Learning-based MPC of sampled-data systems with partially unknown dynamics
In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees e...
Saved in:
Published in | ISA transactions Vol. 162; pp. 64 - 74 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0019-0578 1879-2022 1879-2022 |
DOI | 10.1016/j.isatra.2025.04.028 |
Cover
Abstract | In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system’s ultimate boundedness by deriving conditions based on the Gronwall–Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis.
•A novel LMPC method is proposed for sampled-data systems with partially unknown dynamics. An incomplete dynamics model is fulfilled with the NN trained by using NODEs.•The trained NN is integrated into the finite-horizon optimal control problem, where the continuous-time parameter is predicted by the trained NN. This is helpful to adjust the future system state as it is dependent on the parameter.•Ultimate boundedness of the LMPC method is mathematically proved for the sampled-data system whose model is composed of partially known dynamics model and the trained NN.•The superiority of the proposed LMPC method is validated for two practical systems: the tracking control system for wheeled mobile robots (WMRs) and the manipulator robot control system. |
---|---|
AbstractList | In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis.In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis. In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system’s ultimate boundedness by deriving conditions based on the Gronwall–Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis. •A novel LMPC method is proposed for sampled-data systems with partially unknown dynamics. An incomplete dynamics model is fulfilled with the NN trained by using NODEs.•The trained NN is integrated into the finite-horizon optimal control problem, where the continuous-time parameter is predicted by the trained NN. This is helpful to adjust the future system state as it is dependent on the parameter.•Ultimate boundedness of the LMPC method is mathematically proved for the sampled-data system whose model is composed of partially known dynamics model and the trained NN.•The superiority of the proposed LMPC method is validated for two practical systems: the tracking control system for wheeled mobile robots (WMRs) and the manipulator robot control system. In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many real-world processes are subject to time-varying parameters and irregular data sampling, making accurate modeling and stability guarantees extremely challenging. To address this, the proposed method uses a neural ordinary differential equation (NODE) to learn unknown time-varying parameter dynamics from irregularly observed data. This learned model is then integrated into the sampled-data MPC framework. In particular, the LMPC method guarantees the system's ultimate boundedness by deriving conditions based on the Gronwall-Bellman inequality. Finally, two practical examples illustrate the applicability of the LMPC method to real-world systems and demonstrate its quantitative stability analysis. |
Author | Kommuri, Suneel Kumar Guo, Xuyang Han, Seungyong |
Author_xml | – sequence: 1 givenname: Seungyong orcidid: 0000-0002-0906-1649 surname: Han fullname: Han, Seungyong email: hansy@jbnu.ac.kr organization: Department of Mechanical System Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea – sequence: 2 givenname: Xuyang surname: Guo fullname: Guo, Xuyang email: xuyangguo@tongji.edu.cn organization: Department of Control Science and Engineering, Tongji University, Shanghai, China – sequence: 3 givenname: Suneel Kumar orcidid: 0000-0002-9442-3623 surname: Kommuri fullname: Kommuri, Suneel Kumar email: Suneel.Kommuri@xjtlu.edu.cn organization: Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40319003$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1r3DAQhkVJaTZp_0EJPvZiZ_ThD10CZUnzwZb2kLsYS-NWW1veSN6E_fdV2KTHnmYYnnfgfc7YSZgDMfaZQ8WBN5fbyidcIlYCRF2BqkB079iKd60u80mcsBUA1yXUbXfKzlLaAmRSdx_YqQLJNYBcsfsNYQw-_Cp7TOSK7z_XxTwUCafdSK50uGCRDmmhKRXPfvld7DAuHsfxUOzDnzA_h8IdAk7epo_s_YBjok-v85w9fLt-WN-Wmx83d-uvm9JKLpeybtta6VYPQ49tLa2oG1C64chJO91ppbjtMa89ONFz6NTARdsQSJIdgjxnX45vd3F-3FNazOSTpXHEQPM-GSlyMaFk02T04hXd9xM5s4t-wngwb_UzoI6AjXNKkYZ_CAfzYtlszdGyebFsQJlsOceujjHKNZ88RZOsp2DJ-Uh2MW72_3_wFzEghZU |
Cites_doi | 10.1109/TMECH.2021.3067443 10.1109/TAC.2017.2753460 10.1016/j.isatra.2014.11.007 10.1109/TSMC.2024.3388853 10.1016/j.isatra.2011.09.002 10.1016/j.ejcon.2022.100666 10.1016/j.isatra.2015.05.002 10.1109/TSMC.2024.3404648 10.1016/j.isatra.2012.02.003 10.1109/TAC.2021.3051353 10.1016/j.automatica.2015.03.015 10.1016/j.automatica.2009.11.017 10.1109/TAC.2010.2057912 10.1049/iet-cta.2014.0205 10.1109/TFUZZ.2020.2999779 10.1002/rob.10062 10.1109/9.661604 10.1016/j.isatra.2021.05.008 10.1016/j.isatra.2019.01.030 10.1109/TAC.2002.805688 10.1002/rnc.5454 10.1109/TASE.2022.3152166 10.1109/TAC.2022.3163110 10.1016/j.isatra.2023.08.025 10.1016/j.isatra.2017.09.008 10.1016/j.jmaa.2006.05.061 |
ContentType | Journal Article |
Copyright | 2025 Copyright © 2025. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Ltd. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.isatra.2025.04.028 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1879-2022 |
EndPage | 74 |
ExternalDocumentID | 40319003 10_1016_j_isatra_2025_04_028 S0019057825002162 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFO ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSH SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AAYXX CITATION EFKBS NPM 7X8 EFLBG |
ID | FETCH-LOGICAL-c313t-57754979ffba753c25604961a1e9d989441cba9d9b0d2b1084f1276e03e38a03 |
IEDL.DBID | AIKHN |
ISSN | 0019-0578 1879-2022 |
IngestDate | Fri Sep 05 17:15:26 EDT 2025 Mon Jul 21 05:44:42 EDT 2025 Thu Jul 03 08:43:52 EDT 2025 Sat Jul 05 17:10:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Learning-based model predictive control Neural ordinary differential equations Sampled-data control systems Ultimate boundedness |
Language | English |
License | Copyright © 2025. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-57754979ffba753c25604961a1e9d989441cba9d9b0d2b1084f1276e03e38a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0906-1649 0000-0002-9442-3623 |
PMID | 40319003 |
PQID | 3200324366 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3200324366 pubmed_primary_40319003 crossref_primary_10_1016_j_isatra_2025_04_028 elsevier_sciencedirect_doi_10_1016_j_isatra_2025_04_028 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ISA transactions |
PublicationTitleAlternate | ISA Trans |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Han, Kommuri, Kwon, Lee (b21) 2022; 423 Kingma, Ba (b30) 2014 Tang, Qu, Wang, Zhao (b8) 2015; 55 Alanwar, Stürz, Johansson (b23) 2022; 68 Graichen, Kugi (b18) 2010; 55 Bongard, Berberich, Köhler, Allgöwer (b22) 2022; 68 Ghaffari (b12) 2024; 54 Shi, Su (b13) 2014; 8 Yu, Chen, Woo (b31) 2002; 19 Sofiane (b1) 2015; 58 Wang, Xie, Zhang (b7) 2012; 51 Tang, Wang, Zhao, Lv (b10) 2023; 143 Rajamani (b26) 1998; 43 Wang, Zhao (b3) 2022; 122 Rosolia, Borrelli (b32) 2018; 63 Han, Kommuri, Lee (b5) 2020; 29 Zaremba, Sutskever, Vinyals (b15) 2014 Findeisen (b14) 2004 Fridman (b19) 2010; 46 Chi, Hui, Huang, Hou (b25) 2021; 66 Seuret, Briat (b20) 2015; 55 Kang, Qiao, Chen, Gao (b17) 2022; 19 Han, Lee (b27) 2021; 31 Yan, Yang, Ma, Zhou (b2) 2019; 91 Xiang, Liu, Su, Zhang (b6) 2017; 71 Bemporad, Borrelli, Morari (b11) 2002; 47 Hansen, Wang, Su (b24) 2022 Chen, Rubanova, Bettencourt, Duvenaud (b16) 2018; vol. 31 Hu, Yue (b4) 2012; 51 Kommuri, Han, Lee (b28) 2021; 27 Ye, Gao, Ding (b29) 2007; 328 Han, Park, Lee (b9) 2024; 54 Fridman (10.1016/j.isatra.2025.04.028_b19) 2010; 46 Han (10.1016/j.isatra.2025.04.028_b27) 2021; 31 Chi (10.1016/j.isatra.2025.04.028_b25) 2021; 66 Rajamani (10.1016/j.isatra.2025.04.028_b26) 1998; 43 Kingma (10.1016/j.isatra.2025.04.028_b30) 2014 Shi (10.1016/j.isatra.2025.04.028_b13) 2014; 8 Sofiane (10.1016/j.isatra.2025.04.028_b1) 2015; 58 Han (10.1016/j.isatra.2025.04.028_b5) 2020; 29 Wang (10.1016/j.isatra.2025.04.028_b7) 2012; 51 Han (10.1016/j.isatra.2025.04.028_b21) 2022; 423 Yu (10.1016/j.isatra.2025.04.028_b31) 2002; 19 Seuret (10.1016/j.isatra.2025.04.028_b20) 2015; 55 Kang (10.1016/j.isatra.2025.04.028_b17) 2022; 19 Bemporad (10.1016/j.isatra.2025.04.028_b11) 2002; 47 Graichen (10.1016/j.isatra.2025.04.028_b18) 2010; 55 Ye (10.1016/j.isatra.2025.04.028_b29) 2007; 328 Hansen (10.1016/j.isatra.2025.04.028_b24) 2022 Han (10.1016/j.isatra.2025.04.028_b9) 2024; 54 Xiang (10.1016/j.isatra.2025.04.028_b6) 2017; 71 Hu (10.1016/j.isatra.2025.04.028_b4) 2012; 51 Kommuri (10.1016/j.isatra.2025.04.028_b28) 2021; 27 Tang (10.1016/j.isatra.2025.04.028_b8) 2015; 55 Rosolia (10.1016/j.isatra.2025.04.028_b32) 2018; 63 Ghaffari (10.1016/j.isatra.2025.04.028_b12) 2024; 54 Findeisen (10.1016/j.isatra.2025.04.028_b14) 2004 Zaremba (10.1016/j.isatra.2025.04.028_b15) 2014 Wang (10.1016/j.isatra.2025.04.028_b3) 2022; 122 Chen (10.1016/j.isatra.2025.04.028_b16) 2018; vol. 31 Tang (10.1016/j.isatra.2025.04.028_b10) 2023; 143 Bongard (10.1016/j.isatra.2025.04.028_b22) 2022; 68 Yan (10.1016/j.isatra.2025.04.028_b2) 2019; 91 Alanwar (10.1016/j.isatra.2025.04.028_b23) 2022; 68 |
References_xml | – volume: 51 start-page: 153 year: 2012 end-page: 162 ident: b4 article-title: Event-triggered control design of linear networked systems with quantizations publication-title: ISA Trans – volume: 71 start-page: 196 year: 2017 end-page: 205 ident: b6 article-title: On decentralized adaptive full-order sliding mode control of multiple UAVs publication-title: ISA Trans – year: 2004 ident: b14 article-title: Nonlinear model predictive control: a sampled-data feedback perspective – year: 2014 ident: b30 article-title: Adam: A method for stochastic optimization – volume: 328 start-page: 1075 year: 2007 end-page: 1081 ident: b29 article-title: A generalized Grönwall inequality and its application to a fractional differential equation publication-title: J Math Anal Appl – volume: 8 start-page: 1781 year: 2014 end-page: 1788 ident: b13 article-title: Sampled-data MPC for LPV systems with input saturation publication-title: IET Control Theory Appl – volume: 27 start-page: 513 year: 2021 end-page: 523 ident: b28 article-title: External torque estimation using higher order sliding-mode observer for robot manipulators publication-title: IEEE/ ASME Trans Mechatronics – volume: 58 start-page: 421 year: 2015 end-page: 433 ident: b1 article-title: Sampled data observer based inter-sample output predictor for electro-hydraulic actuators publication-title: ISA Trans – volume: 43 start-page: 397 year: 1998 end-page: 401 ident: b26 article-title: Observers for Lipschitz nonlinear systems publication-title: IEEE Trans Autom Control – volume: 29 start-page: 322 year: 2020 end-page: 335 ident: b5 article-title: Affine transformed IT2 fuzzy event-triggered control under deception attacks publication-title: IEEE Trans Fuzzy Syst – volume: 46 start-page: 421 year: 2010 end-page: 427 ident: b19 article-title: A refined input delay approach to sampled-data control publication-title: Automatica – volume: vol. 31 year: 2018 ident: b16 article-title: Neural ordinary differential equations publication-title: Advances in neural information processing systems – volume: 122 start-page: 380 year: 2022 end-page: 386 ident: b3 article-title: Event-triggered control for switched linear systems: A control and switching joint triggering strategy publication-title: ISA Trans – volume: 68 start-page: 2625 year: 2022 end-page: 2637 ident: b22 article-title: Robust stability analysis of a simple data-driven model predictive control approach publication-title: IEEE Trans Autom Control – volume: 54 start-page: 4701 year: 2024 end-page: 4712 ident: b9 article-title: Sampled-data-based iterative cost-learning model predictive control for T–s fuzzy systems publication-title: IEEE Trans Syst Man Cybern Syst – volume: 54 start-page: 5478 year: 2024 end-page: 5487 ident: b12 article-title: Robust predictive discrete-time controller in constrained systems with uncertain and delayed terms publication-title: IEEE Trans Syst Man Cybern Syst – year: 2022 ident: b24 article-title: Temporal difference learning for model predictive control – volume: 19 start-page: 2801 year: 2022 end-page: 2815 ident: b17 article-title: Tracking of uncertain robotic manipulators using event-triggered model predictive control with learning terminal cost publication-title: IEEE Trans Autom Sci Eng – volume: 91 start-page: 32 year: 2019 end-page: 40 ident: b2 article-title: Sampled-data observer-based anti-windup control for singularly perturbed systems with actuator saturation publication-title: ISA Trans – volume: 47 start-page: 1974 year: 2002 end-page: 1985 ident: b11 article-title: Model predictive control based on linear programming—The explicit solution publication-title: IEEE Trans Autom Control – volume: 55 start-page: 135 year: 2015 end-page: 144 ident: b8 article-title: Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays publication-title: ISA Trans – volume: 68 year: 2022 ident: b23 article-title: Robust data-driven predictive control using reachability analysis publication-title: Eur J Control – volume: 423 year: 2022 ident: b21 article-title: Regional sampled-data synchronization of chaotic neural networks using piecewise-continuous delay dependent Lyapunov functional publication-title: Appl Math Comput – volume: 55 start-page: 274 year: 2015 end-page: 278 ident: b20 article-title: Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals publication-title: Automatica – volume: 143 start-page: 103 year: 2023 end-page: 114 ident: b10 article-title: Generalized efficient robust predictive control for networked interval type-2 T–s fuzzy system with adaptive event-triggered scheme publication-title: ISA Trans – volume: 63 start-page: 1883 year: 2018 end-page: 1896 ident: b32 article-title: Learning model predictive control for iterative tasks. A data-driven control framework publication-title: IEEE Trans Autom Control – volume: 31 start-page: 3279 year: 2021 end-page: 3309 ident: b27 article-title: Sampled-parameter dependent stabilization for linear parameter varying systems with asynchronous parameter sampling publication-title: Internat J Robust Nonlinear Control – volume: 55 start-page: 2576 year: 2010 end-page: 2580 ident: b18 article-title: Stability and incremental improvement of suboptimal MPC without terminal constraints publication-title: IEEE Trans Autom Control – volume: 19 start-page: 585 year: 2002 end-page: 593 ident: b31 article-title: Gain scheduled LPV publication-title: J Robot Syst – volume: 66 start-page: 5955 year: 2021 end-page: 5967 ident: b25 article-title: Active disturbance rejection control for nonaffined globally Lipschitz nonlinear discrete-time systems publication-title: IEEE Trans Autom Control – volume: 51 start-page: 386 year: 2012 end-page: 392 ident: b7 article-title: Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults publication-title: ISA Trans – year: 2014 ident: b15 article-title: Recurrent neural network regularization – volume: 27 start-page: 513 issue: 1 year: 2021 ident: 10.1016/j.isatra.2025.04.028_b28 article-title: External torque estimation using higher order sliding-mode observer for robot manipulators publication-title: IEEE/ ASME Trans Mechatronics doi: 10.1109/TMECH.2021.3067443 – volume: 63 start-page: 1883 issue: 7 year: 2018 ident: 10.1016/j.isatra.2025.04.028_b32 article-title: Learning model predictive control for iterative tasks. A data-driven control framework publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2017.2753460 – volume: 55 start-page: 135 year: 2015 ident: 10.1016/j.isatra.2025.04.028_b8 article-title: Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays publication-title: ISA Trans doi: 10.1016/j.isatra.2014.11.007 – volume: 54 start-page: 4701 issue: 8 year: 2024 ident: 10.1016/j.isatra.2025.04.028_b9 article-title: Sampled-data-based iterative cost-learning model predictive control for T–s fuzzy systems publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2024.3388853 – volume: 51 start-page: 153 issue: 1 year: 2012 ident: 10.1016/j.isatra.2025.04.028_b4 article-title: Event-triggered control design of linear networked systems with quantizations publication-title: ISA Trans doi: 10.1016/j.isatra.2011.09.002 – volume: 68 year: 2022 ident: 10.1016/j.isatra.2025.04.028_b23 article-title: Robust data-driven predictive control using reachability analysis publication-title: Eur J Control doi: 10.1016/j.ejcon.2022.100666 – volume: 58 start-page: 421 year: 2015 ident: 10.1016/j.isatra.2025.04.028_b1 article-title: Sampled data observer based inter-sample output predictor for electro-hydraulic actuators publication-title: ISA Trans doi: 10.1016/j.isatra.2015.05.002 – volume: 54 start-page: 5478 issue: 9 year: 2024 ident: 10.1016/j.isatra.2025.04.028_b12 article-title: Robust predictive discrete-time controller in constrained systems with uncertain and delayed terms publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2024.3404648 – year: 2022 ident: 10.1016/j.isatra.2025.04.028_b24 – volume: 51 start-page: 386 issue: 3 year: 2012 ident: 10.1016/j.isatra.2025.04.028_b7 article-title: Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults publication-title: ISA Trans doi: 10.1016/j.isatra.2012.02.003 – volume: 66 start-page: 5955 issue: 12 year: 2021 ident: 10.1016/j.isatra.2025.04.028_b25 article-title: Active disturbance rejection control for nonaffined globally Lipschitz nonlinear discrete-time systems publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2021.3051353 – volume: 55 start-page: 274 year: 2015 ident: 10.1016/j.isatra.2025.04.028_b20 article-title: Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals publication-title: Automatica doi: 10.1016/j.automatica.2015.03.015 – volume: 46 start-page: 421 issue: 2 year: 2010 ident: 10.1016/j.isatra.2025.04.028_b19 article-title: A refined input delay approach to sampled-data control publication-title: Automatica doi: 10.1016/j.automatica.2009.11.017 – volume: 55 start-page: 2576 issue: 11 year: 2010 ident: 10.1016/j.isatra.2025.04.028_b18 article-title: Stability and incremental improvement of suboptimal MPC without terminal constraints publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2057912 – volume: 8 start-page: 1781 issue: 17 year: 2014 ident: 10.1016/j.isatra.2025.04.028_b13 article-title: Sampled-data MPC for LPV systems with input saturation publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2014.0205 – year: 2014 ident: 10.1016/j.isatra.2025.04.028_b15 – volume: 29 start-page: 322 issue: 2 year: 2020 ident: 10.1016/j.isatra.2025.04.028_b5 article-title: Affine transformed IT2 fuzzy event-triggered control under deception attacks publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2999779 – volume: 423 year: 2022 ident: 10.1016/j.isatra.2025.04.028_b21 article-title: Regional sampled-data synchronization of chaotic neural networks using piecewise-continuous delay dependent Lyapunov functional publication-title: Appl Math Comput – volume: 19 start-page: 585 issue: 12 year: 2002 ident: 10.1016/j.isatra.2025.04.028_b31 article-title: Gain scheduled LPV H∞ control based on LMI approach for a robotic manipulator publication-title: J Robot Syst doi: 10.1002/rob.10062 – volume: 43 start-page: 397 issue: 3 year: 1998 ident: 10.1016/j.isatra.2025.04.028_b26 article-title: Observers for Lipschitz nonlinear systems publication-title: IEEE Trans Autom Control doi: 10.1109/9.661604 – year: 2014 ident: 10.1016/j.isatra.2025.04.028_b30 – year: 2004 ident: 10.1016/j.isatra.2025.04.028_b14 – volume: 122 start-page: 380 year: 2022 ident: 10.1016/j.isatra.2025.04.028_b3 article-title: Event-triggered control for switched linear systems: A control and switching joint triggering strategy publication-title: ISA Trans doi: 10.1016/j.isatra.2021.05.008 – volume: 91 start-page: 32 year: 2019 ident: 10.1016/j.isatra.2025.04.028_b2 article-title: Sampled-data observer-based anti-windup control for singularly perturbed systems with actuator saturation publication-title: ISA Trans doi: 10.1016/j.isatra.2019.01.030 – volume: 47 start-page: 1974 issue: 12 year: 2002 ident: 10.1016/j.isatra.2025.04.028_b11 article-title: Model predictive control based on linear programming—The explicit solution publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2002.805688 – volume: 31 start-page: 3279 issue: 8 year: 2021 ident: 10.1016/j.isatra.2025.04.028_b27 article-title: Sampled-parameter dependent stabilization for linear parameter varying systems with asynchronous parameter sampling publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.5454 – volume: 19 start-page: 2801 issue: 4 year: 2022 ident: 10.1016/j.isatra.2025.04.028_b17 article-title: Tracking of uncertain robotic manipulators using event-triggered model predictive control with learning terminal cost publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2022.3152166 – volume: 68 start-page: 2625 issue: 5 year: 2022 ident: 10.1016/j.isatra.2025.04.028_b22 article-title: Robust stability analysis of a simple data-driven model predictive control approach publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2022.3163110 – volume: vol. 31 year: 2018 ident: 10.1016/j.isatra.2025.04.028_b16 article-title: Neural ordinary differential equations – volume: 143 start-page: 103 year: 2023 ident: 10.1016/j.isatra.2025.04.028_b10 article-title: Generalized efficient robust predictive control for networked interval type-2 T–s fuzzy system with adaptive event-triggered scheme publication-title: ISA Trans doi: 10.1016/j.isatra.2023.08.025 – volume: 71 start-page: 196 year: 2017 ident: 10.1016/j.isatra.2025.04.028_b6 article-title: On decentralized adaptive full-order sliding mode control of multiple UAVs publication-title: ISA Trans doi: 10.1016/j.isatra.2017.09.008 – volume: 328 start-page: 1075 issue: 2 year: 2007 ident: 10.1016/j.isatra.2025.04.028_b29 article-title: A generalized Grönwall inequality and its application to a fractional differential equation publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2006.05.061 |
SSID | ssj0002598 |
Score | 2.3988774 |
Snippet | In this paper, a novel learning-based model predictive control (LMPC) method is proposed for sampled-data control systems with partially unknown dynamics. Many... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 64 |
SubjectTerms | Learning-based model predictive control Neural ordinary differential equations Sampled-data control systems Ultimate boundedness |
Title | Learning-based MPC of sampled-data systems with partially unknown dynamics |
URI | https://dx.doi.org/10.1016/j.isatra.2025.04.028 https://www.ncbi.nlm.nih.gov/pubmed/40319003 https://www.proquest.com/docview/3200324366 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CchkHBGUb5UdlJA7s4OHYTlIfUTXUdRQhxCRulhMnqAilFWkPXPa3773GqZg0NGm3_JAT6z37e1-c9z4DnJVII5TLPS9VnnLtjeYmFp4X3iQOx49KBBUnT26S0U89fogfNmDY1sJQWmXA_gbTV2gdrlwEa17Mp1Oq8cVgRmrsMQUqwuEtidF-0IGty-8_RjdrQEaGHwDZcGrQVtCt0rwoaeaFBIhkvNI8pW3Z_x6h3mOgq0h0tQs7gUKyy6aXe7BRVF3YfiMs2IW9MGVrdh50pb_swzhoqT5yCl2eTW6HbFay2pFAsOeUK8oaYeea0fIsm5Mh3PPzK1tWtPZWMd_sX19_hPurb_fDEQ9bKfBcRWrBYxK6M6kpy8zhB0pOREebJHJRYTxpsOsozxweZsLLLBIDXUYyTQqhCjVwQn2CTjWrigNgDqcsUjb0vPTaJzE-bpCLVJbCuEw62QPeWs_OG8EM22aSPdnG2pasbYW2aO0epK2J7R-Ot4jp_2h52nrE4pygHx2uKmbL2irKuJNaJUkPPjeuWvdFU9kW3j787_cewQc6a3J2j6GzeFkWJ8hMFlkfNr_-ivo4_oZ317f9MA5_A1aM4i4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_G9qA-iN_Ozwg-6EMwbdJ2eRxD2eY2fJjgW0ibVibSDbs9-N-ba1NRUATfSkPacJe7-zW9-x3AZWZhBNeJoRlPIiqMFFQGzNDUyFDb_cNDhsXJ40nYfxTDp-CpAb26FgbTKp3vr3x66a3dnRsnzZvFbIY1vjaYIRt7gIEK_XBLYFPrJrS6g_v-5NMhW4TvHLKkOKGuoCvTvDBp5g0JiPyg5DzFtuw_R6jfEGgZie62YNNBSNKtVrkNjTTfgY0vxII7sO1MtiBXjlf6eheGjkv1mWLoMmT80CPzjBQaCYINxVxRUhE7FwSPZ8kCBaFfX9_JKsezt5yYqn99sQfTu9tpr09dKwWacI8vaYBEdzKSWRZr-4GSINARMvS0l0qDHOzCS2JtL2Nm_NhjHZF5fhSmjKe8oxnfh2Y-z9NDINqarIVsVvO-ESYM7OM6CYv8jEkd-9pvA62lpxYVYYaqM8leVCVthdJWTCgr7TZEtYjVN8Ur69P_mHlRa0RZm8AfHTpP56tCccy48wUPwzYcVKr6XIvAsi07fPTv957DWn86HqnRYHJ_DOs4UuXvnkBz-bZKTy1KWcZnbhd-AJk34n8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-based+MPC+of+sampled-data+systems+with+partially+unknown+dynamics&rft.jtitle=ISA+transactions&rft.au=Han%2C+Seungyong&rft.au=Guo%2C+Xuyang&rft.au=Kommuri%2C+Suneel+Kumar&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.volume=162&rft.spage=64&rft.epage=74&rft_id=info:doi/10.1016%2Fj.isatra.2025.04.028&rft.externalDocID=S0019057825002162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |