245d7gAPX9gbGjw8nXPg1dBqjhEa-oUoyjf4i2a5HtJIiPXOUmiYw2HR3z1AjBcQRxNdW6i3xCRS7SXCbaGRmriOO6D2BLcJGi87e1fzg--d5gAUf8X6dkxkJShmhaP5QiZeqItpn5EoqMf8Z9xKT4Fxhv2e72qijV9ZWaTv8CvqMn8CgwVtKrTewpbNjiGTxuukGQcDg8h3LoQzzIZDWbL8jJwj8AeaUTf9NLeiHUgPSqqg6wJCPrk44vlrMlGTQ1K3JyUVRzosiBLatzuo8Qm5Mf6M6j_kkdGU1601-ol-p89gJO70XSL2GzmBf2FZBEd12OXCNFvoUeaqytZEbHTmktU9ZVLWg3wsxMKHbue25MM3R61uLPUPyZF39Wi78FH29mlHWhjzv-3W30k4Utv8xuDbQFn2509t-1du5e6x1s9yejYTYcjI9fw0M_sb4A2oXNarGyb5ASVfptsDsCP-_b1P8AqLUbzw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9sgFEZdethpbfdDS9VVHHrZJBxjbGIfvbRVWy1VpCVTdkKAYauaOFbiaOr--j5s3LU7bNphFwsQBgFP730PHh8InfCYUhsVjGTaDkmcKk6UzBJirc1CbUJrjHMUx9f8YhZfzZP5Dpp3d2EcG1Hg6Eu9AWiUtSvcDPRSO1edDaafJ2I0HgEwJLTLCPCDePw0F1SFfYZ2eQIovYd2Z9eT_GtDnxpzEkXN1p9PR_4EE7BMGLuOAtdREDbNPLVYv2Do821ZybsfcrF4ZJHO99BdN5Y2EOU22NYq0D9_o3n8H4PdRy88jMV5K3cHaMeUL9Fe90QE9hrjFao-ubgPPN0uV2s8WbtTIScJ2G3_4tzHH-C8rtuoSzw27ibyzWa5wZcdkUWBb8p6hSU-NVX9nXwEu1vgL-Djg1DgNlwa54tvqzW0uXyNZudn09EF8Y88EM0oq4mUEQP3HFSHAbCZAjxhstAp1UqHKmGZjmMGJQBrMqWGAOcktVQxniqreSIpe4N65ao0bxFO1dAWAEAyAGHgtibK8EirxEqleBYNZR8NuoUU2jOgu4c4FgI8oWbpBUy7cNMu2qXvo_cPf1Qt-8cf6h51siG8HtgI5q4wug_tow8P8vLXtg7_pfIR6tXrrXkH4KhWx17O7wGuuglC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+Tumor+Prediction+with+Advanced+Attention+Mechanisms+Integrated+into+a+Depth-Based+Variant+Search+Algorithm&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Kalaiselvi%2C+P.&rft.au=Anusuya%2C+S.&rft.date=2023&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=77&rft.issue=1&rft.spage=1209&rft.epage=1226&rft_id=info:doi/10.32604%2Fcmc.2023.040264&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_040264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon