Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms
Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis h...
        Saved in:
      
    
          | Published in | Computers, materials & continua Vol. 66; no. 2; pp. 2041 - 2059 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Henderson
          Tech Science Press
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1546-2226 1546-2218 1546-2226  | 
| DOI | 10.32604/cmc.2020.013131 | 
Cover
| Abstract | Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory (LSTM) model in classifying the faults from the vibration signals data acquired from the gearbox. This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision. The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods. | 
    
|---|---|
| AbstractList | Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory (LSTM) model in classifying the faults from the vibration signals data acquired from the gearbox. This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision. The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods. | 
    
| Author | Mittal, Mamta Saba, Tanzila Selvaraj, Barani Mohan Goyal, Lalit Krishna Durbhaka, Gopi Rehman, Amjad  | 
    
| Author_xml | – sequence: 1 givenname: Gopi surname: Krishna Durbhaka fullname: Krishna Durbhaka, Gopi – sequence: 2 givenname: Barani surname: Selvaraj fullname: Selvaraj, Barani – sequence: 3 givenname: Mamta surname: Mittal fullname: Mittal, Mamta – sequence: 4 givenname: Tanzila surname: Saba fullname: Saba, Tanzila – sequence: 5 givenname: Amjad surname: Rehman fullname: Rehman, Amjad – sequence: 6 givenname: Lalit surname: Mohan Goyal fullname: Mohan Goyal, Lalit  | 
    
| BookMark | eNqFkE9P3DAQxS1EpQLlztFSz9n6T-JseqMLC0hLOUDPluNMFoNjp7aj7fZL9CvjZXtAHFrNYebw3puZ3zE6dN4BQmeUzDgTpPyiBz1jhJEZoTzXATqiVSkKxpg4fDN_RMcxPhHCBW_IEfpzv1FhKFb3D7df8cK7ziTjHb71ziQfjFtj3-MrUKH1v_BSTTbhC6PWzkcT8TcVocNZfr1tg-nwLgVfAIz4O0xB2dzSxodnfDcmM5jfWdxu8etGfOMSWGvW4DTgc7vOy9LjED-hD72yEU7_9hP0Y3n5sLguVndXN4vzVaHzc6loFKOM13VTCsZow2kFoisZq3poWt0yVkMJ0AvFedd0gmtdlS3QUsy7eQ0N8BNE97mTG9V2o6yVYzCDCltJiXwlKjNRuSMq90Sz5_PeMwb_c4KY5JOfgstnSlaKat5UNauySuxVOvgYA_RSm6R2VFNQxv4rnrwz_veiFya5mVA | 
    
| CitedBy_id | crossref_primary_10_32604_cmc_2022_029484 crossref_primary_10_48084_etasr_5595 crossref_primary_10_1016_j_heliyon_2023_e17584 crossref_primary_10_1016_j_measurement_2022_112346 crossref_primary_10_1016_j_eti_2021_101531 crossref_primary_10_1016_j_measurement_2021_109235 crossref_primary_10_1088_1742_6596_2310_1_012083 crossref_primary_10_32604_cmc_2021_017872 crossref_primary_10_1016_j_eswa_2023_121797 crossref_primary_10_1109_ACCESS_2024_3412274 crossref_primary_10_1088_1361_6501_ad0ca6 crossref_primary_10_1016_j_anucene_2024_110340 crossref_primary_10_1155_2021_3137083  | 
    
| Cites_doi | 10.1016/j.jmsy.2017.04.012 10.1016/j.measurement.2017.07.017 10.1016/j.microrel.2017.03.006 10.1016/j.apenergy.2016.12.134 10.1016/j.renene.2017.03.035 10.1155/2016/6748469 10.1109/TIM.2017.2698738 10.1016/j.ymssp.2016.02.007 10.5121/ijcsa.2014.4205 10.1016/j.aei.2017.02.005 10.1504/IJBIC.2010.032124 10.1016/j.renene.2016.03.025 10.1016/j.ymssp.2017.07.038 10.21595/jve.2016.17267 10.1177/1077546316688991 10.1007/s00170-019-03858-0 10.1016/j.jsv.2018.06.015  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.32604/cmc.2020.013131 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1546-2226 | 
    
| EndPage | 2059 | 
    
| ExternalDocumentID | 10.32604/cmc.2020.013131 10_32604_cmc_2020_013131  | 
    
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c313t-9a2123779462219315e6d4225fe9bcb227e4eef6a33d9d63cc54be1468d87e9e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1546-2226 1546-2218  | 
    
| IngestDate | Sun Sep 07 10:53:43 EDT 2025 Mon Jun 30 04:04:39 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Wed Oct 01 04:24:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c313t-9a2123779462219315e6d4225fe9bcb227e4eef6a33d9d63cc54be1468d87e9e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmc.2020.013131 | 
    
| PQID | 2465895725 | 
    
| PQPubID | 2048737 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2020_013131 proquest_journals_2465895725 crossref_citationtrail_10_32604_cmc_2020_013131 crossref_primary_10_32604_cmc_2020_013131  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-01 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Henderson | 
    
| PublicationPlace_xml | – name: Henderson | 
    
| PublicationTitle | Computers, materials & continua | 
    
| PublicationYear | 2021 | 
    
| Publisher | Tech Science Press | 
    
| Publisher_xml | – name: Tech Science Press | 
    
| References | Jiang (ref6) 2017; 66 Jing (ref3) 2017; 111 Tang (ref19) 2012 Wang (ref24) 2017; 190 Wang (ref9) 2017; 44 Liu (ref20) 2018; 431 Zhang (ref21) 2018 Yang (ref25) 2010; 2 Xue (ref8) 2018; 100 Teng (ref10) 2016; 93 Merainani (ref14) 2017; 24 Johnson (ref18) 2017 Medina (ref17) 2019; 104 Chen (ref2) 2015; 2015 Li (ref7) 2016; 76–77 ref27 Shadkam (ref23) 2014; 4 Moalla (ref22) 2017; 10637 Bajric (ref11) 2016; 2016 Liu (ref15) 2018; 2018 Zhang (ref12) 2017; 109 Chen (ref13) 2017; 75 Sanchez (ref4) 2017; 19 Qi (ref5) 2019 Lu (ref1) 2017; 32 Malik (ref16) 2018 ElSaid (ref26) 2017  | 
    
| References_xml | – volume: 44 start-page: 310 year: 2017 ident: ref9 article-title: Virtualization and deep recognition for system fault classification publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2017.04.012 – volume: 111 start-page: 1 year: 2017 ident: ref3 article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox publication-title: Measurement doi: 10.1016/j.measurement.2017.07.017 – volume: 75 start-page: 327 year: 2017 ident: ref13 article-title: Deep neural networks-based rolling bearing fault diagnosis publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2017.03.006 – volume: 2018 start-page: 1 year: 2018 ident: ref15 article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis publication-title: Mathematical Problems in Engineering – year: 2012 ident: ref19 article-title: Integrating nature-inspired optimization algorithms to K-means clustering – volume: 10637 start-page: 41 year: 2017 ident: ref22 publication-title: Neural Information Processing – volume: 190 start-page: 390 year: 2017 ident: ref24 article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm publication-title: Applied Energy doi: 10.1016/j.apenergy.2016.12.134 – volume: 109 start-page: 449 year: 2017 ident: ref12 article-title: Planet gear fault localization for wind turbine gearbox using acoustic emission signals publication-title: Renewable Energy doi: 10.1016/j.renene.2017.03.035 – volume: 2016 start-page: 1 year: 2016 ident: ref11 article-title: Feature extraction using discrete wavelet transform for gear fault diagnosis of wind turbine gearbox publication-title: Shock and Vibration doi: 10.1155/2016/6748469 – volume: 2015 start-page: 1 year: 2015 ident: ref2 article-title: Gearbox fault identification and classification with convolutional neural networks publication-title: Shock and Vibration – volume: 66 start-page: 2391 year: 2017 ident: ref6 article-title: Stacked multilevel-denoising autoencoders: A new representation learning approach for wind turbine gearbox fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2017.2698738 – ident: ref27 – volume: 76–77 start-page: 283 year: 2016 ident: ref7 article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.02.007 – volume: 4 start-page: 39 year: 2014 ident: ref23 article-title: Evaluation the efficiency of cuckoo optimization algorithm publication-title: International Journal on Computational Science & Applications doi: 10.5121/ijcsa.2014.4205 – start-page: 309 year: 2018 ident: ref16 publication-title: Advances in Intelligent Systems and Computing – year: 2019 ident: ref5 article-title: Adaptive morphological feature extraction and support vector regressive classification for gearbox fault diagnosis – start-page: 245 year: 2017 ident: ref18 publication-title: Information and Communication Technology for Sustainable Development – volume: 32 start-page: 139 year: 2017 ident: ref1 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2017.02.005 – year: 2017 ident: ref26 article-title: Optimizing LSTM RNNs using ACO to predict turbine engine vibration – volume: 2 start-page: 78 year: 2010 ident: ref25 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2010.032124 – volume: 93 start-page: 591 year: 2016 ident: ref10 article-title: Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform publication-title: Renewable Energy doi: 10.1016/j.renene.2016.03.025 – volume: 100 start-page: 706 year: 2018 ident: ref8 article-title: Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.07.038 – volume: 19 start-page: 2475 year: 2017 ident: ref4 article-title: Vibration-based gearbox fault diagnosis using deep neural networks publication-title: Journal of Vibroengineering doi: 10.21595/jve.2016.17267 – year: 2018 ident: ref21 article-title: Two-stage short-term wind speed prediction based on LSTM-LSSVM-CFA – volume: 24 start-page: 2512 year: 2017 ident: ref14 article-title: A novel gearbox fault feature extraction and classification using Hilbert empirical wavelet transform, singular value decomposition, and SOM neural network publication-title: Journal of Vibration and Control doi: 10.1177/1077546316688991 – volume: 104 start-page: 2195 year: 2019 ident: ref17 article-title: Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-03858-0 – volume: 431 start-page: 192 year: 2018 ident: ref20 article-title: A dependence-based feature vector and its application on planetary gearbox fault classification publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2018.06.015  | 
    
| SSID | ssj0036390 | 
    
| Score | 2.3669856 | 
    
| Snippet | Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 2041 | 
    
| SubjectTerms | Algorithms Alternative energy sources Artificial neural networks Classification Condition monitoring Data acquisition Diagnostic systems Fault diagnosis Gearboxes Renewable energy sources Renewable resources Rotating machinery Swarm intelligence Turbines Vibration analysis  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKeoALtDzUQFvNgQtIJont9XaREOorBEQDoq3U28qvhUqbbGg2KuFP9C93Zh9tuZS719b6m5ftmW8Ye21iqwYCjyWxTgRXLsn4ju5LriSGA1Fm-6G6cDsa69Gp-nIWna2wcVsLQ2mVrU2sDLUvHN2R94RCX5lEsYg-zn5z6hpFr6ttCw3TtFbwHyqKsQdsVRAzVoet7h2Ov_9obbNEf1yVSEZKc4HerX64xBCmr3puQpSGov-OKGjk4F9HdRt9PlxMZ2Z5afL8jiMarrHHTQQJuzXk62wlTJ-yJ213BmiU9Rm7Or40FxP-9fjk6D3sF_Q0jRhArcR0mwdFBp9Q0G3xB4ZmkZdwUOfdnc9hD52bBxw-WlJJF9AscBDCDIjNA5cf1-nj8A1NzuT8Lw62S6hWhM93WD5hN_-Ji5W_JvPn7HR4eLI_4k37Be7w_0ueGHJrMTHQ41YlchAF7RXqfxYS66wQcVAhZNpI6ROvpXORsoFKufxOHJIgX7DOtJiGDQZeShN7PNqIRKlYWyIF0ygc0jgtrIy6rNfudeoabnJqkZGneEap0EkRnZTQSWt0uuzNzRezmpfjnrGbLXxpo6Hz9FaeuuztDaT_nevl_XO9Yo8EJb1UdzSbrFNeLMIWRi2l3W5E8Rou5-fy priority: 102 providerName: ProQuest  | 
    
| Title | Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms | 
    
| URI | https://www.proquest.com/docview/2465895725 https://doi.org/10.32604/cmc.2020.013131  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 66 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBaG5LBd1nYPrFtX8LDLBjhNJVmueksfaTasWbE2QHcyJFluizoPNA669E_sL4-0lS4bhj1uPtCiTZEiRZGfGHtjEiu3OW5LEqV5JJ3Oox3VFpEUGA7EuW37KuF23Fe9gfxwHp-HfAf1wiyd32Ng0ZZbbkhAg7zdImAYaphuqhij7gZrDvonnS8VHKpUEedVKi8883Ai-dshfvZAP8LKh7PRxMxvTVEseZjuSg13NK2ACamw5Lo1K23L3f0C2_gvH7_KHocwEzq1XqyxB370hK0srnCAYNFP2bfTW3MzjD6enh3vwv6Yzq9xoqC2dEr5wTiHI7QGO_4KXTMrSjioi_OuprCHHjADJO_Nqe8LaBQ48H4CBPmB7Pt1jTl8wnVpeHWHxHYOFUd4vwQFCp3iApmVl8PpMzboHp7t96JwR0Pk8I_KSBvyfQnB1OMUaLEde5VJXCRyr62znCdeep8rI0SmMyWci6X11O-V7SRee_GcNUbjkX_BIBPCJBnuf7iWMlGWkMMUapAwTnEr4nW2tZi31AUAc7pHo0hxI1PJO0V5pyTvtJb3Ont7_8akBu_4A-3GQhXSYMbTlEsM0HSccGT-7l49_jrWy_8hfsUecaqTqdI6G6xR3sz8awx0SrvJmnuH_ZPPm0HXvwPb__Oh | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYoHOil9Kmmpe0c2kMruUlsrzdbCSEgpElJ0qoEidtir72AtMkGslEa_kT_UX9bx_sAeqEn7t6xtN94XvZ8Q8h75WvRZJiW-DJgVERBTFuywangGA54sW7YvOA2GMrukfh27B2vkD9VL4x7VlnZxNxQmzRyNfI6E-grA89n3vb0grqpUe52tRqhocrRCmYrpxgrGzsO7HKBKdxsq9dGvD8w1tkf7XVpOWWARrzJMxooZ719R7TO8PjypmelEajmsQ10pBnzrbA2lopzExjJo8gT2rqOJdPybWA5yn1A1gQXASZ_a7v7wx8_K1_A0f_nLZmekBSlt4qLUgyZGqIejR2FImt8dpQ3vPmvY7yJdtfnk6laLlSS3HJ8ncfkURmxwk6hYk_Iip08JRvVNAgojcMz8vtwoS7HtH84GnyBvdRdhSPmUBgNVz2ENIav-Md0-gs6ap5k0C7e-Z3PYBedqQFc3l26FjJwUqBt7RQcewhuPyyeq8N3NHHj8ytcrJeQ7wi9W6yisJOc4mbZ2Xj2nBzdCxAvyOokndiXBAznyjeYSrFACF9qR0ImURm5iiTT3KuRevWvw6jkQncjOZIQc6IcnRDRCR06YYFOjXy8_mJa8IDcsXazgi8sLcIsvNHfGvl0Del_Zb26W9Y7st4dDfphvzc8eE0eMvfgJq8PbZLV7HJu32DElOm3pVoCObnvk_AX10gkIQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBaG9NBd1q7bsL4GHnrZAKepJMtVb-kjzYY1G9AG6E6GJMtbUeeBxkGb_on95ZG20qXDsMfNB1q0KVKkKPITYzsmsXKP47YkUZpH0uk82lctEUmB4UCc25avEm5nPdXtyw-X8WXId1AvzML5PQYWLbnrBgQ0yFtNAoahhuklFWPU3WBL_d7n9pcKDlWqiPMqlReeeTiR_O0Qjz3Qz7ByeTocm9mtKYoFD9NZqeGOJhUwIRWWXDenpW26-19gG__l41fZsxBmQrvWi-fsiR-usZX5FQ4QLPoF-35-a24G0cfzi7MDOBrR-TVOFNSWTik_GOVwitZgR3fQMdOihOO6OO9qAofoATNA8u6M-r6ARoFj78dAkB_IvlfXmMMnXJcGV_dIbGdQcYT3C1Cg0C6-IrPy22DykvU7JxdH3Sjc0RA5_KMy0oZ8X0Iw9TgFWuzFXmUSF4nca-ss54mX3ufKCJHpTAnnYmk99Xtl-4nXXrxijeFo6F8zyIQwSYb7H66lTJQl5DCFGiSMU9yKeJ3tzuctdQHAnO7RKFLcyFTyTlHeKck7reW9zt4-vDGuwTv-QLs1V4U0mPEk5RIDNB0nHJm_e1CPv4618T_Em-wppzqZKq2zxRrlzdRvY6BT2jdBx38ARsbyBw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm-LSTM%3A+Condition+Monitoring+of+Gearbox+Fault+Diagnosis+Based+on+Hybrid+LSTM+Deep+Neural+Network+Optimized+by+Swarm+Intelligence+Algorithms&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Krishna+Durbhaka%2C+Gopi&rft.au=Selvaraj%2C+Barani&rft.au=Mittal%2C+Mamta&rft.au=Saba%2C+Tanzila&rft.date=2021-01-01&rft.issn=1546-2226&rft.volume=66&rft.issue=2&rft.spage=2041&rft.epage=2059&rft_id=info:doi/10.32604%2Fcmc.2020.013131&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2020_013131 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |