Generative Learning from Semantically Confused Label Distribution via Auto-Encoding Variational Bayes
Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the instance–label relationship compared to traditional single-label and multi-label learning approaches. This paper focuses on the challenge of noisy label...
Saved in:
| Published in | Electronics (Basel) Vol. 14; no. 13; p. 2736 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
07.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics14132736 |
Cover
| Abstract | Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the instance–label relationship compared to traditional single-label and multi-label learning approaches. This paper focuses on the challenge of noisy label distributions, which is ubiquitous in real-world applications due to the annotator subjectivity, algorithmic biases, and experimental errors. Existing related LDL algorithms often assume a linear combination of true and random label distributions when modeling the noisy label distributions, an oversimplification that fails to capture the practical generation processes of noisy label distributions. Therefore, this paper introduces an assumption that the noise in label distributions primarily arises from the semantic confusion between labels and proposes a novel generative label distribution learning algorithm to model the confusion-based generation process of both the feature data and the noisy label distribution data. The proposed model is inferred using variational methods and its effectiveness is demonstrated through extensive experiments across various real-world datasets, showcasing its superiority in handling noisy label distributions. |
|---|---|
| AbstractList | Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the instance–label relationship compared to traditional single-label and multi-label learning approaches. This paper focuses on the challenge of noisy label distributions, which is ubiquitous in real-world applications due to the annotator subjectivity, algorithmic biases, and experimental errors. Existing related LDL algorithms often assume a linear combination of true and random label distributions when modeling the noisy label distributions, an oversimplification that fails to capture the practical generation processes of noisy label distributions. Therefore, this paper introduces an assumption that the noise in label distributions primarily arises from the semantic confusion between labels and proposes a novel generative label distribution learning algorithm to model the confusion-based generation process of both the feature data and the noisy label distribution data. The proposed model is inferred using variational methods and its effectiveness is demonstrated through extensive experiments across various real-world datasets, showcasing its superiority in handling noisy label distributions. |
| Audience | Academic |
| Author | Lu, Yunan Guo, Yi Xue, Bowen Meng, Chenxu Zhou, Heng Li, Xinhai Yu, Tianzuo |
| Author_xml | – sequence: 1 givenname: Xinhai surname: Li fullname: Li, Xinhai – sequence: 2 givenname: Chenxu surname: Meng fullname: Meng, Chenxu – sequence: 3 givenname: Heng surname: Zhou fullname: Zhou, Heng – sequence: 4 givenname: Yi orcidid: 0000-0002-8547-3186 surname: Guo fullname: Guo, Yi – sequence: 5 givenname: Bowen surname: Xue fullname: Xue, Bowen – sequence: 6 givenname: Tianzuo surname: Yu fullname: Yu, Tianzuo – sequence: 7 givenname: Yunan surname: Lu fullname: Lu, Yunan |
| BookMark | eNqNUcFu2zAMFYoMaJblC3oRsLM7W5Qt-5hlbTYgwA5rezVomSpUOFImyR3y91WQHnbYYeSBBPke8fD4kS2cd8TYTVXeAnTlF5pIp-Cd1bGSFQgFzRVbilJ1RSc6sfirv2brGF_KHF0FLZRLRjtyFDDZV-J7wuCse-Ym-AP_RQd0yWqcphPfemfmSCPf40AT_2ZjCnaYk_WOv1rkmzn54s5pP575Txgsnnc48a94oviJfTA4RVq_1xV7vL972H4v9j93P7abfaGhglRIMyrVDU2phpEaMihNO6BoxoaUKduxVrJtpVFDXXfQagAhlaahMaJSNUENKyYvd2d3xNOfLL0_BnvAcOqrsj-71f_DrUz7fKEdg_89U0z9i59DVh97EKKrJKgWMur2gnrGiXrrjE8Bdc6RDlbnnxib55tWKlmDygpXDC4EHXyMgcx_iXkDtr-RdQ |
| Cites_doi | 10.1109/TPAMI.2023.3300310 10.1007/s10994-023-06388-9 10.24963/ijcai.2018/406 10.1109/TPAMI.2013.51 10.1109/CVPR.2015.7298687 10.1109/CVPR42600.2020.00986 10.1109/TNNLS.2021.3103178 10.1145/3323873.3326593 10.1109/CVPR.2016.486 10.24963/ijcai.2019/460 10.1145/1873951.1873965 10.1016/j.asoc.2021.107585 10.24963/ijcai.2020/446 10.1007/BF03023004 10.1609/aaai.v31i1.10485 10.1109/TNNLS.2023.3329870 10.1109/TPAMI.2019.2937294 10.1109/CVPR.2019.01007 10.1609/aaai.v32i1.11664 10.1609/aaai.v32i1.11693 10.1609/aaai.v31i1.10822 10.24963/ijcai.2018/386 10.1214/aos/1016218223 10.1504/IJWMC.2019.100063 10.24963/ijcai.2017/443 10.1016/j.inffus.2024.102600 10.1016/j.neucom.2018.09.002 10.1109/TKDE.2016.2545658 10.1609/aaai.v32i1.11609 10.1007/978-3-030-04182-3_52 10.24963/ijcai.2019/518 10.1609/aaai.v38i11.29194 10.1007/978-3-030-36711-4_23 10.1016/j.ijar.2020.02.003 10.1609/aaai.v38i11.29131 10.24963/ijcai.2018/364 10.1016/j.patrec.2021.01.026 10.1016/j.knosys.2020.106690 10.24963/ijcai.2017/369 10.24963/ijcai.2018/99 10.1016/j.patcog.2020.107514 10.1109/TCDS.2025.3529177 10.24963/ijcai.2019/461 10.1109/TKDE.2019.2947040 10.1109/TNNLS.2023.3258976 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics14132736 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics14132736 A847453759 10_3390_electronics14132736 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c313t-4fd779b607bde6efa4f8ba26d6e7f08d574884f7b55938c33247ceb6f2175e353 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Tue Aug 19 23:21:57 EDT 2025 Sat Jul 12 03:29:23 EDT 2025 Tue Jul 15 03:52:35 EDT 2025 Thu Oct 16 04:34:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-4fd779b607bde6efa4f8ba26d6e7f08d574884f7b55938c33247ceb6f2175e353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8547-3186 |
| OpenAccessLink | https://www.proquest.com/docview/3229143783?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3229143783 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics14132736 proquest_journals_3229143783 gale_infotracacademiconefile_A847453759 crossref_primary_10_3390_electronics14132736 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-07 |
| PublicationDateYYYYMMDD | 2025-07-07 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xu (ref_38) 2025; 113 ref_14 Zychowski (ref_54) 2021; 110 ref_13 ref_12 ref_11 ref_10 Friedman (ref_24) 2000; 28 ref_52 ref_51 ref_16 ref_15 Jia (ref_19) 2024; 35 Wang (ref_17) 2023; 34 ref_25 ref_22 Geng (ref_2) 2013; 35 Chen (ref_26) 2018; 320 ref_29 ref_28 ref_27 Xu (ref_37) 2021; 145 ref_35 Kou (ref_20) 2023; 36 ref_34 ref_33 ref_32 ref_31 ref_30 Xu (ref_43) 2021; 33 Geng (ref_1) 2016; 28 ref_39 Jia (ref_18) 2023; 35 Lu (ref_48) 2023; 112 Xu (ref_23) 2020; 121 Guiasu (ref_21) 1985; 7 Lu (ref_47) 2023; 45 Liu (ref_53) 2021; 213 ref_46 ref_45 ref_44 Joo (ref_50) 2020; 107 ref_42 ref_41 ref_40 Zeng (ref_36) 2019; 16 ref_49 ref_9 ref_8 Shen (ref_3) 2021; 43 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – volume: 45 start-page: 15364 year: 2023 ident: ref_47 article-title: Predicting Label Distribution from Tie-Allowed Multi-Label Ranking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3300310 – volume: 112 start-page: 4693 year: 2023 ident: ref_48 article-title: Ranking-Preserved Generative Label Enhancement publication-title: Mach. Learn. doi: 10.1007/s10994-023-06388-9 – ident: ref_49 – ident: ref_42 doi: 10.24963/ijcai.2018/406 – ident: ref_51 – volume: 35 start-page: 2401 year: 2013 ident: ref_2 article-title: Facial Age Estimation by Learning from Label Distributions publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.51 – ident: ref_10 doi: 10.1109/CVPR.2015.7298687 – ident: ref_15 doi: 10.1109/CVPR42600.2020.00986 – volume: 34 start-page: 839 year: 2023 ident: ref_17 article-title: Label Distribution Learning by Exploiting Label Distribution Manifold publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3103178 – ident: ref_7 doi: 10.1145/3323873.3326593 – ident: ref_16 doi: 10.1109/CVPR.2016.486 – ident: ref_31 doi: 10.24963/ijcai.2019/460 – ident: ref_11 doi: 10.1145/1873951.1873965 – volume: 110 start-page: 107585 year: 2021 ident: ref_54 article-title: Duo-LDL Method for Label Distribution Learning Based on Pairwise Class Dependencies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107585 – ident: ref_44 doi: 10.24963/ijcai.2020/446 – volume: 35 start-page: 1695 year: 2023 ident: ref_18 article-title: Label Distribution Learning by Maintaining Label Ranking Relation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 7 start-page: 42 year: 1985 ident: ref_21 article-title: The Principle of Maximum Entropy publication-title: Math. Intell. doi: 10.1007/BF03023004 – ident: ref_4 – ident: ref_8 doi: 10.1609/aaai.v31i1.10485 – volume: 36 start-page: 1425 year: 2023 ident: ref_20 article-title: Instance-Dependent Inaccurate Label Distribution Learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3329870 – ident: ref_52 – volume: 43 start-page: 404 year: 2021 ident: ref_3 article-title: Deep Differentiable Random Forests for Age Estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2937294 – ident: ref_9 doi: 10.1109/CVPR.2019.01007 – ident: ref_13 – ident: ref_45 – ident: ref_27 doi: 10.1609/aaai.v32i1.11664 – ident: ref_29 doi: 10.1609/aaai.v32i1.11693 – ident: ref_5 doi: 10.1609/aaai.v31i1.10822 – ident: ref_33 doi: 10.24963/ijcai.2018/386 – volume: 28 start-page: 337 year: 2000 ident: ref_24 article-title: Additive Logistic Regression: A Statistical View of Boosting publication-title: Ann. Stat. doi: 10.1214/aos/1016218223 – volume: 16 start-page: 314 year: 2019 ident: ref_36 article-title: Filling Missing Values by Local Reconstruction for Incomplete Label Distribution Learning publication-title: Int. J. Wirel. Mob. Comput. doi: 10.1504/IJWMC.2019.100063 – ident: ref_35 doi: 10.24963/ijcai.2017/443 – volume: 113 start-page: 102600 year: 2025 ident: ref_38 article-title: Incomplete Label Distribution Learning via Label Correlation Decomposition publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102600 – volume: 320 start-page: 171 year: 2018 ident: ref_26 article-title: Structured Random Forest for Label Distribution Learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.002 – volume: 28 start-page: 1734 year: 2016 ident: ref_1 article-title: Label Distribution Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2545658 – ident: ref_40 – ident: ref_28 doi: 10.1609/aaai.v32i1.11609 – ident: ref_25 doi: 10.1007/978-3-030-04182-3_52 – ident: ref_34 doi: 10.24963/ijcai.2019/518 – ident: ref_39 doi: 10.1609/aaai.v38i11.29194 – ident: ref_22 doi: 10.1007/978-3-030-36711-4_23 – volume: 121 start-page: 59 year: 2020 ident: ref_23 article-title: Label Distribution Learning: A Local Collaborative Mechanism publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2020.02.003 – ident: ref_41 doi: 10.1609/aaai.v38i11.29131 – ident: ref_32 doi: 10.24963/ijcai.2018/364 – volume: 145 start-page: 147 year: 2021 ident: ref_37 article-title: Fragmentary Label Distribution Learning via Graph Regularized Maximum Entropy Criteria publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.01.026 – ident: ref_46 – volume: 213 start-page: 106690 year: 2021 ident: ref_53 article-title: Bidirectional Loss Function for Label Enhancement and Distribution Learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106690 – ident: ref_12 doi: 10.24963/ijcai.2017/369 – ident: ref_6 doi: 10.24963/ijcai.2018/99 – volume: 107 start-page: 107514 year: 2020 ident: ref_50 article-title: Dirichlet Variational Autoencoder publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107514 – ident: ref_14 doi: 10.1109/TCDS.2025.3529177 – ident: ref_30 doi: 10.24963/ijcai.2019/461 – volume: 33 start-page: 1632 year: 2021 ident: ref_43 article-title: Label Enhancement for Label Distribution Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2947040 – volume: 35 start-page: 11302 year: 2024 ident: ref_19 article-title: Adaptive Weighted Ranking-Oriented Label Distribution Learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3258976 |
| SSID | ssj0000913830 |
| Score | 2.326047 |
| Snippet | Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 2736 |
| SubjectTerms | Algorithms Comparative analysis Data mining Design Entropy Labels Learning Low density lipoproteins Machine learning Semantics Variational methods |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gA9lG-xpSAfkLjgJrZjOz6hBVpVCCokWFROkb9SVSzZVTcpWn494yYLS8UBxD2JEz37zTzH8wbgqcuVD4WPlFlpaBGVpJYHTkWpvNG5Z0KlAud3x-poWrw5kScbVfzpWCVK8bNLkua5NhTjN89YkTGRYahV2SLULy6GvSSWfhoYLrm6DltKYjY-gq3p8fvJ59RTbn13bzYkUN1nv3rLLBnSd3rgbwHpKi1vw42uWdjVNzubbcSdw1tg12_cHzf5st-1bt9_v2Lm-D-fdBt2hqSUTPpZdAeuxeYubG9YFd6D2PtTJ3IkgyfrKUm1KeRD_IroJKxnK5IKCLtlDOStdXFGXidb3qGjFrk4s2TStXN60Ph5CpnkEwr1YTOSvLSruLwP08ODj6-O6NCigXrBREuLOmhtnMq1C1HF2hZ16SxXQUVd52WQGgmiqLVD4SJKLzB90z46VaMSklFI8QBGzbyJD4GwkJvSRx-ldaiiTOm0ZjYxhOVW1mIMz9c4VYveiaNCBZNgrf4A6xieJSyrtE7bc-vtUG6AgyXHq2qCYbmQQkszhr013NWwgJcV8pzBVFKXOC79OQX-ZuDdf7z-Edzkqafw5ZbxHoza8y4-xkSndU-GufwD7E37SA priority: 102 providerName: Unpaywall |
| Title | Generative Learning from Semantically Confused Label Distribution via Auto-Encoding Variational Bayes |
| URI | https://www.proquest.com/docview/3229143783 https://www.mdpi.com/2079-9292/14/13/2736/pdf?version=1751892526 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61yQF6QDzVQIn2gMSFVW2v9-EDQi5NqFAbVZSgcrL2ZYQUnNA4oPx7dpJ1WxBCnHzzSjM7882MPd8H8MIkwrrceppqXtDcC0515jLKlLCFTGzKBC44n03EyTR_f8kvd2DS7cLgb5VdTtwkaje3OCM_DBevCNguFXuz-E5RNQq_rnYSGjpKK7jXG4qxXehnyIzVg_7RaHL-4XrqgiyYiiVb-iEW-v3DG7WZZRoSekBz8RtE_Zmo9-DOqlno9U89m91CovF9uBdLSFJuff4AdnzzEPZuEQs-Ar9lk8ZURiKD6heCmyTkwn8LtkTPzNYE1_1WS-_IqTZ-Ro6RRDfqX5EfXzUpV-2cjho7R4Ajn0JbHUeH5Eiv_fIxTMejj29PaBRUoJalrKV57aQsjEikcV74Wue1MjoTTnhZJ8pxGcI5r6UJbQZTloViS1pvRB36Fu4ZZ0-g18wbvw8kdUmhrLeeaxN6nkIZKVON8awzzWs2gFedDavFljejCv0Gmrz6i8kH8BLtXGFUtVfa6rgcEA5DfqqqDCCacyZ5MYCDzhVVDLdldXM5BkCv3fM_Bz_99-uewd0MBX8389wD6LVXK_88VCGtGcKuGr8bQr88Pju9GMaLFp7TyXn5-Rcz-OQM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V7aH0gPgUCwV8AHHBahLHdnyo0JZutaXbFYIW9Rb8FYS0ZJcmS7V_jt_GeNdpC0KIS_9ALM2M582MM-8BvDCJsC63nqaaK5p7wanOXEZZIaySiU2ZCAvOx2MxPM3fnfGzNfjZ7cKE3yq7nLhM1G5qw4x8BwNPIbbLgr2ZfadBNSq8rnYSGjpKK7jdJcVYXOw48osLbOGa3cN99PfLLDsYnLwd0qgyQC1LWUvzykmpjEikcV74SudVYXQmnPCySgrHJcZ4XkmDtTcrLMMKRFpvRIXFPPdL1QiEgI2c5Qqbv429wfj9h8spT2DdLFiyojtiTCU7V-o2TYoAgtWD-A0S_wSGLdic1zO9uNCTyTXkO7gDt2PJSvqrGLsLa76-B1vXiAzvg1-xV4fUSSJj6xcSNlfIR_8NfRciYbIgYb1w3nhHRtr4CdkPpL1Rb4v8-KpJf95O6aC20wCo5BO28XFUSfb0wjcP4PRGTPsQ1utp7R8BSV2iCuut59pgj6UKI2WqQ_7QmeYV68HrzoblbMXTUWJ_E0xe_sXkPXgV7FyGW9yea6vjMgIeFviwyj6Cds6Z5KoH250ryni9m_IqGHtAL93zPwc__vfnnsPm8OR4VI4Ox0dP4FYWxIaXs-RtWG_P5_4pVkCteRbDjMDnm47sXzR1HPk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1VRQJ6QHyKlAJ7AHFhFdvr3bUPCAXS0NJSIUFRb-5-GSEFJ60dqvw1fh0zsd0WhBCX_gGvNPN23sx45w3AMxsp51MXeGxkztOgJDeJT7jIlMt15GKhaMD5w4HaOUzfH8mjNfjZz8LQs8o-Jq4CtZ856pEPEXg5crvOxLDsnkV8HE9ez084bZCiP639Oo0WIntheYblW_1qd4y-fp4kk-3Pb3d4t2GAOxGLhqel1zq3KtLWBxVKk5aZNYnyKugyyrzUiO-01BbzbpE5gdmHdsGqEhN5GVYbIzD8X9Ok4k5T6pN35_0d0tvMRNQKHQmRR8OLvTZ1jNSBeYP6jQz_pIQNuLGo5mZ5ZqbTS5w3uQ23umSVjVp03YG1UN2FjUsShvcgtLrVFDRZp9X6ldHMCvsUvqPXCAPTJaPBwkUdPNs3NkzZmOR6u01b7Mc3w0aLZsa3KzcjKmVfsIDvmpTsjVmG-j4cXolhH8B6NavCQ2Cxj_LMBReksVhd5ZnVOjYUOUxiZCkG8LK3YTFvFToKrGzI5MVfTD6AF2Tngu5vc2qc6cYQ8DBSwipGSNepFFrmA9jqXVF0F7suLmA4AH7unv85ePPfn3sK1xHPxf7uwd4juJnQluFVE3kL1pvTRXiMqU9jn6wwxuD4qkH9C3uYGpM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gA9lG-xpSAfkLjgJrZjOz6hBVpVCCokWFROkb9SVSzZVTcpWn494yYLS8UBxD2JEz37zTzH8wbgqcuVD4WPlFlpaBGVpJYHTkWpvNG5Z0KlAud3x-poWrw5kScbVfzpWCVK8bNLkua5NhTjN89YkTGRYahV2SLULy6GvSSWfhoYLrm6DltKYjY-gq3p8fvJ59RTbn13bzYkUN1nv3rLLBnSd3rgbwHpKi1vw42uWdjVNzubbcSdw1tg12_cHzf5st-1bt9_v2Lm-D-fdBt2hqSUTPpZdAeuxeYubG9YFd6D2PtTJ3IkgyfrKUm1KeRD_IroJKxnK5IKCLtlDOStdXFGXidb3qGjFrk4s2TStXN60Ph5CpnkEwr1YTOSvLSruLwP08ODj6-O6NCigXrBREuLOmhtnMq1C1HF2hZ16SxXQUVd52WQGgmiqLVD4SJKLzB90z46VaMSklFI8QBGzbyJD4GwkJvSRx-ldaiiTOm0ZjYxhOVW1mIMz9c4VYveiaNCBZNgrf4A6xieJSyrtE7bc-vtUG6AgyXHq2qCYbmQQkszhr013NWwgJcV8pzBVFKXOC79OQX-ZuDdf7z-Edzkqafw5ZbxHoza8y4-xkSndU-GufwD7E37SA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Learning+from+Semantically+Confused+Label+Distribution+via+Auto-Encoding+Variational+Bayes&rft.jtitle=Electronics+%28Basel%29&rft.au=Li%2C+Xinhai&rft.au=Meng+Chenxu&rft.au=Zhou%2C+Heng&rft.au=Guo%2C+Yi&rft.date=2025-07-07&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=13&rft.spage=2736&rft_id=info:doi/10.3390%2Felectronics14132736&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |