Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm
In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse dise...
Saved in:
| Published in | Computers, materials & continua Vol. 77; no. 1; pp. 1209 - 1226 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1546-2226 1546-2218 1546-2226 |
| DOI | 10.32604/cmc.2023.040264 |
Cover
| Abstract | In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing and treating liver diseases. The anticipated model is assessed on a Computed Tomography (CT) scan dataset containing both benign and malignant liver tumors. The proposed approach achieved high accuracy in predicting liver tumors, outperforming other state-of-the-art methods. Additionally, advanced attention mechanisms were incorporated into the CNN model to enable the identification and highlighting of regions of the CT scans most relevant to predicting liver tumors. The results suggest that incorporating attention mechanisms and a depth-based variant search algorithm into the CNN model is a promising approach for improving the accuracy and robustness of liver tumor prediction. It can assist radiologists in their diagnosis and treatment planning. The proposed system achieved a high accuracy of 95.5% in predicting liver tumors, outperforming other state-of-the-art methods. |
|---|---|
| AbstractList | In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing and treating liver diseases. The anticipated model is assessed on a Computed Tomography (CT) scan dataset containing both benign and malignant liver tumors. The proposed approach achieved high accuracy in predicting liver tumors, outperforming other state-of-the-art methods. Additionally, advanced attention mechanisms were incorporated into the CNN model to enable the identification and highlighting of regions of the CT scans most relevant to predicting liver tumors. The results suggest that incorporating attention mechanisms and a depth-based variant search algorithm into the CNN model is a promising approach for improving the accuracy and robustness of liver tumor prediction. It can assist radiologists in their diagnosis and treatment planning. The proposed system achieved a high accuracy of 95.5% in predicting liver tumors, outperforming other state-of-the-art methods. |
| Author | Kalaiselvi, P. Anusuya, S. |
| Author_xml | – sequence: 1 givenname: P. surname: Kalaiselvi fullname: Kalaiselvi, P. – sequence: 2 givenname: S. surname: Anusuya fullname: Anusuya, S. |
| BookMark | eNqFkM1PwjAYhxujiYDePTbxPOzHGOsR8YsEo4notXnXdVCydbMtEP57N_BgPOilbX5vf0_ePH10amurEbqiZMhZQuIbVakhI4wPSUxYEp-gHh3FScQYS05_vM9R3_s1ITzhgvRQMzdb7fBiU9UOvzqdGxVMbfHOhBWe5FuwSud4EoK2h_xZqxVY4yuPZzbopYPQzo0NNQZ8p5uwim7Bt9EHOAM24DcNTrWoclm7llldoLMCSq8vv-8Ben-4X0yfovnL42w6mUeKUx4iAMbHMYvZSFPBUkEoh1ylVGWKZCMuVBzzNiGCiiwbp1wALWjGkzQrVDICygeIHrkb28B-B2UpG2cqcHtJiTwok60y2SmTR2Vt5_rYaVz9udE-yHW9cbZdU3IqRNodHTk5_lKu9t7pQioToLMTHJjyLzz5Vfx3oy_Xxo7O |
| CitedBy_id | crossref_primary_10_1016_j_mex_2025_103276 |
| Cites_doi | 10.14445/23488379/IJEEE-V10I1P105 10.1016/j.ejmp.2021.02.006 10.1016/j.knosys.2019.04.013 10.1007/s11227-022-04517-0 10.32604/iasc.2022.024509 10.1148/radiol.2020192224 10.1016/j.mri.2020.02.002 10.1109/TASL.2011.2134090 10.14445/23488379/IJEEE-V10I1P104 10.1117/1.JMI.6.3.031409 10.1016/j.neucom.2022.03.046 10.14445/22315381/IJETT-V70I3P232 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.32604/cmc.2023.040264 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 1226 |
| ExternalDocumentID | 10.32604/cmc.2023.040264 10_32604_cmc_2023_040264 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c313t-aa23742425e19289013adc81cbc0b539c4433ad0919bb7839a1f1b368bfc65a13 |
| IEDL.DBID | BENPR |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Sun Oct 26 04:05:17 EDT 2025 Mon Jun 30 07:46:02 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Wed Oct 01 06:49:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-aa23742425e19289013adc81cbc0b539c4433ad0919bb7839a1f1b368bfc65a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3199831991?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3199831991 |
| PQPubID | 2048737 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2023_040264 proquest_journals_3199831991 crossref_citationtrail_10_32604_cmc_2023_040264 crossref_primary_10_32604_cmc_2023_040264 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2023 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Arul Kumar (ref29) 2022 Castiglioni (ref4) 2021; 83 Xie (ref28) 2019; 178 Cui (ref18) 2020; 28 Selvaraj (ref32) 2023; 10 Liao (ref23) 2020; 33 Ge (ref1) 2012; 20 Xie (ref3) 2022; 491 Liu (ref11) 2019; 23 Joe Prathap (ref27) 2022; 70 Wang (ref15) 2020; 70 Udhaya Sankar (ref34) 2023 Wu (ref17) 2020; 8 Sudharson (ref22) 2022 Kuo (ref14) 2020; 10 Khanna (ref25) 2022 Willemink (ref5) 2020; 295 Zhang (ref12) 2020; 78 Choi (ref13) 2020; 10 Ding (ref10) 2017; 48 Maier (ref2) 2021; 29 Zhong (ref16) 2019; 66 Zainuddin (ref6) 2019; 11 Dhinakaran (ref21) 2023; 492 Gomathy (ref20) 2022 Dhinakaran (ref24) 2022; 78 Catherine Bel (ref31) 2022 Dhinakaran (ref30) 2022; 33 Li (ref19) 2019; 43 Lang (ref7) 2019; 178 Hu (ref26) 2021; 34 Agarwal (ref8) 2019; 6 Monica (ref33) 2023 Srinivasan (ref9) 2023; 10 |
| References_xml | – volume: 10 start-page: 53 year: 2023 ident: ref32 article-title: Outsourced analysis of encrypted graphs in the cloud with privacy protection publication-title: SSRG International Journal of Electrical and Electronics Engineering doi: 10.14445/23488379/IJEEE-V10I1P105 – volume: 178 start-page: 1 year: 2019 ident: ref28 article-title: Liver tumor segmentation based on convolutional neural network with hard sample mining and 3D refinement publication-title: Computer Methods and Programs in Biomedicine – volume: 83 start-page: 9 year: 2021 ident: ref4 article-title: AI applications to medical images: From machine learning to deep learning publication-title: Physica Medica doi: 10.1016/j.ejmp.2021.02.006 – volume: 178 start-page: 48 year: 2019 ident: ref7 article-title: WekaDeeplearning4j: A deep learning package for WEKA based on Deeplearning4j publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.04.013 – volume: 78 start-page: 17559 year: 2022 ident: ref24 article-title: Protection of data privacy from vulnerability using two-fish technique with Apriori algorithm in data mining publication-title: The Journal of Supercomputing doi: 10.1007/s11227-022-04517-0 – start-page: 538 year: 2022 ident: ref31 article-title: Trustworthy cloud storage data protection based on blockchain technology – start-page: 629 year: 2022 ident: ref20 article-title: Automatic waste management based on IoT using a wireless sensor network – volume: 78 start-page: 101688 year: 2020 ident: ref12 article-title: Multi-task deep neural network for automatic liver tumor detection and classification publication-title: Computerized Medical Imaging and Graphics – volume: 29 start-page: 86 year: 2021 ident: ref2 article-title: Systematic mapping study of AI/machine learning in healthcare and future directions publication-title: Zeitschrift fur MedizinischePhysik – volume: 34 start-page: 859 year: 2021 ident: ref26 article-title: Liver tumor segmentation in CT images with adversarial learning publication-title: Journal of Digital Imaging – volume: 33 start-page: 1877 year: 2022 ident: ref30 article-title: Preserving data confidentiality in association rule mining using data share allocator algorithm publication-title: Intelligent Automation & Soft Computing doi: 10.32604/iasc.2022.024509 – volume: 295 start-page: 4 year: 2020 ident: ref5 article-title: Preparing medical imaging data for machine learning publication-title: Radiology doi: 10.1148/radiol.2020192224 – volume: 70 start-page: 136 year: 2020 ident: ref15 article-title: Liver tumor histological classification using convolutional neural networks based on MRI images publication-title: Magnetic Resonance Imaging doi: 10.1016/j.mri.2020.02.002 – start-page: 55 year: 2023 ident: ref34 article-title: Machine learning system for indolence perception – volume: 492 start-page: 1 year: 2023 ident: ref21 article-title: Assistive system for the blind with voice output based on optical character recognition – volume: 23 start-page: 343 year: 2019 ident: ref11 article-title: Multi-phase liver tumor segmentation using 3D fully convolutional networks publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 10 start-page: 1 year: 2020 ident: ref14 article-title: A combination of 2D and 3D convolutional neural networks for liver tumor detection and segmentation in CT images publication-title: Scientific Reports – volume: 20 start-page: 30 year: 2012 ident: ref1 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASL.2011.2134090 – volume: 48 start-page: 289 year: 2017 ident: ref10 article-title: 3D deep learning for detecting multiple types of liver lesions in CT images publication-title: IEEE Transactions on Cybernetics – volume: 66 start-page: 1706 year: 2019 ident: ref16 article-title: Liver tumor segmentation in ultrasound images using a deep learning approach publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control – volume: 10 start-page: 41 year: 2023 ident: ref9 article-title: IoT-based solution for paraplegic sufferer to send signals to physician via internet publication-title: SSRG International Journal of Electrical and Electronics Engineering doi: 10.14445/23488379/IJEEE-V10I1P104 – start-page: 223 year: 2022 ident: ref25 article-title: Secure android location tracking application with privacy enhanced technique – start-page: 61 year: 2022 ident: ref29 article-title: Recommendation system for research studies based on GCR – volume: 6 start-page: 031409 year: 2019 ident: ref8 article-title: Automatic mass detection in mammograms using deep convolutional neural networks publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.6.3.031409 – volume: 28 start-page: 1001 year: 2020 ident: ref18 article-title: Network for liver CT image registration publication-title: Journal of X-Ray Science and Technology – volume: 491 start-page: 160 year: 2022 ident: ref3 article-title: Automated design of CNN architecture based on efficient evolutionary search publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.03.046 – volume: 70 start-page: 284 year: 2022 ident: ref27 article-title: Mining privacy-preserving association rules based on parallel processing in cloud computing publication-title: International Journal of Engineering Trends and Technology doi: 10.14445/22315381/IJETT-V70I3P232 – volume: 43 start-page: 32 year: 2019 ident: ref19 article-title: Deep belief network for liver tumor classification and diagnosis using ultrasound images publication-title: Journal of Medical Systems – volume: 33 start-page: 1014 year: 2020 ident: ref23 article-title: Computer-aided diagnosis of liver tumors using deep learning and contrast-enhanced CT images publication-title: Journal of Digital Imaging – volume: 11 start-page: 1 year: 2019 ident: ref6 article-title: Deep learning for image processing in WEKA environment publication-title: International Journal of Advances in Soft Computing and its Applications – volume: 8 start-page: 77757 year: 2020 ident: ref17 article-title: Liver tumor segmentation in CT images using convolutional neural networks and an enhanced loss function publication-title: IEEE Access – start-page: 1 year: 2022 ident: ref22 article-title: Hybrid deep learning neural system for brain tumor detection – start-page: 924 year: 2023 ident: ref33 article-title: MEMS based sensor robot for immobilized persons – volume: 10 start-page: 3142 year: 2020 ident: ref13 article-title: Convolutional neural network-based MRI liver tumor classification using multiscale-ROI with attention mechanism publication-title: Applied Sciences |
| SSID | ssj0036390 |
| Score | 2.2789495 |
| Snippet | In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1209 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Computed tomography Computer vision Deep learning Liver diseases Machine learning Predictive control Robustness Search algorithms Tumors |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9sgFEZdethpbfdDS9VVHHrZJBxjbGIfvbRVWy1VpCVTdkKAYauaOFbiaOr--j5s3LU7bNphFwsQBgFP730PHh8InfCYUhsVjGTaDkmcKk6UzBJirc1CbUJrjHMUx9f8YhZfzZP5Dpp3d2EcG1Hg6Eu9AWiUtSvcDPRSO1edDaafJ2I0HgEwJLTLCPCDePw0F1SFfYZ2eQIovYd2Z9eT_GtDnxpzEkXN1p9PR_4EE7BMGLuOAtdREDbNPLVYv2Do821ZybsfcrF4ZJHO99BdN5Y2EOU22NYq0D9_o3n8H4PdRy88jMV5K3cHaMeUL9Fe90QE9hrjFao-ubgPPN0uV2s8WbtTIScJ2G3_4tzHH-C8rtuoSzw27ibyzWa5wZcdkUWBb8p6hSU-NVX9nXwEu1vgL-Djg1DgNlwa54tvqzW0uXyNZudn09EF8Y88EM0oq4mUEQP3HFSHAbCZAjxhstAp1UqHKmGZjmMGJQBrMqWGAOcktVQxniqreSIpe4N65ao0bxFO1dAWAEAyAGHgtibK8EirxEqleBYNZR8NuoUU2jOgu4c4FgI8oWbpBUy7cNMu2qXvo_cPf1Qt-8cf6h51siG8HtgI5q4wug_tow8P8vLXtg7_pfIR6tXrrXkH4KhWx17O7wGuuglC priority: 102 providerName: Unpaywall |
| Title | Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm |
| URI | https://www.proquest.com/docview/3199831991 https://file.techscience.com/files/cmc/2023/TSP_CMC-77-1/TSP_CMC_40264/TSP_CMC_40264.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 77 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07b9swED6kztAuebQN6rzAoUsLsLZEiZaGIFBeSIrGMIq4SCaBpMg6gC0rtowg_z53lpTHkiwSIFAc7sH7jvcC-C4Dz3N-JnhsXI8HkZZcqzjkzrm4a2zXWUuO4mVfng-D39fh9Qr0m1oYSqtszsTlQZ1NDd2RdwQVg9HDOyzuOE2NouhqM0JD1aMVsoNli7EPsOpTZ6wWrB6d9gd_m7NZoD1elkiGgeQ-WrcqcIkQpht0zIRaGvriF8q1L4PXhuoZfX5c5IV6uFfj8QtDdLYBazWCZEnF8k1YsflnWG-mM7BaWb9A8YdSLtjVYjKdscGMAjLEBEY3ryypQ_8sKcsq4ZFdWioCvp1P5uyi6SGRsdu8nDLFTmxRjvgRmryM_UP3GvnBqkxlloz_I53K0eQrDM9Or47PeT1fgRvhiZIr5Qv0jFFrLeK8CJGBUJmJPKNNV4ciNkEg8AsiiljrHiIp5TlPCxlpZ2SoPLEFrXya22_AIt1zGdr-GPEPeoyhttI3OnRKaxn7PdWGTkPM1NTNx2kGxjhFJ2RJ_hTJnxL504r8bfjx9EdRNd54Y-1uw5-0VsF5-iwwbfj5xLN399p-e68d-ESLq0uYXWiVs4XdQ1hS6v1a1vA97A-Sm0cZtOGs |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lAuvBEpBXyAA0gmWdvr7B4qlNJWCU2iCqWot8X22rRSstkmG1X9c_w2xllvC5dy6mUP1tqHmbG_b-x5ALyXIoocyzlNjetSkWhJtUpj6pxLO8Z2nLXeURyNZf9UfDuLzzbgd5ML48MqmzNxfVDnc-PvyNvcJ4P5T_SlvKS-a5R_XW1aaKjQWiHfW5cYC4kdx_b6Cl245d7gAPX9gbGjw8nXPg1dBqjhEa-oUoyjf4i2a5HtJIiPXOUmiYw2HR3z1AjBcQRxNdW6i3xCRS7SXCbaGRmriOO6D2BLcJGi87e1fzg--d5gAUf8X6dkxkJShmhaP5QiZeqItpn5EoqMf8Z9xKT4Fxhv2e72qijV9ZWaTv8CvqMn8CgwVtKrTewpbNjiGTxuukGQcDg8h3LoQzzIZDWbL8jJwj8AeaUTf9NLeiHUgPSqqg6wJCPrk44vlrMlGTQ1K3JyUVRzosiBLatzuo8Qm5Mf6M6j_kkdGU1601-ol-p89gJO70XSL2GzmBf2FZBEd12OXCNFvoUeaqytZEbHTmktU9ZVLWg3wsxMKHbue25MM3R61uLPUPyZF39Wi78FH29mlHWhjzv-3W30k4Utv8xuDbQFn2509t-1du5e6x1s9yejYTYcjI9fw0M_sb4A2oXNarGyb5ASVfptsDsCP-_b1P8AqLUbzw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9sgFEZdethpbfdDS9VVHHrZJBxjbGIfvbRVWy1VpCVTdkKAYauaOFbiaOr--j5s3LU7bNphFwsQBgFP730PHh8InfCYUhsVjGTaDkmcKk6UzBJirc1CbUJrjHMUx9f8YhZfzZP5Dpp3d2EcG1Hg6Eu9AWiUtSvcDPRSO1edDaafJ2I0HgEwJLTLCPCDePw0F1SFfYZ2eQIovYd2Z9eT_GtDnxpzEkXN1p9PR_4EE7BMGLuOAtdREDbNPLVYv2Do821ZybsfcrF4ZJHO99BdN5Y2EOU22NYq0D9_o3n8H4PdRy88jMV5K3cHaMeUL9Fe90QE9hrjFao-ubgPPN0uV2s8WbtTIScJ2G3_4tzHH-C8rtuoSzw27ibyzWa5wZcdkUWBb8p6hSU-NVX9nXwEu1vgL-Djg1DgNlwa54tvqzW0uXyNZudn09EF8Y88EM0oq4mUEQP3HFSHAbCZAjxhstAp1UqHKmGZjmMGJQBrMqWGAOcktVQxniqreSIpe4N65ao0bxFO1dAWAEAyAGHgtibK8EirxEqleBYNZR8NuoUU2jOgu4c4FgI8oWbpBUy7cNMu2qXvo_cPf1Qt-8cf6h51siG8HtgI5q4wug_tow8P8vLXtg7_pfIR6tXrrXkH4KhWx17O7wGuuglC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+Tumor+Prediction+with+Advanced+Attention+Mechanisms+Integrated+into+a+Depth-Based+Variant+Search+Algorithm&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Kalaiselvi%2C+P.&rft.au=Anusuya%2C+S.&rft.date=2023&rft.issn=1546-2226&rft.eissn=1546-2226&rft.volume=77&rft.issue=1&rft.spage=1209&rft.epage=1226&rft_id=info:doi/10.32604%2Fcmc.2023.040264&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_040264 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |