DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 Generate Correct Code for LoRaWAN-Related Engineering Tasks

This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether li...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 14; no. 7; p. 1428
Main Authors Fernandes, Daniel, Matos-Carvalho, João P., Fernandes, Carlos M., Fachada, Nuno
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2025
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics14071428

Cover

Abstract This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether lightweight, locally executed LLMs can generate correct Python code for these tasks. To assess this, we compared locally run models against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as reference points. By extracting and executing the Python functions generated by each model, we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3 and GPT-4 consistently provided accurate solutions, certain smaller models—particularly Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability of lightweight alternatives. Other models exhibited errors stemming from incomplete understanding or syntactic issues. These findings illustrate the potential of LLM-based approaches for specialized engineering applications while highlighting the need for careful model selection, rigorous prompt design, and targeted domain fine-tuning to achieve reliable outcomes.
AbstractList This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of drones and received power calculation under progressively complex zero-shot, natural language prompts. The primary research question is whether lightweight, locally executed LLMs can generate correct Python code for these tasks. To assess this, we compared locally run models against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as reference points. By extracting and executing the Python functions generated by each model, we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3 and GPT-4 consistently provided accurate solutions, certain smaller models—particularly Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability of lightweight alternatives. Other models exhibited errors stemming from incomplete understanding or syntactic issues. These findings illustrate the potential of LLM-based approaches for specialized engineering applications while highlighting the need for careful model selection, rigorous prompt design, and targeted domain fine-tuning to achieve reliable outcomes.
Audience Academic
Author Matos-Carvalho, João P.
Fernandes, Carlos M.
Fernandes, Daniel
Fachada, Nuno
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-1356-9349
  surname: Fernandes
  fullname: Fernandes, Daniel
– sequence: 2
  givenname: João P.
  orcidid: 0000-0001-9409-7736
  surname: Matos-Carvalho
  fullname: Matos-Carvalho, João P.
– sequence: 3
  givenname: Carlos M.
  orcidid: 0000-0002-1594-6785
  surname: Fernandes
  fullname: Fernandes, Carlos M.
– sequence: 4
  givenname: Nuno
  orcidid: 0000-0002-8487-5837
  surname: Fachada
  fullname: Fachada, Nuno
BookMark eNqNUcFu2zAMFYYWWNb2C3YRsGucSqJiS8cg67IC3lq0aXc0ZInOnLhSKjkY-vdVkR522GHk4REkH_lAfiInPngk5DNnMwDNLnFAO8bge5u4ZBWXQn0gE8EqXWihxclf8UdykdKWZdMcFLAJcV8R9_eIu-IRpnR1uy7klN7-7t_AeEfr2vxYFDADukKP0YxIlyHGvDGjQ9qFSOtwZ34tfhZ3OOS6o1d-03vE2PsNXZu0S-fktDNDwot3PCMP367Wy-9FfbO6Xi7qwgKHsdCWlyWgkWjKtlMtSOE6o4QUc1YhtK0qkXGNToJoHVMOOJbSihZ1Z7UzcEbkce7B783LHzMMzT72Tya-NJw1b8dq_nGsTPtypO1jeD5gGpttOESflTbAlVJcQAW5a3bs2pgBm953YYzGZnf41Nv8kq7P-YWCqoI5m88zAY4EG0NKEbv_EvMKJWaMkw
Cites_doi 10.1109/ICRA48891.2023.10160591
10.1111/j.2517-6161.1995.tb02031.x
10.3390/s25010175
10.1109/GCWkshps58843.2023.10464655
10.3390/electronics11121865
10.3390/s16091466
10.3390/electronics13224508
10.1109/ICSSE.2018.8519967
10.1109/ACCESS.2024.3387941
10.1109/JIOT.2021.3095494
10.1109/TWC.2017.2756644
10.1109/ACCESS.2021.3110872
10.1145/3510003.3510203
10.3390/s20082396
10.1109/ISSI.2018.8538179
10.1109/ITST.2015.7377400
10.1145/3672445
10.3390/s18030772
10.1109/TBDATA.2024.3524104
10.1109/ACCESS.2024.3385682
10.3390/e25060888
10.3390/drones7020114
10.1002/9781119332206
10.1109/OJVT.2024.3446799
10.1109/ICCA62789.2024.10591846
10.1016/j.dibe.2024.100488
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/electronics14071428
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics14071428
A837735055
10_3390_electronics14071428
GeographicLocations New York
United States
GeographicLocations_xml – name: New York
– name: United States
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c313t-9c1663ea4ea6bf8b342dfa8242507e3bb86e019ed432bd08d31e64c2be9fc9da3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 04:10:30 EDT 2025
Fri Jul 25 20:57:38 EDT 2025
Mon Oct 20 16:55:29 EDT 2025
Thu Oct 16 04:46:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-9c1663ea4ea6bf8b342dfa8242507e3bb86e019ed432bd08d31e64c2be9fc9da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1356-9349
0000-0002-8487-5837
0000-0002-1594-6785
0000-0001-9409-7736
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/14/7/1428/pdf?version=1743682781
PQID 3188812373
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics14071428
proquest_journals_3188812373
gale_infotracacademiconefile_A837735055
crossref_primary_10_3390_electronics14071428
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Luo (ref_33) 2024; 19
ref_14
ref_13
Javaid (ref_16) 2024; 5
Pan (ref_25) 2022; 9
ref_11
Ghazali (ref_39) 2021; 9
ref_10
ref_19
ref_18
ref_17
ref_15
ref_24
ref_23
ref_22
ref_21
ref_20
ref_29
ref_28
ref_27
ref_26
Petukhova (ref_8) 2025; 6
Mozaffari (ref_3) 2017; 16
ref_34
ref_32
ref_31
ref_30
ref_38
ref_37
Gu (ref_12) 2024; 34
ref_47
ref_46
Li (ref_36) 2024; 12
ref_45
ref_44
ref_43
ref_42
ref_41
Wei (ref_35) 2022; Volume 35
ref_40
ref_1
ref_2
ref_49
ref_9
ref_5
ref_4
Benjamini (ref_48) 1995; 57
ref_7
ref_6
References_xml – ident: ref_9
– ident: ref_5
– ident: ref_32
  doi: 10.1109/ICRA48891.2023.10160591
– volume: 57
  start-page: 289
  year: 1995
  ident: ref_48
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref_21
  doi: 10.3390/s25010175
– ident: ref_37
  doi: 10.1109/GCWkshps58843.2023.10464655
– ident: ref_26
  doi: 10.3390/electronics11121865
– ident: ref_42
– ident: ref_2
  doi: 10.3390/s16091466
– ident: ref_18
  doi: 10.3390/electronics13224508
– ident: ref_24
  doi: 10.1109/ICSSE.2018.8519967
– ident: ref_31
  doi: 10.1109/ACCESS.2024.3387941
– volume: 9
  start-page: 2918
  year: 2022
  ident: ref_25
  article-title: UAV-Aided Emergency Environmental Monitoring in Infrastructure-Less Areas: LoRa Mesh Networking Approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3095494
– volume: 16
  start-page: 8052
  year: 2017
  ident: ref_3
  article-title: Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2756644
– volume: 9
  start-page: 124817
  year: 2021
  ident: ref_39
  article-title: A Systematic Review of Real-Time Deployments of UAV-Based LoRa Communication Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110872
– ident: ref_10
– ident: ref_28
  doi: 10.1145/3510003.3510203
– ident: ref_41
– ident: ref_13
– ident: ref_23
  doi: 10.3390/s20082396
– ident: ref_17
– ident: ref_45
– volume: 6
  start-page: 100
  year: 2025
  ident: ref_8
  article-title: Text clustering with large language model embeddings
  publication-title: Int. J. Cogn. Comput. Eng.
– ident: ref_38
  doi: 10.1109/ISSI.2018.8538179
– ident: ref_7
– ident: ref_1
  doi: 10.1109/ITST.2015.7377400
– volume: 34
  start-page: 1
  year: 2024
  ident: ref_12
  article-title: On the effectiveness of large language models in domain-specific code generation
  publication-title: ACM Trans. Softw. Eng. Methodol.
  doi: 10.1145/3672445
– ident: ref_30
– ident: ref_34
– ident: ref_4
  doi: 10.3390/s18030772
– ident: ref_47
– ident: ref_11
– ident: ref_14
– ident: ref_44
– ident: ref_49
  doi: 10.1109/TBDATA.2024.3524104
– volume: 12
  start-page: 53074
  year: 2024
  ident: ref_36
  article-title: An approach for rapid source code development based on ChatGPT and prompt engineering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3385682
– ident: ref_27
  doi: 10.3390/e25060888
– ident: ref_20
  doi: 10.3390/drones7020114
– ident: ref_6
– ident: ref_29
– ident: ref_40
  doi: 10.1002/9781119332206
– volume: 5
  start-page: 1166
  year: 2024
  ident: ref_16
  article-title: Large Language Models for UAVs: Current State and Pathways to the Future
  publication-title: IEEE Open J. Veh. Technol.
  doi: 10.1109/OJVT.2024.3446799
– ident: ref_46
– ident: ref_19
  doi: 10.1109/ICCA62789.2024.10591846
– volume: 19
  start-page: 100488
  year: 2024
  ident: ref_33
  article-title: Large language model-based code generation for the control of construction assembly robots: A hierarchical generation approach
  publication-title: Dev. Built Environ.
  doi: 10.1016/j.dibe.2024.100488
– ident: ref_15
– volume: Volume 35
  start-page: 24824
  year: 2022
  ident: ref_35
  article-title: Chain-of-thought prompting elicits reasoning in large language models
  publication-title: Proceedings of the 36th International Conference on Neural Information Processing Systems
– ident: ref_43
– ident: ref_22
SSID ssj0000913830
Score 2.3304503
Snippet This paper investigates the performance of 16 Large Language Models (LLMs) in automating LoRaWAN-related engineering tasks involving optimal placement of...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1428
SubjectTerms Algorithms
Artificial intelligence
Communication
Engineering
Ground stations
Internet of Things
Language
Large language models
Natural language
Propagation
Python
Unmanned aerial vehicles
Wide area networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDCW69ND1MOwTzdYNOhToJVptS7HlwzBkXT9QpEHQpltvBiXRaNHCyRoXw_79xMRug2EYdtLNBEiK5JOl9wB2fK69sZjK0kZO6syQzE2sA-bx6EodoyUGiqej9PhCn1z2L9dg1L6F4WuVbU1cFGo_dXxGvhdyz4RmpDL1efZDsmoU_11tJTSwkVbwnxYUY09gPWFmrA6sfzkYjc8eTl2YBdOoaEk_pALe33tUm5nHDG4067KvtKg_C_UmbNxXM_z1E29vVzrR4XN41oyQYrCM-QtYo-olbK4QC74C_5Vodk50I7-pnjgaT6TuifHVNS9YeTEc4ulAqo9KLGmnaxL7LNPh6rB6EmGSFcPpGX4fjOTiuhx5sWJATHB-M38NF4cHk_1j2egpSKdiVcvcxWG-INSEqS2NVTrxJRoGHVFGylqTUpj4yGuVWB8Zr2JKtUss5aXLPao30KmmFW2BsM70Q1uLnE1LrXyWR2mZxuh84jK0fd-FXuvCYrakzSgC3GCPF3_xeBd22c0Fb6r6Dh02bwOCMaanKgYBRmcqDGv9Lmy3kSia3TYvHnOjC_IhOv9j-O2_P_cOnias97u4qbMNnfrunt6HIaS2H5rM-g3AkNvi
  priority: 102
  providerName: ProQuest
Title DeepSeek-V3, GPT-4, Phi-4, and LLaMA-3.3 Generate Correct Code for LoRaWAN-Related Engineering Tasks
URI https://www.proquest.com/docview/3188812373
https://www.mdpi.com/2079-9292/14/7/1428/pdf?version=1743682781
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB1Be4A98I0oLJUPSFzq5sOO7ZxQWNpdobaqlhaWU_BXxKqrbLVJQXDgt2M3KVQrDiBOVqRETjRjz3vR-D2AFyalRijJcKFCjSkXFqcioo7zGKkLGkllPVGcztjJkr49S85an9Oqbat0VPx8u0nHIU-xq99xENGAB14cLFib4tWX9leSR9NMxNwfve6yxIHxDnSXs3n20VvK7R5utIaII_fBb2uZKvJMhnoT9r16dH1XPoBbm3Itv32VFxd7ZWd8Fz7tXrjpNlkNN7Ua6u_XtBz_44vuwZ0WkqKsyaH7cMOWD-BgT6jwIZg31q7fWbvC78kAHc8XmA7Q_PO5H2Rp0GQipxkmQ4IaGevaoiNv-6FrNxqLHDJGk8tT-SGb4W37nTVobwK0kNWqegTL8WhxdIJbfwasSURqnOrI4RUrqZVMFUIRGptCCk9iQm6JUoJZhyCtoSRWJhSGRJZRHSubFjo1kjyGTnlZ2ieAlBaJK5OhVqygxPA0ZAWLpDax5lIlpgeDXZTydSPDkTv64oOa_yGoPXjpI5n7RVpfSS3bswZuMi93lWeOlnPiwF_Sg8NdsPN29Va52-eEAz6Ekx7gXwnwNxM__cf7n8Ht2BsKb1uBDqFTX23sc4dyatWHm2J83Ifu69Fsfuqupj9G_Ta7fwK2WvqV
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDzFQgEfQFzWNMl4E-dQoaUPtjS7WpUt9Bb8mAjUKrs0qar-OX4b9m7SrhBCXHryzZbGY8989sz3Aby2qbBSq5gXOjBcJJJ4KkPhMI9VphCh0uSB4nAUD47Fp5PeyQr8anthfFlleyfOL2o7Nf6NfMv5nnTBCBN8P_vJvWqU_11tJTRUI61gt-cUY01jxyFdXToIV20f7Lr9fhNF-3uTnQFvVAa4wRBrnprQRV1SglSsC6lRRLZQ0qfiQUKotYzJ5UFkBUbaBtJiSLEwkaa0MKlV6Oa9A2sCRerA39qHvdH46PqVx7NuSgwWdEeIabB1o25ThR5MCa8DvxQS_wwMG7B-Uc7U1aU6O1uKfPv34V6TsrL-wscewAqVD2FjicjwEdhdotlnolP-Bbvs43jCRZeNv__wgyotyzI17HN8h2xBc10T2_GyIKZ2oyXmMmeWTY_U1_6Iz8vzyLKlBdhEVafVYzi-Fcs-gdVyWtJTYNrIngujgdFxIdAmaRAXcaiMjUyidM92oNuaMJ8taDpyB2-8xfO_WLwDb72Zc3-I63NlVNOL4BbzdFh538H2BF1y2OvAZrsTeXO6q_zGFzvAr3fnfxZ-9u_pXsH6YDLM8uxgdPgc7kZea3heJbQJq_X5Bb1wCVCtXzZexuDbbTv2bxR8Ghs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VIkF7QHyKQAEfQFxisrt2dr0HhKKGtKVpFEEKvS3-mFVRq03oblX1r_Hr8GR32wghxKUn32xp5tkzY4_fA3jtUumU0THPTWC5TBTyVIXS1zxO21yG2iAVigeTePdQfjrqH63Br_YvDLVVtmfi8qB2c0t35D2PPeWDkUhEL2_aIqbD0YfFT04KUvTS2spp1BDZx8sLX76V7_eG3tdvomj0cba9yxuFAW5FKCqe2tBHXNQSdWxyZYSMXK4VpeFBgsIYFaPPgdBJERkXKCdCjKWNDKa5TZ0Wft5bcDshFnf6pT7aubrfIb5NJYKa6EiINOhd69qUIZVRkhTgV4LhnyFhE-6eFwt9eaFPT1di3ug-3GuSVTao0fUA1rB4CJsrFIaPwA0RF18QT_hX0WU70xmXXTY9_kGDLhwbj_XBgIt3gtUE1xWybRIEsZUfHTKfM7Px_LP-NpjwZWMeOrayAJvp8qR8DIc3YtcnsF7MC3wKzFjV9wE0sCbOpXBJGsR5HGrrIpto03cd6LYmzBY1QUfmCxuyePYXi3fgLZk5o-1bnWmrm18IfjEiwsoGvmBPhE8L-x3Yaj2RNfu6zK5R2AF-5Z3_WfjZv6d7BXc8nLPx3mT_OWxEJDK8bA_agvXq7Bxf-MynMi-XEGPw_aYx_RtimRe1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB2h7gH2wDfawoJ8QOJSNx92bOeEooVlhbpVBS0sp-CPiVh1la02KQh-PXaTQrXiAOLkS6JxNLbnvWj8HsBzl3OnjBa0MrGlXCqkuUq45zxO24on2mAgiqdTcbLgb8-ys97ntOnbKj0VP98c0mksc-rrdxolPJJREAeLVq56-bX_lRTQtFCpDFev90TmwfgA9hbTWfEpWMptX-60hpgn99Fva5kmCUyGBxP2nXp0_VTeh5vreqW_f9MXFztl5_gOfN5OuOs2WY7XrRnbH9e0HP_ji-7C7R6SkqJbQ_fgBtb3YX9HqPABuFeIq_eIS_qBjcib2ZzyEZl9OQ-Drh2ZTPRpQdmYkU7GukVyFGw_bOtHh8QjYzK5fKc_FlO6ab9DR3YCkLluls1DWBy_nh-d0N6fgVqWsJbmNvF4BTVHLUylDOOpq7QKJCaWyIxRAj2CRMdZalysHEtQcJsazCubO80ewaC-rPEAiLEq82UytkZUnDmZx6ISibYutVKbzA1htM1SuepkOEpPX0JSyz8kdQgvQibLsEnbK211f9fABwtyV2XhablkHvxlQzjcJrvsd29T-nNOeeDDJBsC_bUA_ibw4398_gncSoOh8KYV6BAG7dUan3qU05pn_Ur-CU8K9uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepSeek-V3%2C+GPT-4%2C+Phi-4%2C+and+LLaMA-3.3+Generate+Correct+Code+for+LoRaWAN-Related+Engineering+Tasks&rft.jtitle=Electronics+%28Basel%29&rft.au=Fernandes%2C+Daniel&rft.au=Matos-Carvalho%2C+Jo%C3%A3o+P&rft.au=Fernandes%2C+Carlos+M&rft.au=Fachada%2C+Nuno&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=7&rft.spage=1428&rft_id=info:doi/10.3390%2Felectronics14071428&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon