Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms

Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis h...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 66; no. 2; pp. 2041 - 2059
Main Authors Krishna Durbhaka, Gopi, Selvaraj, Barani, Mittal, Mamta, Saba, Tanzila, Rehman, Amjad, Mohan Goyal, Lalit
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 01.01.2021
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2020.013131

Cover

Abstract Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory (LSTM) model in classifying the faults from the vibration signals data acquired from the gearbox. This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision. The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods.
AbstractList Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory (LSTM) model in classifying the faults from the vibration signals data acquired from the gearbox. This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision. The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods.
Author Mittal, Mamta
Saba, Tanzila
Selvaraj, Barani
Mohan Goyal, Lalit
Krishna Durbhaka, Gopi
Rehman, Amjad
Author_xml – sequence: 1
  givenname: Gopi
  surname: Krishna Durbhaka
  fullname: Krishna Durbhaka, Gopi
– sequence: 2
  givenname: Barani
  surname: Selvaraj
  fullname: Selvaraj, Barani
– sequence: 3
  givenname: Mamta
  surname: Mittal
  fullname: Mittal, Mamta
– sequence: 4
  givenname: Tanzila
  surname: Saba
  fullname: Saba, Tanzila
– sequence: 5
  givenname: Amjad
  surname: Rehman
  fullname: Rehman, Amjad
– sequence: 6
  givenname: Lalit
  surname: Mohan Goyal
  fullname: Mohan Goyal, Lalit
BookMark eNqFkE9P3DAQxS1EpQLlztFSz9n6T-JseqMLC0hLOUDPluNMFoNjp7aj7fZL9CvjZXtAHFrNYebw3puZ3zE6dN4BQmeUzDgTpPyiBz1jhJEZoTzXATqiVSkKxpg4fDN_RMcxPhHCBW_IEfpzv1FhKFb3D7df8cK7ziTjHb71ziQfjFtj3-MrUKH1v_BSTTbhC6PWzkcT8TcVocNZfr1tg-nwLgVfAIz4O0xB2dzSxodnfDcmM5jfWdxu8etGfOMSWGvW4DTgc7vOy9LjED-hD72yEU7_9hP0Y3n5sLguVndXN4vzVaHzc6loFKOM13VTCsZow2kFoisZq3poWt0yVkMJ0AvFedd0gmtdlS3QUsy7eQ0N8BNE97mTG9V2o6yVYzCDCltJiXwlKjNRuSMq90Sz5_PeMwb_c4KY5JOfgstnSlaKat5UNauySuxVOvgYA_RSm6R2VFNQxv4rnrwz_veiFya5mVA
CitedBy_id crossref_primary_10_32604_cmc_2022_029484
crossref_primary_10_48084_etasr_5595
crossref_primary_10_1016_j_heliyon_2023_e17584
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_1016_j_eti_2021_101531
crossref_primary_10_1016_j_measurement_2021_109235
crossref_primary_10_1088_1742_6596_2310_1_012083
crossref_primary_10_32604_cmc_2021_017872
crossref_primary_10_1016_j_eswa_2023_121797
crossref_primary_10_1109_ACCESS_2024_3412274
crossref_primary_10_1088_1361_6501_ad0ca6
crossref_primary_10_1016_j_anucene_2024_110340
crossref_primary_10_1155_2021_3137083
Cites_doi 10.1016/j.jmsy.2017.04.012
10.1016/j.measurement.2017.07.017
10.1016/j.microrel.2017.03.006
10.1016/j.apenergy.2016.12.134
10.1016/j.renene.2017.03.035
10.1155/2016/6748469
10.1109/TIM.2017.2698738
10.1016/j.ymssp.2016.02.007
10.5121/ijcsa.2014.4205
10.1016/j.aei.2017.02.005
10.1504/IJBIC.2010.032124
10.1016/j.renene.2016.03.025
10.1016/j.ymssp.2017.07.038
10.21595/jve.2016.17267
10.1177/1077546316688991
10.1007/s00170-019-03858-0
10.1016/j.jsv.2018.06.015
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2020.013131
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 2059
ExternalDocumentID 10.32604/cmc.2020.013131
10_32604_cmc_2020_013131
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c313t-9a2123779462219315e6d4225fe9bcb227e4eef6a33d9d63cc54be1468d87e9e3
IEDL.DBID UNPAY
ISSN 1546-2226
1546-2218
IngestDate Sun Sep 07 10:53:43 EDT 2025
Mon Jun 30 04:04:39 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Wed Oct 01 04:24:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-9a2123779462219315e6d4225fe9bcb227e4eef6a33d9d63cc54be1468d87e9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmc.2020.013131
PQID 2465895725
PQPubID 2048737
PageCount 19
ParticipantIDs unpaywall_primary_10_32604_cmc_2020_013131
proquest_journals_2465895725
crossref_citationtrail_10_32604_cmc_2020_013131
crossref_primary_10_32604_cmc_2020_013131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2021
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Jiang (ref6) 2017; 66
Jing (ref3) 2017; 111
Tang (ref19) 2012
Wang (ref24) 2017; 190
Wang (ref9) 2017; 44
Liu (ref20) 2018; 431
Zhang (ref21) 2018
Yang (ref25) 2010; 2
Xue (ref8) 2018; 100
Teng (ref10) 2016; 93
Merainani (ref14) 2017; 24
Johnson (ref18) 2017
Medina (ref17) 2019; 104
Chen (ref2) 2015; 2015
Li (ref7) 2016; 76–77
ref27
Shadkam (ref23) 2014; 4
Moalla (ref22) 2017; 10637
Bajric (ref11) 2016; 2016
Liu (ref15) 2018; 2018
Zhang (ref12) 2017; 109
Chen (ref13) 2017; 75
Sanchez (ref4) 2017; 19
Qi (ref5) 2019
Lu (ref1) 2017; 32
Malik (ref16) 2018
ElSaid (ref26) 2017
References_xml – volume: 44
  start-page: 310
  year: 2017
  ident: ref9
  article-title: Virtualization and deep recognition for system fault classification
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2017.04.012
– volume: 111
  start-page: 1
  year: 2017
  ident: ref3
  article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.07.017
– volume: 75
  start-page: 327
  year: 2017
  ident: ref13
  article-title: Deep neural networks-based rolling bearing fault diagnosis
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2017.03.006
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref15
  article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis
  publication-title: Mathematical Problems in Engineering
– year: 2012
  ident: ref19
  article-title: Integrating nature-inspired optimization algorithms to K-means clustering
– volume: 10637
  start-page: 41
  year: 2017
  ident: ref22
  publication-title: Neural Information Processing
– volume: 190
  start-page: 390
  year: 2017
  ident: ref24
  article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2016.12.134
– volume: 109
  start-page: 449
  year: 2017
  ident: ref12
  article-title: Planet gear fault localization for wind turbine gearbox using acoustic emission signals
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.03.035
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref11
  article-title: Feature extraction using discrete wavelet transform for gear fault diagnosis of wind turbine gearbox
  publication-title: Shock and Vibration
  doi: 10.1155/2016/6748469
– volume: 2015
  start-page: 1
  year: 2015
  ident: ref2
  article-title: Gearbox fault identification and classification with convolutional neural networks
  publication-title: Shock and Vibration
– volume: 66
  start-page: 2391
  year: 2017
  ident: ref6
  article-title: Stacked multilevel-denoising autoencoders: A new representation learning approach for wind turbine gearbox fault diagnosis
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2017.2698738
– ident: ref27
– volume: 76–77
  start-page: 283
  year: 2016
  ident: ref7
  article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.02.007
– volume: 4
  start-page: 39
  year: 2014
  ident: ref23
  article-title: Evaluation the efficiency of cuckoo optimization algorithm
  publication-title: International Journal on Computational Science & Applications
  doi: 10.5121/ijcsa.2014.4205
– start-page: 309
  year: 2018
  ident: ref16
  publication-title: Advances in Intelligent Systems and Computing
– year: 2019
  ident: ref5
  article-title: Adaptive morphological feature extraction and support vector regressive classification for gearbox fault diagnosis
– start-page: 245
  year: 2017
  ident: ref18
  publication-title: Information and Communication Technology for Sustainable Development
– volume: 32
  start-page: 139
  year: 2017
  ident: ref1
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2017.02.005
– year: 2017
  ident: ref26
  article-title: Optimizing LSTM RNNs using ACO to predict turbine engine vibration
– volume: 2
  start-page: 78
  year: 2010
  ident: ref25
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2010.032124
– volume: 93
  start-page: 591
  year: 2016
  ident: ref10
  article-title: Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.03.025
– volume: 100
  start-page: 706
  year: 2018
  ident: ref8
  article-title: Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.07.038
– volume: 19
  start-page: 2475
  year: 2017
  ident: ref4
  article-title: Vibration-based gearbox fault diagnosis using deep neural networks
  publication-title: Journal of Vibroengineering
  doi: 10.21595/jve.2016.17267
– year: 2018
  ident: ref21
  article-title: Two-stage short-term wind speed prediction based on LSTM-LSSVM-CFA
– volume: 24
  start-page: 2512
  year: 2017
  ident: ref14
  article-title: A novel gearbox fault feature extraction and classification using Hilbert empirical wavelet transform, singular value decomposition, and SOM neural network
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546316688991
– volume: 104
  start-page: 2195
  year: 2019
  ident: ref17
  article-title: Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-03858-0
– volume: 431
  start-page: 192
  year: 2018
  ident: ref20
  article-title: A dependence-based feature vector and its application on planetary gearbox fault classification
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2018.06.015
SSID ssj0036390
Score 2.3669856
Snippet Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2041
SubjectTerms Algorithms
Alternative energy sources
Artificial neural networks
Classification
Condition monitoring
Data acquisition
Diagnostic systems
Fault diagnosis
Gearboxes
Renewable energy sources
Renewable resources
Rotating machinery
Swarm intelligence
Turbines
Vibration analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKeoALtDzUQFvNgQtIJont9XaREOorBEQDoq3U28qvhUqbbGg2KuFP9C93Zh9tuZS719b6m5ftmW8Ye21iqwYCjyWxTgRXLsn4ju5LriSGA1Fm-6G6cDsa69Gp-nIWna2wcVsLQ2mVrU2sDLUvHN2R94RCX5lEsYg-zn5z6hpFr6ttCw3TtFbwHyqKsQdsVRAzVoet7h2Ov_9obbNEf1yVSEZKc4HerX64xBCmr3puQpSGov-OKGjk4F9HdRt9PlxMZ2Z5afL8jiMarrHHTQQJuzXk62wlTJ-yJ213BmiU9Rm7Or40FxP-9fjk6D3sF_Q0jRhArcR0mwdFBp9Q0G3xB4ZmkZdwUOfdnc9hD52bBxw-WlJJF9AscBDCDIjNA5cf1-nj8A1NzuT8Lw62S6hWhM93WD5hN_-Ji5W_JvPn7HR4eLI_4k37Be7w_0ueGHJrMTHQ41YlchAF7RXqfxYS66wQcVAhZNpI6ROvpXORsoFKufxOHJIgX7DOtJiGDQZeShN7PNqIRKlYWyIF0ygc0jgtrIy6rNfudeoabnJqkZGneEap0EkRnZTQSWt0uuzNzRezmpfjnrGbLXxpo6Hz9FaeuuztDaT_nevl_XO9Yo8EJb1UdzSbrFNeLMIWRi2l3W5E8Rou5-fy
  priority: 102
  providerName: ProQuest
Title Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms
URI https://www.proquest.com/docview/2465895725
https://doi.org/10.32604/cmc.2020.013131
UnpaywallVersion publishedVersion
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBaG5LBd1nYPrFtX8LDLBjhNJVmueksfaTasWbE2QHcyJFluizoPNA669E_sL4-0lS4bhj1uPtCiTZEiRZGfGHtjEiu3OW5LEqV5JJ3Oox3VFpEUGA7EuW37KuF23Fe9gfxwHp-HfAf1wiyd32Ng0ZZbbkhAg7zdImAYaphuqhij7gZrDvonnS8VHKpUEedVKi8883Ai-dshfvZAP8LKh7PRxMxvTVEseZjuSg13NK2ACamw5Lo1K23L3f0C2_gvH7_KHocwEzq1XqyxB370hK0srnCAYNFP2bfTW3MzjD6enh3vwv6Yzq9xoqC2dEr5wTiHI7QGO_4KXTMrSjioi_OuprCHHjADJO_Nqe8LaBQ48H4CBPmB7Pt1jTl8wnVpeHWHxHYOFUd4vwQFCp3iApmVl8PpMzboHp7t96JwR0Pk8I_KSBvyfQnB1OMUaLEde5VJXCRyr62znCdeep8rI0SmMyWci6X11O-V7SRee_GcNUbjkX_BIBPCJBnuf7iWMlGWkMMUapAwTnEr4nW2tZi31AUAc7pHo0hxI1PJO0V5pyTvtJb3Ont7_8akBu_4A-3GQhXSYMbTlEsM0HSccGT-7l49_jrWy_8hfsUecaqTqdI6G6xR3sz8awx0SrvJmnuH_ZPPm0HXvwPb__Oh
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYoHOil9Kmmpe0c2kMruUlsrzdbCSEgpElJ0qoEidtir72AtMkGslEa_kT_UX9bx_sAeqEn7t6xtN94XvZ8Q8h75WvRZJiW-DJgVERBTFuywangGA54sW7YvOA2GMrukfh27B2vkD9VL4x7VlnZxNxQmzRyNfI6E-grA89n3vb0grqpUe52tRqhocrRCmYrpxgrGzsO7HKBKdxsq9dGvD8w1tkf7XVpOWWARrzJMxooZ719R7TO8PjypmelEajmsQ10pBnzrbA2lopzExjJo8gT2rqOJdPybWA5yn1A1gQXASZ_a7v7wx8_K1_A0f_nLZmekBSlt4qLUgyZGqIejR2FImt8dpQ3vPmvY7yJdtfnk6laLlSS3HJ8ncfkURmxwk6hYk_Iip08JRvVNAgojcMz8vtwoS7HtH84GnyBvdRdhSPmUBgNVz2ENIav-Md0-gs6ap5k0C7e-Z3PYBedqQFc3l26FjJwUqBt7RQcewhuPyyeq8N3NHHj8ytcrJeQ7wi9W6yisJOc4mbZ2Xj2nBzdCxAvyOokndiXBAznyjeYSrFACF9qR0ImURm5iiTT3KuRevWvw6jkQncjOZIQc6IcnRDRCR06YYFOjXy8_mJa8IDcsXazgi8sLcIsvNHfGvl0Del_Zb26W9Y7st4dDfphvzc8eE0eMvfgJq8PbZLV7HJu32DElOm3pVoCObnvk_AX10gkIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBaG9NBd1q7bsL4GHnrZAKepJMtVb-kjzYY1G9AG6E6GJMtbUeeBxkGb_on95ZG20qXDsMfNB1q0KVKkKPITYzsmsXKP47YkUZpH0uk82lctEUmB4UCc25avEm5nPdXtyw-X8WXId1AvzML5PQYWLbnrBgQ0yFtNAoahhuklFWPU3WBL_d7n9pcKDlWqiPMqlReeeTiR_O0Qjz3Qz7ByeTocm9mtKYoFD9NZqeGOJhUwIRWWXDenpW26-19gG__l41fZsxBmQrvWi-fsiR-usZX5FQ4QLPoF-35-a24G0cfzi7MDOBrR-TVOFNSWTik_GOVwitZgR3fQMdOihOO6OO9qAofoATNA8u6M-r6ARoFj78dAkB_IvlfXmMMnXJcGV_dIbGdQcYT3C1Cg0C6-IrPy22DykvU7JxdH3Sjc0RA5_KMy0oZ8X0Iw9TgFWuzFXmUSF4nca-ss54mX3ufKCJHpTAnnYmk99Xtl-4nXXrxijeFo6F8zyIQwSYb7H66lTJQl5DCFGiSMU9yKeJ3tzuctdQHAnO7RKFLcyFTyTlHeKck7reW9zt4-vDGuwTv-QLs1V4U0mPEk5RIDNB0nHJm_e1CPv4618T_Em-wppzqZKq2zxRrlzdRvY6BT2jdBx38ARsbyBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm-LSTM%3A+Condition+Monitoring+of+Gearbox+Fault+Diagnosis+Based+on+Hybrid+LSTM+Deep+Neural+Network+Optimized+by+Swarm+Intelligence+Algorithms&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Krishna+Durbhaka%2C+Gopi&rft.au=Selvaraj%2C+Barani&rft.au=Mittal%2C+Mamta&rft.au=Saba%2C+Tanzila&rft.date=2021-01-01&rft.issn=1546-2226&rft.volume=66&rft.issue=2&rft.spage=2041&rft.epage=2059&rft_id=info:doi/10.32604%2Fcmc.2020.013131&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2020_013131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon