A nodally bound-preserving finite element method
Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this...
Saved in:
Published in | IMA journal of numerical analysis Vol. 44; no. 4; pp. 2198 - 2219 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.07.2024
|
Online Access | Get full text |
ISSN | 0272-4979 1464-3642 1464-3642 |
DOI | 10.1093/imanum/drad055 |
Cover
Abstract | Abstract
This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method. |
---|---|
AbstractList | Abstract
This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method. |
Author | Georgoulis, Emmanuil H Pryer, Tristan Veeser, Andreas Barrenechea, Gabriel R |
Author_xml | – sequence: 1 givenname: Gabriel R surname: Barrenechea fullname: Barrenechea, Gabriel R email: gabriel.barrenechea@strath.ac.uk – sequence: 2 givenname: Emmanuil H surname: Georgoulis fullname: Georgoulis, Emmanuil H – sequence: 3 givenname: Tristan surname: Pryer fullname: Pryer, Tristan – sequence: 4 givenname: Andreas surname: Veeser fullname: Veeser, Andreas |
BookMark | eNqFjztPwzAUhS1UJNLCypyVIcT2tR17rCpeUiUWmCM7voagxInyAOXfU5TuTGc539H5tmQTu4iE3DJ6z6iBvG5tnNvcD9ZTKS9IwoQSGSjBNyShvOCZMIW5Ittx_KKUClXQhNB9Gjtvm2ZJXTdHn_UDjjh81_EjDXWsJ0yxwRbjlLY4fXb-mlwG24x4c84deX98eDs8Z8fXp5fD_phVwGDKpJem8BAE2Mpqa6UD51AbrZTUTlrmGXCkjDkdALgPARlyqITySmvjYUfydXeOvV1-Tg_LfjgpDkvJaPknXK7C5Vn4RNytRDf3_3V_ASpEXB4 |
CitedBy_id | crossref_primary_10_1007_s10208_024_09681_8 crossref_primary_10_3934_mine_2024005 crossref_primary_10_1137_22M1534791 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023 |
DBID | TOX ADTOC UNPAY |
DOI | 10.1093/imanum/drad055 |
DatabaseName | Oxford Journals Open Access Collection Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1464-3642 |
EndPage | 2219 |
ExternalDocumentID | 10.1093/imanum/drad055 |
GroupedDBID | -E4 -~X .2P .DC .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6OB 6TJ 70D 8WZ A6W AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABAZT ABDFA ABDTM ABEFU ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABLJU ABNGD ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABVGC ABVLG ABWST ABXVV ABZBJ ABZEO ACFRR ACGFO ACGFS ACGOD ACIWK ACPQN ACUFI ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHXPO AI. AIAGR AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMVHM ANAKG ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD ELUNK F9B FEDTE FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KSI KSN M-Z MBTAY N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO T9H TCN TJP TOX UPT VH1 WH7 X7H XOL YAYTL YKOAZ YXANX ZKX ZY4 ~91 ADTOC UNPAY |
ID | FETCH-LOGICAL-c313t-5d597d3f43aca8aa5b3bbe8986658b5a1d132e011b8f332dffe1e23c46d6889d3 |
IEDL.DBID | UNPAY |
ISSN | 0272-4979 1464-3642 |
IngestDate | Sun Sep 07 11:01:31 EDT 2025 Mon Jun 30 08:34:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-5d597d3f43aca8aa5b3bbe8986658b5a1d132e011b8f332dffe1e23c46d6889d3 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/imanum/drad055 |
PageCount | 22 |
ParticipantIDs | unpaywall_primary_10_1093_imanum_drad055 oup_primary_10_1093_imanum_drad055 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of numerical analysis |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
SSID | ssj0004670 |
Score | 2.4138324 |
Snippet | Abstract
This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a... |
SourceID | unpaywall oup |
SourceType | Open Access Repository Publisher |
StartPage | 2198 |
Title | A nodally bound-preserving finite element method |
URI | https://doi.org/10.1093/imanum/drad055 |
UnpaywallVersion | publishedVersion |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0IHNSDKGrED7IxHrwUdrfdpXskRiQmoAdI8ET6aYiwENiNwV_vlq5EueC9aSaTafum8-YNwB0XAWu6VCCuaYSIigjinlbIozIyfQOuXieK3V7YGZDnYTDMCbKmF-ZP_T7CjfGUxem0IRdMukFQgFJoCklFKA16r6239QdK0zdj0iLbRkQQzhD1Rp1xe4OfNrb9NJ6z1SebTH69Ju0yPP3YYUkkH_U04XXxtSXRuNvQYzjKAaXTshFwAnsqrkA5B5dOfnSXFTjsbgRal6fgtpx4JjPDVg43g5WQ4cOaayN-d_TY4FBHWWK5Y2dMn8Gg_dh_6KB8eAIS2MMJCmSWKkisCWaCUcYCjjlXNDL6dpQHzJNZHqqy082pxtiXWitP-ViQUIaURhKfQzGexeoCHOUbmThXclcJIkLNiOcz4jPRVCRUXFbhNnPqaG7lMUa2rI1H1iOj3CNVuN_4fMfSy_8vvYIDP0MZlj97DcVkkaqbDCUkvAaF_suwlgfKNz9hvg8 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0oHNSDKGrEr2yMBy-F3W136R6JEYkJxIMkeNr00xBhIcDG4K-3pQtRLnpvmslk2r7pvHkDcMdFxJo-FYhrmiCiEoJ4oBUKqExs34CvV4litxd3-uR5EA0KgqzthflVv09wYzhmWT5uyBmTfhTtQjm2haQSlPu9l9bb6gOlGdoxaYlrIyIIG0S9UWfc3mDdxraXZ1O2_GSj0Y_XpF2Bp7UdjkTyUc8XvC6-tiQa_zb0CA4LQOm1XAQcw47KqlApwKVXHN15FQ66G4HW-Qn4LS-bSGPY0uN2sBKyfFh7bWTvnh5aHOopRyz33IzpU-i3H18fOqgYnoAEDvACRdKkChJrgplglLGIY84VTay-HeURC6TJQ5U53ZxqjEOptQpUiAWJZUxpIvEZlLJJps7BU6GVifMl95UgItaMBCEjIRNNRWLFZQ1ujVPTqZPHSF1ZG6fOI2nhkRrcb3z-x9KL_y-9hP3QoAzHn72C0mKWq2uDEhb8pgiRb8_yvPM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nodally+bound-preserving+finite+element+method&rft.jtitle=IMA+journal+of+numerical+analysis&rft.au=Barrenechea%2C+Gabriel+R&rft.au=Georgoulis%2C+Emmanuil+H&rft.au=Pryer%2C+Tristan&rft.au=Veeser%2C+Andreas&rft.date=2024-07-01&rft.pub=Oxford+University+Press&rft.issn=0272-4979&rft.eissn=1464-3642&rft.volume=44&rft.issue=4&rft.spage=2198&rft.epage=2219&rft_id=info:doi/10.1093%2Fimanum%2Fdrad055&rft.externalDocID=10.1093%2Fimanum%2Fdrad055 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4979&client=summon |