Learning-based MPC of sampled-data systems with partially unknown dynamics

In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees e...

Full description

Saved in:
Bibliographic Details
Published inISA transactions Vol. 162; pp. 64 - 74
Main Authors Han, Seungyong, Guo, Xuyang, Kommuri, Suneel Kumar
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2025
Subjects
Online AccessGet full text
ISSN0019-0578
1879-2022
1879-2022
DOI10.1016/j.isatra.2025.04.028

Cover

Abstract In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system’s ultimate boundedness by deriving conditions based on the Gronwall–Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis. •A novel LMPC method is proposed for sampled-data systems with partially unknown dynamics. An incomplete dynamics model is fulfilled with the NN trained by using NODEs.•The trained NN is integrated into the finite-horizon optimal control problem, where the continuous-time parameter is predicted by the trained NN. This is helpful to adjust the future system state as it is dependent on the parameter.•Ultimate boundedness of the LMPC method is mathematically proved for the sampled-data system whose model is composed of partially known dynamics model and the trained NN.•The superiority of the proposed LMPC method is validated for two practical systems: the tracking control system for wheeled mobile robots (WMRs) and the manipulator robot control system.
AbstractList In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis.In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis.
In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system’s ultimate boundedness by deriving conditions based on the Gronwall–Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis. •A novel LMPC method is proposed for sampled-data systems with partially unknown dynamics. An incomplete dynamics model is fulfilled with the NN trained by using NODEs.•The trained NN is integrated into the finite-horizon optimal control problem, where the continuous-time parameter is predicted by the trained NN. This is helpful to adjust the future system state as it is dependent on the parameter.•Ultimate boundedness of the LMPC method is mathematically proved for the sampled-data system whose model is composed of partially known dynamics model and the trained NN.•The superiority of the proposed LMPC method is validated for two practical systems: the tracking control system for wheeled mobile robots (WMRs) and the manipulator robot control system.
In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis.
Author Kommuri, Suneel Kumar
Guo, Xuyang
Han, Seungyong
Author_xml – sequence: 1
  givenname: Seungyong
  orcidid: 0000-0002-0906-1649
  surname: Han
  fullname: Han, Seungyong
  email: hansy@jbnu.ac.kr
  organization: Department of Mechanical System Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
– sequence: 2
  givenname: Xuyang
  surname: Guo
  fullname: Guo, Xuyang
  email: xuyangguo@tongji.edu.cn
  organization: Department of Control Science and Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Suneel Kumar
  orcidid: 0000-0002-9442-3623
  surname: Kommuri
  fullname: Kommuri, Suneel Kumar
  email: Suneel.Kommuri@xjtlu.edu.cn
  organization: Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40319003$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1r3DAQhkVJaTZp_0EJPvZiZ_ThD10CZUnzwZb2kLsYS-NWW1veSN6E_fdV2KTHnmYYnnfgfc7YSZgDMfaZQ8WBN5fbyidcIlYCRF2BqkB079iKd60u80mcsBUA1yXUbXfKzlLaAmRSdx_YqQLJNYBcsfsNYQw-_Cp7TOSK7z_XxTwUCafdSK50uGCRDmmhKRXPfvld7DAuHsfxUOzDnzA_h8IdAk7epo_s_YBjok-v85w9fLt-WN-Wmx83d-uvm9JKLpeybtta6VYPQ49tLa2oG1C64chJO91ppbjtMa89ONFz6NTARdsQSJIdgjxnX45vd3F-3FNazOSTpXHEQPM-GSlyMaFk02T04hXd9xM5s4t-wngwb_UzoI6AjXNKkYZ_CAfzYtlszdGyebFsQJlsOceujjHKNZ88RZOsp2DJ-Uh2MW72_3_wFzEghZU
Cites_doi 10.1109/TMECH.2021.3067443
10.1109/TAC.2017.2753460
10.1016/j.isatra.2014.11.007
10.1109/TSMC.2024.3388853
10.1016/j.isatra.2011.09.002
10.1016/j.ejcon.2022.100666
10.1016/j.isatra.2015.05.002
10.1109/TSMC.2024.3404648
10.1016/j.isatra.2012.02.003
10.1109/TAC.2021.3051353
10.1016/j.automatica.2015.03.015
10.1016/j.automatica.2009.11.017
10.1109/TAC.2010.2057912
10.1049/iet-cta.2014.0205
10.1109/TFUZZ.2020.2999779
10.1002/rob.10062
10.1109/9.661604
10.1016/j.isatra.2021.05.008
10.1016/j.isatra.2019.01.030
10.1109/TAC.2002.805688
10.1002/rnc.5454
10.1109/TASE.2022.3152166
10.1109/TAC.2022.3163110
10.1016/j.isatra.2023.08.025
10.1016/j.isatra.2017.09.008
10.1016/j.jmaa.2006.05.061
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2025.04.028
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 74
ExternalDocumentID 40319003
10_1016_j_isatra_2025_04_028
S0019057825002162
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
AAYXX
CITATION
EFKBS
NPM
7X8
EFLBG
ID FETCH-LOGICAL-c313t-57754979ffba753c25604961a1e9d989441cba9d9b0d2b1084f1276e03e38a03
IEDL.DBID AIKHN
ISSN 0019-0578
1879-2022
IngestDate Fri Sep 05 17:15:26 EDT 2025
Mon Jul 21 05:44:42 EDT 2025
Thu Jul 03 08:43:52 EDT 2025
Sat Jul 05 17:10:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Learning-based model predictive control
Neural ordinary differential equations
Sampled-data control systems
Ultimate boundedness
Language English
License Copyright © 2025. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-57754979ffba753c25604961a1e9d989441cba9d9b0d2b1084f1276e03e38a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0906-1649
0000-0002-9442-3623
PMID 40319003
PQID 3200324366
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3200324366
pubmed_primary_40319003
crossref_primary_10_1016_j_isatra_2025_04_028
elsevier_sciencedirect_doi_10_1016_j_isatra_2025_04_028
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Kommuri, Kwon, Lee (b21) 2022; 423
Kingma, Ba (b30) 2014
Tang, Qu, Wang, Zhao (b8) 2015; 55
Alanwar, Stürz, Johansson (b23) 2022; 68
Graichen, Kugi (b18) 2010; 55
Bongard, Berberich, Köhler, Allgöwer (b22) 2022; 68
Ghaffari (b12) 2024; 54
Shi, Su (b13) 2014; 8
Yu, Chen, Woo (b31) 2002; 19
Sofiane (b1) 2015; 58
Wang, Xie, Zhang (b7) 2012; 51
Tang, Wang, Zhao, Lv (b10) 2023; 143
Rajamani (b26) 1998; 43
Wang, Zhao (b3) 2022; 122
Rosolia, Borrelli (b32) 2018; 63
Han, Kommuri, Lee (b5) 2020; 29
Zaremba, Sutskever, Vinyals (b15) 2014
Findeisen (b14) 2004
Fridman (b19) 2010; 46
Chi, Hui, Huang, Hou (b25) 2021; 66
Seuret, Briat (b20) 2015; 55
Kang, Qiao, Chen, Gao (b17) 2022; 19
Han, Lee (b27) 2021; 31
Yan, Yang, Ma, Zhou (b2) 2019; 91
Xiang, Liu, Su, Zhang (b6) 2017; 71
Bemporad, Borrelli, Morari (b11) 2002; 47
Hansen, Wang, Su (b24) 2022
Chen, Rubanova, Bettencourt, Duvenaud (b16) 2018; vol. 31
Hu, Yue (b4) 2012; 51
Kommuri, Han, Lee (b28) 2021; 27
Ye, Gao, Ding (b29) 2007; 328
Han, Park, Lee (b9) 2024; 54
Fridman (10.1016/j.isatra.2025.04.028_b19) 2010; 46
Han (10.1016/j.isatra.2025.04.028_b27) 2021; 31
Chi (10.1016/j.isatra.2025.04.028_b25) 2021; 66
Rajamani (10.1016/j.isatra.2025.04.028_b26) 1998; 43
Kingma (10.1016/j.isatra.2025.04.028_b30) 2014
Shi (10.1016/j.isatra.2025.04.028_b13) 2014; 8
Sofiane (10.1016/j.isatra.2025.04.028_b1) 2015; 58
Han (10.1016/j.isatra.2025.04.028_b5) 2020; 29
Wang (10.1016/j.isatra.2025.04.028_b7) 2012; 51
Han (10.1016/j.isatra.2025.04.028_b21) 2022; 423
Yu (10.1016/j.isatra.2025.04.028_b31) 2002; 19
Seuret (10.1016/j.isatra.2025.04.028_b20) 2015; 55
Kang (10.1016/j.isatra.2025.04.028_b17) 2022; 19
Bemporad (10.1016/j.isatra.2025.04.028_b11) 2002; 47
Graichen (10.1016/j.isatra.2025.04.028_b18) 2010; 55
Ye (10.1016/j.isatra.2025.04.028_b29) 2007; 328
Hansen (10.1016/j.isatra.2025.04.028_b24) 2022
Han (10.1016/j.isatra.2025.04.028_b9) 2024; 54
Xiang (10.1016/j.isatra.2025.04.028_b6) 2017; 71
Hu (10.1016/j.isatra.2025.04.028_b4) 2012; 51
Kommuri (10.1016/j.isatra.2025.04.028_b28) 2021; 27
Tang (10.1016/j.isatra.2025.04.028_b8) 2015; 55
Rosolia (10.1016/j.isatra.2025.04.028_b32) 2018; 63
Ghaffari (10.1016/j.isatra.2025.04.028_b12) 2024; 54
Findeisen (10.1016/j.isatra.2025.04.028_b14) 2004
Zaremba (10.1016/j.isatra.2025.04.028_b15) 2014
Wang (10.1016/j.isatra.2025.04.028_b3) 2022; 122
Chen (10.1016/j.isatra.2025.04.028_b16) 2018; vol. 31
Tang (10.1016/j.isatra.2025.04.028_b10) 2023; 143
Bongard (10.1016/j.isatra.2025.04.028_b22) 2022; 68
Yan (10.1016/j.isatra.2025.04.028_b2) 2019; 91
Alanwar (10.1016/j.isatra.2025.04.028_b23) 2022; 68
References_xml – volume: 51
  start-page: 153
  year: 2012
  end-page: 162
  ident: b4
  article-title: Event-triggered control design of linear networked systems with quantizations
  publication-title: ISA Trans
– volume: 71
  start-page: 196
  year: 2017
  end-page: 205
  ident: b6
  article-title: On decentralized adaptive full-order sliding mode control of multiple UAVs
  publication-title: ISA Trans
– year: 2004
  ident: b14
  article-title: Nonlinear model predictive control: a sampled-data feedback perspective
– year: 2014
  ident: b30
  article-title: Adam: A method for stochastic optimization
– volume: 328
  start-page: 1075
  year: 2007
  end-page: 1081
  ident: b29
  article-title: A generalized Grönwall inequality and its application to a fractional differential equation
  publication-title: J Math Anal Appl
– volume: 8
  start-page: 1781
  year: 2014
  end-page: 1788
  ident: b13
  article-title: Sampled-data MPC for LPV systems with input saturation
  publication-title: IET Control Theory Appl
– volume: 27
  start-page: 513
  year: 2021
  end-page: 523
  ident: b28
  article-title: External torque estimation using higher order sliding-mode observer for robot manipulators
  publication-title: IEEE/ ASME Trans Mechatronics
– volume: 58
  start-page: 421
  year: 2015
  end-page: 433
  ident: b1
  article-title: Sampled data observer based inter-sample output predictor for electro-hydraulic actuators
  publication-title: ISA Trans
– volume: 43
  start-page: 397
  year: 1998
  end-page: 401
  ident: b26
  article-title: Observers for Lipschitz nonlinear systems
  publication-title: IEEE Trans Autom Control
– volume: 29
  start-page: 322
  year: 2020
  end-page: 335
  ident: b5
  article-title: Affine transformed IT2 fuzzy event-triggered control under deception attacks
  publication-title: IEEE Trans Fuzzy Syst
– volume: 46
  start-page: 421
  year: 2010
  end-page: 427
  ident: b19
  article-title: A refined input delay approach to sampled-data control
  publication-title: Automatica
– volume: vol. 31
  year: 2018
  ident: b16
  article-title: Neural ordinary differential equations
  publication-title: Advances in neural information processing systems
– volume: 122
  start-page: 380
  year: 2022
  end-page: 386
  ident: b3
  article-title: Event-triggered control for switched linear systems: A control and switching joint triggering strategy
  publication-title: ISA Trans
– volume: 68
  start-page: 2625
  year: 2022
  end-page: 2637
  ident: b22
  article-title: Robust stability analysis of a simple data-driven model predictive control approach
  publication-title: IEEE Trans Autom Control
– volume: 54
  start-page: 4701
  year: 2024
  end-page: 4712
  ident: b9
  article-title: Sampled-data-based iterative cost-learning model predictive control for T–s fuzzy systems
  publication-title: IEEE Trans Syst Man Cybern Syst
– volume: 54
  start-page: 5478
  year: 2024
  end-page: 5487
  ident: b12
  article-title: Robust predictive discrete-time controller in constrained systems with uncertain and delayed terms
  publication-title: IEEE Trans Syst Man Cybern Syst
– year: 2022
  ident: b24
  article-title: Temporal difference learning for model predictive control
– volume: 19
  start-page: 2801
  year: 2022
  end-page: 2815
  ident: b17
  article-title: Tracking of uncertain robotic manipulators using event-triggered model predictive control with learning terminal cost
  publication-title: IEEE Trans Autom Sci Eng
– volume: 91
  start-page: 32
  year: 2019
  end-page: 40
  ident: b2
  article-title: Sampled-data observer-based anti-windup control for singularly perturbed systems with actuator saturation
  publication-title: ISA Trans
– volume: 47
  start-page: 1974
  year: 2002
  end-page: 1985
  ident: b11
  article-title: Model predictive control based on linear programming—The explicit solution
  publication-title: IEEE Trans Autom Control
– volume: 55
  start-page: 135
  year: 2015
  end-page: 144
  ident: b8
  article-title: Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays
  publication-title: ISA Trans
– volume: 68
  year: 2022
  ident: b23
  article-title: Robust data-driven predictive control using reachability analysis
  publication-title: Eur J Control
– volume: 423
  year: 2022
  ident: b21
  article-title: Regional sampled-data synchronization of chaotic neural networks using piecewise-continuous delay dependent Lyapunov functional
  publication-title: Appl Math Comput
– volume: 55
  start-page: 274
  year: 2015
  end-page: 278
  ident: b20
  article-title: Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals
  publication-title: Automatica
– volume: 143
  start-page: 103
  year: 2023
  end-page: 114
  ident: b10
  article-title: Generalized efficient robust predictive control for networked interval type-2 T–s fuzzy system with adaptive event-triggered scheme
  publication-title: ISA Trans
– volume: 63
  start-page: 1883
  year: 2018
  end-page: 1896
  ident: b32
  article-title: Learning model predictive control for iterative tasks. A data-driven control framework
  publication-title: IEEE Trans Autom Control
– volume: 31
  start-page: 3279
  year: 2021
  end-page: 3309
  ident: b27
  article-title: Sampled-parameter dependent stabilization for linear parameter varying systems with asynchronous parameter sampling
  publication-title: Internat J Robust Nonlinear Control
– volume: 55
  start-page: 2576
  year: 2010
  end-page: 2580
  ident: b18
  article-title: Stability and incremental improvement of suboptimal MPC without terminal constraints
  publication-title: IEEE Trans Autom Control
– volume: 19
  start-page: 585
  year: 2002
  end-page: 593
  ident: b31
  article-title: Gain scheduled LPV
  publication-title: J Robot Syst
– volume: 66
  start-page: 5955
  year: 2021
  end-page: 5967
  ident: b25
  article-title: Active disturbance rejection control for nonaffined globally Lipschitz nonlinear discrete-time systems
  publication-title: IEEE Trans Autom Control
– volume: 51
  start-page: 386
  year: 2012
  end-page: 392
  ident: b7
  article-title: Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults
  publication-title: ISA Trans
– year: 2014
  ident: b15
  article-title: Recurrent neural network regularization
– volume: 27
  start-page: 513
  issue: 1
  year: 2021
  ident: 10.1016/j.isatra.2025.04.028_b28
  article-title: External torque estimation using higher order sliding-mode observer for robot manipulators
  publication-title: IEEE/ ASME Trans Mechatronics
  doi: 10.1109/TMECH.2021.3067443
– volume: 63
  start-page: 1883
  issue: 7
  year: 2018
  ident: 10.1016/j.isatra.2025.04.028_b32
  article-title: Learning model predictive control for iterative tasks. A data-driven control framework
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2017.2753460
– volume: 55
  start-page: 135
  year: 2015
  ident: 10.1016/j.isatra.2025.04.028_b8
  article-title: Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2014.11.007
– volume: 54
  start-page: 4701
  issue: 8
  year: 2024
  ident: 10.1016/j.isatra.2025.04.028_b9
  article-title: Sampled-data-based iterative cost-learning model predictive control for T–s fuzzy systems
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2024.3388853
– volume: 51
  start-page: 153
  issue: 1
  year: 2012
  ident: 10.1016/j.isatra.2025.04.028_b4
  article-title: Event-triggered control design of linear networked systems with quantizations
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2011.09.002
– volume: 68
  year: 2022
  ident: 10.1016/j.isatra.2025.04.028_b23
  article-title: Robust data-driven predictive control using reachability analysis
  publication-title: Eur J Control
  doi: 10.1016/j.ejcon.2022.100666
– volume: 58
  start-page: 421
  year: 2015
  ident: 10.1016/j.isatra.2025.04.028_b1
  article-title: Sampled data observer based inter-sample output predictor for electro-hydraulic actuators
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2015.05.002
– volume: 54
  start-page: 5478
  issue: 9
  year: 2024
  ident: 10.1016/j.isatra.2025.04.028_b12
  article-title: Robust predictive discrete-time controller in constrained systems with uncertain and delayed terms
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2024.3404648
– year: 2022
  ident: 10.1016/j.isatra.2025.04.028_b24
– volume: 51
  start-page: 386
  issue: 3
  year: 2012
  ident: 10.1016/j.isatra.2025.04.028_b7
  article-title: Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2012.02.003
– volume: 66
  start-page: 5955
  issue: 12
  year: 2021
  ident: 10.1016/j.isatra.2025.04.028_b25
  article-title: Active disturbance rejection control for nonaffined globally Lipschitz nonlinear discrete-time systems
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2021.3051353
– volume: 55
  start-page: 274
  year: 2015
  ident: 10.1016/j.isatra.2025.04.028_b20
  article-title: Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.03.015
– volume: 46
  start-page: 421
  issue: 2
  year: 2010
  ident: 10.1016/j.isatra.2025.04.028_b19
  article-title: A refined input delay approach to sampled-data control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.11.017
– volume: 55
  start-page: 2576
  issue: 11
  year: 2010
  ident: 10.1016/j.isatra.2025.04.028_b18
  article-title: Stability and incremental improvement of suboptimal MPC without terminal constraints
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2057912
– volume: 8
  start-page: 1781
  issue: 17
  year: 2014
  ident: 10.1016/j.isatra.2025.04.028_b13
  article-title: Sampled-data MPC for LPV systems with input saturation
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2014.0205
– year: 2014
  ident: 10.1016/j.isatra.2025.04.028_b15
– volume: 29
  start-page: 322
  issue: 2
  year: 2020
  ident: 10.1016/j.isatra.2025.04.028_b5
  article-title: Affine transformed IT2 fuzzy event-triggered control under deception attacks
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2020.2999779
– volume: 423
  year: 2022
  ident: 10.1016/j.isatra.2025.04.028_b21
  article-title: Regional sampled-data synchronization of chaotic neural networks using piecewise-continuous delay dependent Lyapunov functional
  publication-title: Appl Math Comput
– volume: 19
  start-page: 585
  issue: 12
  year: 2002
  ident: 10.1016/j.isatra.2025.04.028_b31
  article-title: Gain scheduled LPV H∞ control based on LMI approach for a robotic manipulator
  publication-title: J Robot Syst
  doi: 10.1002/rob.10062
– volume: 43
  start-page: 397
  issue: 3
  year: 1998
  ident: 10.1016/j.isatra.2025.04.028_b26
  article-title: Observers for Lipschitz nonlinear systems
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.661604
– year: 2014
  ident: 10.1016/j.isatra.2025.04.028_b30
– year: 2004
  ident: 10.1016/j.isatra.2025.04.028_b14
– volume: 122
  start-page: 380
  year: 2022
  ident: 10.1016/j.isatra.2025.04.028_b3
  article-title: Event-triggered control for switched linear systems: A control and switching joint triggering strategy
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.05.008
– volume: 91
  start-page: 32
  year: 2019
  ident: 10.1016/j.isatra.2025.04.028_b2
  article-title: Sampled-data observer-based anti-windup control for singularly perturbed systems with actuator saturation
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.01.030
– volume: 47
  start-page: 1974
  issue: 12
  year: 2002
  ident: 10.1016/j.isatra.2025.04.028_b11
  article-title: Model predictive control based on linear programming—The explicit solution
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2002.805688
– volume: 31
  start-page: 3279
  issue: 8
  year: 2021
  ident: 10.1016/j.isatra.2025.04.028_b27
  article-title: Sampled-parameter dependent stabilization for linear parameter varying systems with asynchronous parameter sampling
  publication-title: Internat J Robust Nonlinear Control
  doi: 10.1002/rnc.5454
– volume: 19
  start-page: 2801
  issue: 4
  year: 2022
  ident: 10.1016/j.isatra.2025.04.028_b17
  article-title: Tracking of uncertain robotic manipulators using event-triggered model predictive control with learning terminal cost
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2022.3152166
– volume: 68
  start-page: 2625
  issue: 5
  year: 2022
  ident: 10.1016/j.isatra.2025.04.028_b22
  article-title: Robust stability analysis of a simple data-driven model predictive control approach
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2022.3163110
– volume: vol. 31
  year: 2018
  ident: 10.1016/j.isatra.2025.04.028_b16
  article-title: Neural ordinary differential equations
– volume: 143
  start-page: 103
  year: 2023
  ident: 10.1016/j.isatra.2025.04.028_b10
  article-title: Generalized efficient robust predictive control for networked interval type-2 T–s fuzzy system with adaptive event-triggered scheme
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2023.08.025
– volume: 71
  start-page: 196
  year: 2017
  ident: 10.1016/j.isatra.2025.04.028_b6
  article-title: On decentralized adaptive full-order sliding mode control of multiple UAVs
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.09.008
– volume: 328
  start-page: 1075
  issue: 2
  year: 2007
  ident: 10.1016/j.isatra.2025.04.028_b29
  article-title: A generalized Grönwall inequality and its application to a fractional differential equation
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2006.05.061
SSID ssj0002598
Score 2.3988774
Snippet In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 64
SubjectTerms Learning-based model predictive control
Neural ordinary differential equations
Sampled-data control systems
Ultimate boundedness
Title Learning-based MPC of sampled-data systems with partially unknown dynamics
URI https://dx.doi.org/10.1016/j.isatra.2025.04.028
https://www.ncbi.nlm.nih.gov/pubmed/40319003
https://www.proquest.com/docview/3200324366
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CchkHBGUb5UdlJA7s4OHYTlIfUTXUdRQhxCRulhMnqAilFWkPXPa3773GqZg0NGm3_JAT6z37e1-c9z4DnJVII5TLPS9VnnLtjeYmFp4X3iQOx49KBBUnT26S0U89fogfNmDY1sJQWmXA_gbTV2gdrlwEa17Mp1Oq8cVgRmrsMQUqwuEtidF-0IGty-8_RjdrQEaGHwDZcGrQVtCt0rwoaeaFBIhkvNI8pW3Z_x6h3mOgq0h0tQs7gUKyy6aXe7BRVF3YfiMs2IW9MGVrdh50pb_swzhoqT5yCl2eTW6HbFay2pFAsOeUK8oaYeea0fIsm5Mh3PPzK1tWtPZWMd_sX19_hPurb_fDEQ9bKfBcRWrBYxK6M6kpy8zhB0pOREebJHJRYTxpsOsozxweZsLLLBIDXUYyTQqhCjVwQn2CTjWrigNgDqcsUjb0vPTaJzE-bpCLVJbCuEw62QPeWs_OG8EM22aSPdnG2pasbYW2aO0epK2J7R-Ot4jp_2h52nrE4pygHx2uKmbL2irKuJNaJUkPPjeuWvdFU9kW3j787_cewQc6a3J2j6GzeFkWJ8hMFlkfNr_-ivo4_oZ317f9MA5_A1aM4i4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_G9qA-iN_Ozwg-6EMwbdJ2eRxD2eY2fJjgW0ibVibSDbs9-N-ba1NRUATfSkPacJe7-zW9-x3AZWZhBNeJoRlPIiqMFFQGzNDUyFDb_cNDhsXJ40nYfxTDp-CpAb26FgbTKp3vr3x66a3dnRsnzZvFbIY1vjaYIRt7gIEK_XBLYFPrJrS6g_v-5NMhW4TvHLKkOKGuoCvTvDBp5g0JiPyg5DzFtuw_R6jfEGgZie62YNNBSNKtVrkNjTTfgY0vxII7sO1MtiBXjlf6eheGjkv1mWLoMmT80CPzjBQaCYINxVxRUhE7FwSPZ8kCBaFfX9_JKsezt5yYqn99sQfTu9tpr09dKwWacI8vaYBEdzKSWRZr-4GSINARMvS0l0qDHOzCS2JtL2Nm_NhjHZF5fhSmjKe8oxnfh2Y-z9NDINqarIVsVvO-ESYM7OM6CYv8jEkd-9pvA62lpxYVYYaqM8leVCVthdJWTCgr7TZEtYjVN8Ur69P_mHlRa0RZm8AfHTpP56tCccy48wUPwzYcVKr6XIvAsi07fPTv957DWn86HqnRYHJ_DOs4UuXvnkBz-bZKTy1KWcZnbhd-AJk34n8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-based+MPC+of+sampled-data+systems+with+partially+unknown+dynamics&rft.jtitle=ISA+transactions&rft.au=Han%2C+Seungyong&rft.au=Guo%2C+Xuyang&rft.au=Kommuri%2C+Suneel+Kumar&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.volume=162&rft.spage=64&rft.epage=74&rft_id=info:doi/10.1016%2Fj.isatra.2025.04.028&rft.externalDocID=S0019057825002162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon