A nodally bound-preserving finite element method

Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of numerical analysis Vol. 44; no. 4; pp. 2198 - 2219
Main Authors Barrenechea, Gabriel R, Georgoulis, Emmanuil H, Pryer, Tristan, Veeser, Andreas
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.07.2024
Online AccessGet full text
ISSN0272-4979
1464-3642
1464-3642
DOI10.1093/imanum/drad055

Cover

Abstract Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.
AbstractList Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.
Author Georgoulis, Emmanuil H
Pryer, Tristan
Veeser, Andreas
Barrenechea, Gabriel R
Author_xml – sequence: 1
  givenname: Gabriel R
  surname: Barrenechea
  fullname: Barrenechea, Gabriel R
  email: gabriel.barrenechea@strath.ac.uk
– sequence: 2
  givenname: Emmanuil H
  surname: Georgoulis
  fullname: Georgoulis, Emmanuil H
– sequence: 3
  givenname: Tristan
  surname: Pryer
  fullname: Pryer, Tristan
– sequence: 4
  givenname: Andreas
  surname: Veeser
  fullname: Veeser, Andreas
BookMark eNqFjztPwzAUhS1UJNLCypyVIcT2tR17rCpeUiUWmCM7voagxInyAOXfU5TuTGc539H5tmQTu4iE3DJ6z6iBvG5tnNvcD9ZTKS9IwoQSGSjBNyShvOCZMIW5Ittx_KKUClXQhNB9Gjtvm2ZJXTdHn_UDjjh81_EjDXWsJ0yxwRbjlLY4fXb-mlwG24x4c84deX98eDs8Z8fXp5fD_phVwGDKpJem8BAE2Mpqa6UD51AbrZTUTlrmGXCkjDkdALgPARlyqITySmvjYUfydXeOvV1-Tg_LfjgpDkvJaPknXK7C5Vn4RNytRDf3_3V_ASpEXB4
CitedBy_id crossref_primary_10_1007_s10208_024_09681_8
crossref_primary_10_3934_mine_2024005
crossref_primary_10_1137_22M1534791
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023
DBID TOX
ADTOC
UNPAY
DOI 10.1093/imanum/drad055
DatabaseName Oxford Journals Open Access Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1464-3642
EndPage 2219
ExternalDocumentID 10.1093/imanum/drad055
GroupedDBID -E4
-~X
.2P
.DC
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6OB
6TJ
70D
8WZ
A6W
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABAZT
ABDFA
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABWST
ABXVV
ABZBJ
ABZEO
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACPQN
ACUFI
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHXPO
AI.
AIAGR
AIJHB
AJBYB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
ELUNK
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
N9A
NGC
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
T9H
TCN
TJP
TOX
UPT
VH1
WH7
X7H
XOL
YAYTL
YKOAZ
YXANX
ZKX
ZY4
~91
ADTOC
UNPAY
ID FETCH-LOGICAL-c313t-5d597d3f43aca8aa5b3bbe8986658b5a1d132e011b8f332dffe1e23c46d6889d3
IEDL.DBID UNPAY
ISSN 0272-4979
1464-3642
IngestDate Sun Sep 07 11:01:31 EDT 2025
Mon Jun 30 08:34:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-5d597d3f43aca8aa5b3bbe8986658b5a1d132e011b8f332dffe1e23c46d6889d3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/imanum/drad055
PageCount 22
ParticipantIDs unpaywall_primary_10_1093_imanum_drad055
oup_primary_10_1093_imanum_drad055
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IMA journal of numerical analysis
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0004670
Score 2.4138324
Snippet Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a...
SourceID unpaywall
oup
SourceType Open Access Repository
Publisher
StartPage 2198
Title A nodally bound-preserving finite element method
URI https://doi.org/10.1093/imanum/drad055
UnpaywallVersion publishedVersion
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0IHNSDKGrED7IxHrwUdrfdpXskRiQmoAdI8ET6aYiwENiNwV_vlq5EueC9aSaTafum8-YNwB0XAWu6VCCuaYSIigjinlbIozIyfQOuXieK3V7YGZDnYTDMCbKmF-ZP_T7CjfGUxem0IRdMukFQgFJoCklFKA16r6239QdK0zdj0iLbRkQQzhD1Rp1xe4OfNrb9NJ6z1SebTH69Ju0yPP3YYUkkH_U04XXxtSXRuNvQYzjKAaXTshFwAnsqrkA5B5dOfnSXFTjsbgRal6fgtpx4JjPDVg43g5WQ4cOaayN-d_TY4FBHWWK5Y2dMn8Gg_dh_6KB8eAIS2MMJCmSWKkisCWaCUcYCjjlXNDL6dpQHzJNZHqqy082pxtiXWitP-ViQUIaURhKfQzGexeoCHOUbmThXclcJIkLNiOcz4jPRVCRUXFbhNnPqaG7lMUa2rI1H1iOj3CNVuN_4fMfSy_8vvYIDP0MZlj97DcVkkaqbDCUkvAaF_suwlgfKNz9hvg8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0oHNSDKGrEr2yMBy-F3W136R6JEYkJxIMkeNr00xBhIcDG4K-3pQtRLnpvmslk2r7pvHkDcMdFxJo-FYhrmiCiEoJ4oBUKqExs34CvV4litxd3-uR5EA0KgqzthflVv09wYzhmWT5uyBmTfhTtQjm2haQSlPu9l9bb6gOlGdoxaYlrIyIIG0S9UWfc3mDdxraXZ1O2_GSj0Y_XpF2Bp7UdjkTyUc8XvC6-tiQa_zb0CA4LQOm1XAQcw47KqlApwKVXHN15FQ66G4HW-Qn4LS-bSGPY0uN2sBKyfFh7bWTvnh5aHOopRyz33IzpU-i3H18fOqgYnoAEDvACRdKkChJrgplglLGIY84VTay-HeURC6TJQ5U53ZxqjEOptQpUiAWJZUxpIvEZlLJJps7BU6GVifMl95UgItaMBCEjIRNNRWLFZQ1ujVPTqZPHSF1ZG6fOI2nhkRrcb3z-x9KL_y-9hP3QoAzHn72C0mKWq2uDEhb8pgiRb8_yvPM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nodally+bound-preserving+finite+element+method&rft.jtitle=IMA+journal+of+numerical+analysis&rft.au=Barrenechea%2C+Gabriel+R&rft.au=Georgoulis%2C+Emmanuil+H&rft.au=Pryer%2C+Tristan&rft.au=Veeser%2C+Andreas&rft.date=2024-07-01&rft.pub=Oxford+University+Press&rft.issn=0272-4979&rft.eissn=1464-3642&rft.volume=44&rft.issue=4&rft.spage=2198&rft.epage=2219&rft_id=info:doi/10.1093%2Fimanum%2Fdrad055&rft.externalDocID=10.1093%2Fimanum%2Fdrad055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4979&client=summon