DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 Generate Correct Code for LoRaWAN-Related Engineering Tasks
This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether li...
Saved in:
| Published in | Electronics (Basel) Vol. 14; no. 7; p. 1428 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics14071428 |
Cover
| Abstract | This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether lightweight, locally executed LLMs can generate correct Python code for these tasks. To assess this, we compared locally run models against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as reference points. By extracting and executing the Python functions generated by each model, we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3 and GPT-4 consistently provided accurate solutions, certain smaller models—particularly Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability of lightweight alternatives. Other models exhibited errors stemming from incomplete understanding or syntactic issues. These findings illustrate the potential of LLM-based approaches for specialized engineering applications while highlighting the need for careful model selection, rigorous prompt design, and targeted domain fine-tuning to achieve reliable outcomes. |
|---|---|
| AbstractList | This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether lightweight, locally executed LLMs can generate correct Python code for these tasks. To assess this, we compared locally run models against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as reference points. By extracting and executing the Python functions generated by each model, we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3 and GPT-4 consistently provided accurate solutions, certain smaller models—particularly Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability of lightweight alternatives. Other models exhibited errors stemming from incomplete understanding or syntactic issues. These findings illustrate the potential of LLM-based approaches for specialized engineering applications while highlighting the need for careful model selection, rigorous prompt design, and targeted domain fine-tuning to achieve reliable outcomes. |
| Audience | Academic |
| Author | Matos-Carvalho, João P. Fernandes, Carlos M. Fernandes, Daniel Fachada, Nuno |
| Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-1356-9349 surname: Fernandes fullname: Fernandes, Daniel – sequence: 2 givenname: João P. orcidid: 0000-0001-9409-7736 surname: Matos-Carvalho fullname: Matos-Carvalho, João P. – sequence: 3 givenname: Carlos M. orcidid: 0000-0002-1594-6785 surname: Fernandes fullname: Fernandes, Carlos M. – sequence: 4 givenname: Nuno orcidid: 0000-0002-8487-5837 surname: Fachada fullname: Fachada, Nuno |
| BookMark | eNqNUcFu2zAMFYYWWNb2C3YRsGucSqJiS8cg67IC3lq0aXc0ZInOnLhSKjkY-vdVkR522GHk4REkH_lAfiInPngk5DNnMwDNLnFAO8bge5u4ZBWXQn0gE8EqXWihxclf8UdykdKWZdMcFLAJcV8R9_eIu-IRpnR1uy7klN7-7t_AeEfr2vxYFDADukKP0YxIlyHGvDGjQ9qFSOtwZ34tfhZ3OOS6o1d-03vE2PsNXZu0S-fktDNDwot3PCMP367Wy-9FfbO6Xi7qwgKHsdCWlyWgkWjKtlMtSOE6o4QUc1YhtK0qkXGNToJoHVMOOJbSihZ1Z7UzcEbkce7B783LHzMMzT72Tya-NJw1b8dq_nGsTPtypO1jeD5gGpttOESflTbAlVJcQAW5a3bs2pgBm953YYzGZnf41Nv8kq7P-YWCqoI5m88zAY4EG0NKEbv_EvMKJWaMkw |
| Cites_doi | 10.1109/ICRA48891.2023.10160591 10.1111/j.2517-6161.1995.tb02031.x 10.3390/s25010175 10.1109/GCWkshps58843.2023.10464655 10.3390/electronics11121865 10.3390/s16091466 10.3390/electronics13224508 10.1109/ICSSE.2018.8519967 10.1109/ACCESS.2024.3387941 10.1109/JIOT.2021.3095494 10.1109/TWC.2017.2756644 10.1109/ACCESS.2021.3110872 10.1145/3510003.3510203 10.3390/s20082396 10.1109/ISSI.2018.8538179 10.1109/ITST.2015.7377400 10.1145/3672445 10.3390/s18030772 10.1109/TBDATA.2024.3524104 10.1109/ACCESS.2024.3385682 10.3390/e25060888 10.3390/drones7020114 10.1002/9781119332206 10.1109/OJVT.2024.3446799 10.1109/ICCA62789.2024.10591846 10.1016/j.dibe.2024.100488 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.3390/electronics14071428 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics14071428 A837735055 10_3390_electronics14071428 |
| GeographicLocations | New York United States |
| GeographicLocations_xml | – name: New York – name: United States |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c313t-9c1663ea4ea6bf8b342dfa8242507e3bb86e019ed432bd08d31e64c2be9fc9da3 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 04:10:30 EDT 2025 Fri Jul 25 20:57:38 EDT 2025 Mon Oct 20 16:55:29 EDT 2025 Thu Oct 16 04:46:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-9c1663ea4ea6bf8b342dfa8242507e3bb86e019ed432bd08d31e64c2be9fc9da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1356-9349 0000-0002-8487-5837 0000-0002-1594-6785 0000-0001-9409-7736 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/14/7/1428/pdf?version=1743682781 |
| PQID | 3188812373 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics14071428 proquest_journals_3188812373 gale_infotracacademiconefile_A837735055 crossref_primary_10_3390_electronics14071428 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Luo (ref_33) 2024; 19 ref_14 ref_13 Javaid (ref_16) 2024; 5 Pan (ref_25) 2022; 9 ref_11 Ghazali (ref_39) 2021; 9 ref_10 ref_19 ref_18 ref_17 ref_15 ref_24 ref_23 ref_22 ref_21 ref_20 ref_29 ref_28 ref_27 ref_26 Petukhova (ref_8) 2025; 6 Mozaffari (ref_3) 2017; 16 ref_34 ref_32 ref_31 ref_30 ref_38 ref_37 Gu (ref_12) 2024; 34 ref_47 ref_46 Li (ref_36) 2024; 12 ref_45 ref_44 ref_43 ref_42 ref_41 Wei (ref_35) 2022; Volume 35 ref_40 ref_1 ref_2 ref_49 ref_9 ref_5 ref_4 Benjamini (ref_48) 1995; 57 ref_7 ref_6 |
| References_xml | – ident: ref_9 – ident: ref_5 – ident: ref_32 doi: 10.1109/ICRA48891.2023.10160591 – volume: 57 start-page: 289 year: 1995 ident: ref_48 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: ref_21 doi: 10.3390/s25010175 – ident: ref_37 doi: 10.1109/GCWkshps58843.2023.10464655 – ident: ref_26 doi: 10.3390/electronics11121865 – ident: ref_42 – ident: ref_2 doi: 10.3390/s16091466 – ident: ref_18 doi: 10.3390/electronics13224508 – ident: ref_24 doi: 10.1109/ICSSE.2018.8519967 – ident: ref_31 doi: 10.1109/ACCESS.2024.3387941 – volume: 9 start-page: 2918 year: 2022 ident: ref_25 article-title: UAV-Aided Emergency Environmental Monitoring in Infrastructure-Less Areas: LoRa Mesh Networking Approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3095494 – volume: 16 start-page: 8052 year: 2017 ident: ref_3 article-title: Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2756644 – volume: 9 start-page: 124817 year: 2021 ident: ref_39 article-title: A Systematic Review of Real-Time Deployments of UAV-Based LoRa Communication Network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110872 – ident: ref_10 – ident: ref_28 doi: 10.1145/3510003.3510203 – ident: ref_41 – ident: ref_13 – ident: ref_23 doi: 10.3390/s20082396 – ident: ref_17 – ident: ref_45 – volume: 6 start-page: 100 year: 2025 ident: ref_8 article-title: Text clustering with large language model embeddings publication-title: Int. J. Cogn. Comput. Eng. – ident: ref_38 doi: 10.1109/ISSI.2018.8538179 – ident: ref_7 – ident: ref_1 doi: 10.1109/ITST.2015.7377400 – volume: 34 start-page: 1 year: 2024 ident: ref_12 article-title: On the effectiveness of large language models in domain-specific code generation publication-title: ACM Trans. Softw. Eng. Methodol. doi: 10.1145/3672445 – ident: ref_30 – ident: ref_34 – ident: ref_4 doi: 10.3390/s18030772 – ident: ref_47 – ident: ref_11 – ident: ref_14 – ident: ref_44 – ident: ref_49 doi: 10.1109/TBDATA.2024.3524104 – volume: 12 start-page: 53074 year: 2024 ident: ref_36 article-title: An approach for rapid source code development based on ChatGPT and prompt engineering publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3385682 – ident: ref_27 doi: 10.3390/e25060888 – ident: ref_20 doi: 10.3390/drones7020114 – ident: ref_6 – ident: ref_29 – ident: ref_40 doi: 10.1002/9781119332206 – volume: 5 start-page: 1166 year: 2024 ident: ref_16 article-title: Large Language Models for UAVs: Current State and Pathways to the Future publication-title: IEEE Open J. Veh. Technol. doi: 10.1109/OJVT.2024.3446799 – ident: ref_46 – ident: ref_19 doi: 10.1109/ICCA62789.2024.10591846 – volume: 19 start-page: 100488 year: 2024 ident: ref_33 article-title: Large language model-based code generation for the control of construction assembly robots: A hierarchical generation approach publication-title: Dev. Built Environ. doi: 10.1016/j.dibe.2024.100488 – ident: ref_15 – volume: Volume 35 start-page: 24824 year: 2022 ident: ref_35 article-title: Chain-of-thought prompting elicits reasoning in large language models publication-title: Proceedings of the 36th International Conference on Neural Information Processing Systems – ident: ref_43 – ident: ref_22 |
| SSID | ssj0000913830 |
| Score | 2.3304503 |
| Snippet | This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 1428 |
| SubjectTerms | Algorithms Artificial intelligence Communication Engineering Ground stations Internet of Things Language Large language models Natural language Propagation Python Unmanned aerial vehicles Wide area networks |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDCW69ND1MOwTzdYNOhToJVptS7HlwzBkXT9QpEHQpltvBiXRaNHCyRoXw_79xMRug2EYdtLNBEiK5JOl9wB2fK69sZjK0kZO6syQzE2sA-bx6EodoyUGiqej9PhCn1z2L9dg1L6F4WuVbU1cFGo_dXxGvhdyz4RmpDL1efZDsmoU_11tJTSwkVbwnxYUY09gPWFmrA6sfzkYjc8eTl2YBdOoaEk_pALe33tUm5nHDG4067KvtKg_C_UmbNxXM_z1E29vVzrR4XN41oyQYrCM-QtYo-olbK4QC74C_5Vodk50I7-pnjgaT6TuifHVNS9YeTEc4ulAqo9KLGmnaxL7LNPh6rB6EmGSFcPpGX4fjOTiuhx5sWJATHB-M38NF4cHk_1j2egpSKdiVcvcxWG-INSEqS2NVTrxJRoGHVFGylqTUpj4yGuVWB8Zr2JKtUss5aXLPao30KmmFW2BsM70Q1uLnE1LrXyWR2mZxuh84jK0fd-FXuvCYrakzSgC3GCPF3_xeBd22c0Fb6r6Dh02bwOCMaanKgYBRmcqDGv9Lmy3kSia3TYvHnOjC_IhOv9j-O2_P_cOnias97u4qbMNnfrunt6HIaS2H5rM-g3AkNvi priority: 102 providerName: ProQuest |
| Title | DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 Generate Correct Code for LoRaWAN-Related Engineering Tasks |
| URI | https://www.proquest.com/docview/3188812373 https://www.mdpi.com/2079-9292/14/7/1428/pdf?version=1743682781 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB1Be4A98I0oLJUPSFzq5sOO7ZxQWNpdobaqlhaWU_BXxKqrbLVJQXDgt2M3KVQrDiBOVqRETjRjz3vR-D2AFyalRijJcKFCjSkXFqcioo7zGKkLGkllPVGcztjJkr49S85an9Oqbat0VPx8u0nHIU-xq99xENGAB14cLFib4tWX9leSR9NMxNwfve6yxIHxDnSXs3n20VvK7R5utIaII_fBb2uZKvJMhnoT9r16dH1XPoBbm3Itv32VFxd7ZWd8Fz7tXrjpNlkNN7Ua6u_XtBz_44vuwZ0WkqKsyaH7cMOWD-BgT6jwIZg31q7fWbvC78kAHc8XmA7Q_PO5H2Rp0GQipxkmQ4IaGevaoiNv-6FrNxqLHDJGk8tT-SGb4W37nTVobwK0kNWqegTL8WhxdIJbfwasSURqnOrI4RUrqZVMFUIRGptCCk9iQm6JUoJZhyCtoSRWJhSGRJZRHSubFjo1kjyGTnlZ2ieAlBaJK5OhVqygxPA0ZAWLpDax5lIlpgeDXZTydSPDkTv64oOa_yGoPXjpI5n7RVpfSS3bswZuMi93lWeOlnPiwF_Sg8NdsPN29Va52-eEAz6Ekx7gXwnwNxM__cf7n8Ht2BsKb1uBDqFTX23sc4dyatWHm2J83Ifu69Fsfuqupj9G_Ta7fwK2WvqV |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDzFQgEfQFzWNMl4E-dQoaUPtjS7WpUt9Bb8mAjUKrs0qar-OX4b9m7SrhBCXHryzZbGY8989sz3Aby2qbBSq5gXOjBcJJJ4KkPhMI9VphCh0uSB4nAUD47Fp5PeyQr8anthfFlleyfOL2o7Nf6NfMv5nnTBCBN8P_vJvWqU_11tJTRUI61gt-cUY01jxyFdXToIV20f7Lr9fhNF-3uTnQFvVAa4wRBrnprQRV1SglSsC6lRRLZQ0qfiQUKotYzJ5UFkBUbaBtJiSLEwkaa0MKlV6Oa9A2sCRerA39qHvdH46PqVx7NuSgwWdEeIabB1o25ThR5MCa8DvxQS_wwMG7B-Uc7U1aU6O1uKfPv34V6TsrL-wscewAqVD2FjicjwEdhdotlnolP-Bbvs43jCRZeNv__wgyotyzI17HN8h2xBc10T2_GyIKZ2oyXmMmeWTY_U1_6Iz8vzyLKlBdhEVafVYzi-Fcs-gdVyWtJTYNrIngujgdFxIdAmaRAXcaiMjUyidM92oNuaMJ8taDpyB2-8xfO_WLwDb72Zc3-I63NlVNOL4BbzdFh538H2BF1y2OvAZrsTeXO6q_zGFzvAr3fnfxZ-9u_pXsH6YDLM8uxgdPgc7kZea3heJbQJq_X5Bb1wCVCtXzZexuDbbTv2bxR8Ghs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VIkF7QHyKQAEfQFxisrt2dr0HhKKGtKVpFEEKvS3-mFVRq03oblX1r_Hr8GR32wghxKUn32xp5tkzY4_fA3jtUumU0THPTWC5TBTyVIXS1zxO21yG2iAVigeTePdQfjrqH63Br_YvDLVVtmfi8qB2c0t35D2PPeWDkUhEL2_aIqbD0YfFT04KUvTS2spp1BDZx8sLX76V7_eG3tdvomj0cba9yxuFAW5FKCqe2tBHXNQSdWxyZYSMXK4VpeFBgsIYFaPPgdBJERkXKCdCjKWNDKa5TZ0Wft5bcDshFnf6pT7aubrfIb5NJYKa6EiINOhd69qUIZVRkhTgV4LhnyFhE-6eFwt9eaFPT1di3ug-3GuSVTao0fUA1rB4CJsrFIaPwA0RF18QT_hX0WU70xmXXTY9_kGDLhwbj_XBgIt3gtUE1xWybRIEsZUfHTKfM7Px_LP-NpjwZWMeOrayAJvp8qR8DIc3YtcnsF7MC3wKzFjV9wE0sCbOpXBJGsR5HGrrIpto03cd6LYmzBY1QUfmCxuyePYXi3fgLZk5o-1bnWmrm18IfjEiwsoGvmBPhE8L-x3Yaj2RNfu6zK5R2AF-5Z3_WfjZv6d7BXc8nLPx3mT_OWxEJDK8bA_agvXq7Bxf-MynMi-XEGPw_aYx_RtimRe1 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB2h7gH2wDfawoJ8QOJSNx92bOeEooVlhbpVBS0sp-CPiVh1la02KQh-PXaTQrXiAOLkS6JxNLbnvWj8HsBzl3OnjBa0MrGlXCqkuUq45zxO24on2mAgiqdTcbLgb8-ys97ntOnbKj0VP98c0mksc-rrdxolPJJREAeLVq56-bX_lRTQtFCpDFev90TmwfgA9hbTWfEpWMptX-60hpgn99Fva5kmCUyGBxP2nXp0_VTeh5vreqW_f9MXFztl5_gOfN5OuOs2WY7XrRnbH9e0HP_ji-7C7R6SkqJbQ_fgBtb3YX9HqPABuFeIq_eIS_qBjcib2ZzyEZl9OQ-Drh2ZTPRpQdmYkU7GukVyFGw_bOtHh8QjYzK5fKc_FlO6ab9DR3YCkLluls1DWBy_nh-d0N6fgVqWsJbmNvF4BTVHLUylDOOpq7QKJCaWyIxRAj2CRMdZalysHEtQcJsazCubO80ewaC-rPEAiLEq82UytkZUnDmZx6ISibYutVKbzA1htM1SuepkOEpPX0JSyz8kdQgvQibLsEnbK211f9fABwtyV2XhablkHvxlQzjcJrvsd29T-nNOeeDDJBsC_bUA_ibw4398_gncSoOh8KYV6BAG7dUan3qU05pn_Ur-CU8K9uQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepSeek-V3%2C+GPT-4%2C+Phi-4%2C+and+LLaMA-3.3+Generate+Correct+Code+for+LoRaWAN-Related+Engineering+Tasks&rft.jtitle=Electronics+%28Basel%29&rft.au=Fernandes%2C+Daniel&rft.au=Matos-Carvalho%2C+Jo%C3%A3o+P&rft.au=Fernandes%2C+Carlos+M&rft.au=Fachada%2C+Nuno&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=7&rft.spage=1428&rft_id=info:doi/10.3390%2Felectronics14071428&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |