The discrete Fourier transform algorithm for determining decay constants—Implementation using a field programmable gate array

Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the d...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 86; no. 4; p. 043106
Main Authors Bostrom, G., Atkinson, D., Rice, A.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.04.2015
Subjects
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/1.4916709

Cover

More Information
Summary:Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0034-6748
1089-7623
1089-7623
DOI:10.1063/1.4916709