Generative Learning from Semantically Confused Label Distribution via Auto-Encoding Variational Bayes

Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the instance–label relationship compared to traditional single-label and multi-label learning approaches. This paper focuses on the challenge of noisy label...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 14; no. 13; p. 2736
Main Authors Li, Xinhai, Meng, Chenxu, Zhou, Heng, Guo, Yi, Xue, Bowen, Yu, Tianzuo, Lu, Yunan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 07.07.2025
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics14132736

Cover

Abstract Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the instance–label relationship compared to traditional single-label and multi-label learning approaches. This paper focuses on the challenge of noisy label distributions, which is ubiquitous in real-world applications due to the annotator subjectivity, algorithmic biases, and experimental errors. Existing related LDL algorithms often assume a linear combination of true and random label distributions when modeling the noisy label distributions, an oversimplification that fails to capture the practical generation processes of noisy label distributions. Therefore, this paper introduces an assumption that the noise in label distributions primarily arises from the semantic confusion between labels and proposes a novel generative label distribution learning algorithm to model the confusion-based generation process of both the feature data and the noisy label distribution data. The proposed model is inferred using variational methods and its effectiveness is demonstrated through extensive experiments across various real-world datasets, showcasing its superiority in handling noisy label distributions.
AbstractList Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the instance–label relationship compared to traditional single-label and multi-label learning approaches. This paper focuses on the challenge of noisy label distributions, which is ubiquitous in real-world applications due to the annotator subjectivity, algorithmic biases, and experimental errors. Existing related LDL algorithms often assume a linear combination of true and random label distributions when modeling the noisy label distributions, an oversimplification that fails to capture the practical generation processes of noisy label distributions. Therefore, this paper introduces an assumption that the noise in label distributions primarily arises from the semantic confusion between labels and proposes a novel generative label distribution learning algorithm to model the confusion-based generation process of both the feature data and the noisy label distribution data. The proposed model is inferred using variational methods and its effectiveness is demonstrated through extensive experiments across various real-world datasets, showcasing its superiority in handling noisy label distributions.
Audience Academic
Author Lu, Yunan
Guo, Yi
Xue, Bowen
Meng, Chenxu
Zhou, Heng
Li, Xinhai
Yu, Tianzuo
Author_xml – sequence: 1
  givenname: Xinhai
  surname: Li
  fullname: Li, Xinhai
– sequence: 2
  givenname: Chenxu
  surname: Meng
  fullname: Meng, Chenxu
– sequence: 3
  givenname: Heng
  surname: Zhou
  fullname: Zhou, Heng
– sequence: 4
  givenname: Yi
  orcidid: 0000-0002-8547-3186
  surname: Guo
  fullname: Guo, Yi
– sequence: 5
  givenname: Bowen
  surname: Xue
  fullname: Xue, Bowen
– sequence: 6
  givenname: Tianzuo
  surname: Yu
  fullname: Yu, Tianzuo
– sequence: 7
  givenname: Yunan
  surname: Lu
  fullname: Lu, Yunan
BookMark eNqNUcFu2zAMFYoMaJblC3oRsLM7W5Qt-5hlbTYgwA5rezVomSpUOFImyR3y91WQHnbYYeSBBPke8fD4kS2cd8TYTVXeAnTlF5pIp-Cd1bGSFQgFzRVbilJ1RSc6sfirv2brGF_KHF0FLZRLRjtyFDDZV-J7wuCse-Ym-AP_RQd0yWqcphPfemfmSCPf40AT_2ZjCnaYk_WOv1rkmzn54s5pP575Txgsnnc48a94oviJfTA4RVq_1xV7vL972H4v9j93P7abfaGhglRIMyrVDU2phpEaMihNO6BoxoaUKduxVrJtpVFDXXfQagAhlaahMaJSNUENKyYvd2d3xNOfLL0_BnvAcOqrsj-71f_DrUz7fKEdg_89U0z9i59DVh97EKKrJKgWMur2gnrGiXrrjE8Bdc6RDlbnnxib55tWKlmDygpXDC4EHXyMgcx_iXkDtr-RdQ
Cites_doi 10.1109/TPAMI.2023.3300310
10.1007/s10994-023-06388-9
10.24963/ijcai.2018/406
10.1109/TPAMI.2013.51
10.1109/CVPR.2015.7298687
10.1109/CVPR42600.2020.00986
10.1109/TNNLS.2021.3103178
10.1145/3323873.3326593
10.1109/CVPR.2016.486
10.24963/ijcai.2019/460
10.1145/1873951.1873965
10.1016/j.asoc.2021.107585
10.24963/ijcai.2020/446
10.1007/BF03023004
10.1609/aaai.v31i1.10485
10.1109/TNNLS.2023.3329870
10.1109/TPAMI.2019.2937294
10.1109/CVPR.2019.01007
10.1609/aaai.v32i1.11664
10.1609/aaai.v32i1.11693
10.1609/aaai.v31i1.10822
10.24963/ijcai.2018/386
10.1214/aos/1016218223
10.1504/IJWMC.2019.100063
10.24963/ijcai.2017/443
10.1016/j.inffus.2024.102600
10.1016/j.neucom.2018.09.002
10.1109/TKDE.2016.2545658
10.1609/aaai.v32i1.11609
10.1007/978-3-030-04182-3_52
10.24963/ijcai.2019/518
10.1609/aaai.v38i11.29194
10.1007/978-3-030-36711-4_23
10.1016/j.ijar.2020.02.003
10.1609/aaai.v38i11.29131
10.24963/ijcai.2018/364
10.1016/j.patrec.2021.01.026
10.1016/j.knosys.2020.106690
10.24963/ijcai.2017/369
10.24963/ijcai.2018/99
10.1016/j.patcog.2020.107514
10.1109/TCDS.2025.3529177
10.24963/ijcai.2019/461
10.1109/TKDE.2019.2947040
10.1109/TNNLS.2023.3258976
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics14132736
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics14132736
A847453759
10_3390_electronics14132736
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c313t-4fd779b607bde6efa4f8ba26d6e7f08d574884f7b55938c33247ceb6f2175e353
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Tue Aug 19 23:21:57 EDT 2025
Sat Jul 12 03:29:23 EDT 2025
Tue Jul 15 03:52:35 EDT 2025
Thu Oct 16 04:34:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-4fd779b607bde6efa4f8ba26d6e7f08d574884f7b55938c33247ceb6f2175e353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8547-3186
OpenAccessLink https://www.proquest.com/docview/3229143783?pq-origsite=%requestingapplication%&accountid=15518
PQID 3229143783
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics14132736
proquest_journals_3229143783
gale_infotracacademiconefile_A847453759
crossref_primary_10_3390_electronics14132736
PublicationCentury 2000
PublicationDate 2025-07-07
PublicationDateYYYYMMDD 2025-07-07
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-07
  day: 07
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xu (ref_38) 2025; 113
ref_14
Zychowski (ref_54) 2021; 110
ref_13
ref_12
ref_11
ref_10
Friedman (ref_24) 2000; 28
ref_52
ref_51
ref_16
ref_15
Jia (ref_19) 2024; 35
Wang (ref_17) 2023; 34
ref_25
ref_22
Geng (ref_2) 2013; 35
Chen (ref_26) 2018; 320
ref_29
ref_28
ref_27
Xu (ref_37) 2021; 145
ref_35
Kou (ref_20) 2023; 36
ref_34
ref_33
ref_32
ref_31
ref_30
Xu (ref_43) 2021; 33
Geng (ref_1) 2016; 28
ref_39
Jia (ref_18) 2023; 35
Lu (ref_48) 2023; 112
Xu (ref_23) 2020; 121
Guiasu (ref_21) 1985; 7
Lu (ref_47) 2023; 45
Liu (ref_53) 2021; 213
ref_46
ref_45
ref_44
Joo (ref_50) 2020; 107
ref_42
ref_41
ref_40
Zeng (ref_36) 2019; 16
ref_49
ref_9
ref_8
Shen (ref_3) 2021; 43
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 45
  start-page: 15364
  year: 2023
  ident: ref_47
  article-title: Predicting Label Distribution from Tie-Allowed Multi-Label Ranking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3300310
– volume: 112
  start-page: 4693
  year: 2023
  ident: ref_48
  article-title: Ranking-Preserved Generative Label Enhancement
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-023-06388-9
– ident: ref_49
– ident: ref_42
  doi: 10.24963/ijcai.2018/406
– ident: ref_51
– volume: 35
  start-page: 2401
  year: 2013
  ident: ref_2
  article-title: Facial Age Estimation by Learning from Label Distributions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.51
– ident: ref_10
  doi: 10.1109/CVPR.2015.7298687
– ident: ref_15
  doi: 10.1109/CVPR42600.2020.00986
– volume: 34
  start-page: 839
  year: 2023
  ident: ref_17
  article-title: Label Distribution Learning by Exploiting Label Distribution Manifold
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3103178
– ident: ref_7
  doi: 10.1145/3323873.3326593
– ident: ref_16
  doi: 10.1109/CVPR.2016.486
– ident: ref_31
  doi: 10.24963/ijcai.2019/460
– ident: ref_11
  doi: 10.1145/1873951.1873965
– volume: 110
  start-page: 107585
  year: 2021
  ident: ref_54
  article-title: Duo-LDL Method for Label Distribution Learning Based on Pairwise Class Dependencies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107585
– ident: ref_44
  doi: 10.24963/ijcai.2020/446
– volume: 35
  start-page: 1695
  year: 2023
  ident: ref_18
  article-title: Label Distribution Learning by Maintaining Label Ranking Relation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 7
  start-page: 42
  year: 1985
  ident: ref_21
  article-title: The Principle of Maximum Entropy
  publication-title: Math. Intell.
  doi: 10.1007/BF03023004
– ident: ref_4
– ident: ref_8
  doi: 10.1609/aaai.v31i1.10485
– volume: 36
  start-page: 1425
  year: 2023
  ident: ref_20
  article-title: Instance-Dependent Inaccurate Label Distribution Learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3329870
– ident: ref_52
– volume: 43
  start-page: 404
  year: 2021
  ident: ref_3
  article-title: Deep Differentiable Random Forests for Age Estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2937294
– ident: ref_9
  doi: 10.1109/CVPR.2019.01007
– ident: ref_13
– ident: ref_45
– ident: ref_27
  doi: 10.1609/aaai.v32i1.11664
– ident: ref_29
  doi: 10.1609/aaai.v32i1.11693
– ident: ref_5
  doi: 10.1609/aaai.v31i1.10822
– ident: ref_33
  doi: 10.24963/ijcai.2018/386
– volume: 28
  start-page: 337
  year: 2000
  ident: ref_24
  article-title: Additive Logistic Regression: A Statistical View of Boosting
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– volume: 16
  start-page: 314
  year: 2019
  ident: ref_36
  article-title: Filling Missing Values by Local Reconstruction for Incomplete Label Distribution Learning
  publication-title: Int. J. Wirel. Mob. Comput.
  doi: 10.1504/IJWMC.2019.100063
– ident: ref_35
  doi: 10.24963/ijcai.2017/443
– volume: 113
  start-page: 102600
  year: 2025
  ident: ref_38
  article-title: Incomplete Label Distribution Learning via Label Correlation Decomposition
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102600
– volume: 320
  start-page: 171
  year: 2018
  ident: ref_26
  article-title: Structured Random Forest for Label Distribution Learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.002
– volume: 28
  start-page: 1734
  year: 2016
  ident: ref_1
  article-title: Label Distribution Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2545658
– ident: ref_40
– ident: ref_28
  doi: 10.1609/aaai.v32i1.11609
– ident: ref_25
  doi: 10.1007/978-3-030-04182-3_52
– ident: ref_34
  doi: 10.24963/ijcai.2019/518
– ident: ref_39
  doi: 10.1609/aaai.v38i11.29194
– ident: ref_22
  doi: 10.1007/978-3-030-36711-4_23
– volume: 121
  start-page: 59
  year: 2020
  ident: ref_23
  article-title: Label Distribution Learning: A Local Collaborative Mechanism
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2020.02.003
– ident: ref_41
  doi: 10.1609/aaai.v38i11.29131
– ident: ref_32
  doi: 10.24963/ijcai.2018/364
– volume: 145
  start-page: 147
  year: 2021
  ident: ref_37
  article-title: Fragmentary Label Distribution Learning via Graph Regularized Maximum Entropy Criteria
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.01.026
– ident: ref_46
– volume: 213
  start-page: 106690
  year: 2021
  ident: ref_53
  article-title: Bidirectional Loss Function for Label Enhancement and Distribution Learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106690
– ident: ref_12
  doi: 10.24963/ijcai.2017/369
– ident: ref_6
  doi: 10.24963/ijcai.2018/99
– volume: 107
  start-page: 107514
  year: 2020
  ident: ref_50
  article-title: Dirichlet Variational Autoencoder
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107514
– ident: ref_14
  doi: 10.1109/TCDS.2025.3529177
– ident: ref_30
  doi: 10.24963/ijcai.2019/461
– volume: 33
  start-page: 1632
  year: 2021
  ident: ref_43
  article-title: Label Enhancement for Label Distribution Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2947040
– volume: 35
  start-page: 11302
  year: 2024
  ident: ref_19
  article-title: Adaptive Weighted Ranking-Oriented Label Distribution Learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3258976
SSID ssj0000913830
Score 2.326047
Snippet Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2736
SubjectTerms Algorithms
Comparative analysis
Data mining
Design
Entropy
Labels
Learning
Low density lipoproteins
Machine learning
Semantics
Variational methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gA9lG-xpSAfkLjgJrZjOz6hBVpVCCokWFROkb9SVSzZVTcpWn494yYLS8UBxD2JEz37zTzH8wbgqcuVD4WPlFlpaBGVpJYHTkWpvNG5Z0KlAud3x-poWrw5kScbVfzpWCVK8bNLkua5NhTjN89YkTGRYahV2SLULy6GvSSWfhoYLrm6DltKYjY-gq3p8fvJ59RTbn13bzYkUN1nv3rLLBnSd3rgbwHpKi1vw42uWdjVNzubbcSdw1tg12_cHzf5st-1bt9_v2Lm-D-fdBt2hqSUTPpZdAeuxeYubG9YFd6D2PtTJ3IkgyfrKUm1KeRD_IroJKxnK5IKCLtlDOStdXFGXidb3qGjFrk4s2TStXN60Ph5CpnkEwr1YTOSvLSruLwP08ODj6-O6NCigXrBREuLOmhtnMq1C1HF2hZ16SxXQUVd52WQGgmiqLVD4SJKLzB90z46VaMSklFI8QBGzbyJD4GwkJvSRx-ldaiiTOm0ZjYxhOVW1mIMz9c4VYveiaNCBZNgrf4A6xieJSyrtE7bc-vtUG6AgyXHq2qCYbmQQkszhr013NWwgJcV8pzBVFKXOC79OQX-ZuDdf7z-Edzkqafw5ZbxHoza8y4-xkSndU-GufwD7E37SA
  priority: 102
  providerName: Unpaywall
Title Generative Learning from Semantically Confused Label Distribution via Auto-Encoding Variational Bayes
URI https://www.proquest.com/docview/3229143783
https://www.mdpi.com/2079-9292/14/13/2736/pdf?version=1751892526
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61yQF6QDzVQIn2gMSFVW2v9-EDQi5NqFAbVZSgcrL2ZYQUnNA4oPx7dpJ1WxBCnHzzSjM7882MPd8H8MIkwrrceppqXtDcC0515jLKlLCFTGzKBC44n03EyTR_f8kvd2DS7cLgb5VdTtwkaje3OCM_DBevCNguFXuz-E5RNQq_rnYSGjpKK7jXG4qxXehnyIzVg_7RaHL-4XrqgiyYiiVb-iEW-v3DG7WZZRoSekBz8RtE_Zmo9-DOqlno9U89m91CovF9uBdLSFJuff4AdnzzEPZuEQs-Ar9lk8ZURiKD6heCmyTkwn8LtkTPzNYE1_1WS-_IqTZ-Ro6RRDfqX5EfXzUpV-2cjho7R4Ajn0JbHUeH5Eiv_fIxTMejj29PaBRUoJalrKV57aQsjEikcV74Wue1MjoTTnhZJ8pxGcI5r6UJbQZTloViS1pvRB36Fu4ZZ0-g18wbvw8kdUmhrLeeaxN6nkIZKVON8awzzWs2gFedDavFljejCv0Gmrz6i8kH8BLtXGFUtVfa6rgcEA5DfqqqDCCacyZ5MYCDzhVVDLdldXM5BkCv3fM_Bz_99-uewd0MBX8389wD6LVXK_88VCGtGcKuGr8bQr88Pju9GMaLFp7TyXn5-Rcz-OQM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V7aH0gPgUCwV8AHHBahLHdnyo0JZutaXbFYIW9Rb8FYS0ZJcmS7V_jt_GeNdpC0KIS_9ALM2M582MM-8BvDCJsC63nqaaK5p7wanOXEZZIaySiU2ZCAvOx2MxPM3fnfGzNfjZ7cKE3yq7nLhM1G5qw4x8BwNPIbbLgr2ZfadBNSq8rnYSGjpKK7jdJcVYXOw48osLbOGa3cN99PfLLDsYnLwd0qgyQC1LWUvzykmpjEikcV74SudVYXQmnPCySgrHJcZ4XkmDtTcrLMMKRFpvRIXFPPdL1QiEgI2c5Qqbv429wfj9h8spT2DdLFiyojtiTCU7V-o2TYoAgtWD-A0S_wSGLdic1zO9uNCTyTXkO7gDt2PJSvqrGLsLa76-B1vXiAzvg1-xV4fUSSJj6xcSNlfIR_8NfRciYbIgYb1w3nhHRtr4CdkPpL1Rb4v8-KpJf95O6aC20wCo5BO28XFUSfb0wjcP4PRGTPsQ1utp7R8BSV2iCuut59pgj6UKI2WqQ_7QmeYV68HrzoblbMXTUWJ_E0xe_sXkPXgV7FyGW9yea6vjMgIeFviwyj6Cds6Z5KoH250ryni9m_IqGHtAL93zPwc__vfnnsPm8OR4VI4Ox0dP4FYWxIaXs-RtWG_P5_4pVkCteRbDjMDnm47sXzR1HPk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1VRQJ6QHyKlAJ7AHFhFdvr3bUPCAXS0NJSIUFRb-5-GSEFJ60dqvw1fh0zsd0WhBCX_gGvNPN23sx45w3AMxsp51MXeGxkztOgJDeJT7jIlMt15GKhaMD5w4HaOUzfH8mjNfjZz8LQs8o-Jq4CtZ856pEPEXg5crvOxLDsnkV8HE9ez084bZCiP639Oo0WIntheYblW_1qd4y-fp4kk-3Pb3d4t2GAOxGLhqel1zq3KtLWBxVKk5aZNYnyKugyyrzUiO-01BbzbpE5gdmHdsGqEhN5GVYbIzD8X9Ok4k5T6pN35_0d0tvMRNQKHQmRR8OLvTZ1jNSBeYP6jQz_pIQNuLGo5mZ5ZqbTS5w3uQ23umSVjVp03YG1UN2FjUsShvcgtLrVFDRZp9X6ldHMCvsUvqPXCAPTJaPBwkUdPNs3NkzZmOR6u01b7Mc3w0aLZsa3KzcjKmVfsIDvmpTsjVmG-j4cXolhH8B6NavCQ2Cxj_LMBReksVhd5ZnVOjYUOUxiZCkG8LK3YTFvFToKrGzI5MVfTD6AF2Tngu5vc2qc6cYQ8DBSwipGSNepFFrmA9jqXVF0F7suLmA4AH7unv85ePPfn3sK1xHPxf7uwd4juJnQluFVE3kL1pvTRXiMqU9jn6wwxuD4qkH9C3uYGpM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gA9lG-xpSAfkLjgJrZjOz6hBVpVCCokWFROkb9SVSzZVTcpWn494yYLS8UBxD2JEz37zTzH8wbgqcuVD4WPlFlpaBGVpJYHTkWpvNG5Z0KlAud3x-poWrw5kScbVfzpWCVK8bNLkua5NhTjN89YkTGRYahV2SLULy6GvSSWfhoYLrm6DltKYjY-gq3p8fvJ59RTbn13bzYkUN1nv3rLLBnSd3rgbwHpKi1vw42uWdjVNzubbcSdw1tg12_cHzf5st-1bt9_v2Lm-D-fdBt2hqSUTPpZdAeuxeYubG9YFd6D2PtTJ3IkgyfrKUm1KeRD_IroJKxnK5IKCLtlDOStdXFGXidb3qGjFrk4s2TStXN60Ph5CpnkEwr1YTOSvLSruLwP08ODj6-O6NCigXrBREuLOmhtnMq1C1HF2hZ16SxXQUVd52WQGgmiqLVD4SJKLzB90z46VaMSklFI8QBGzbyJD4GwkJvSRx-ldaiiTOm0ZjYxhOVW1mIMz9c4VYveiaNCBZNgrf4A6xieJSyrtE7bc-vtUG6AgyXHq2qCYbmQQkszhr013NWwgJcV8pzBVFKXOC79OQX-ZuDdf7z-Edzkqafw5ZbxHoza8y4-xkSndU-GufwD7E37SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Learning+from+Semantically+Confused+Label+Distribution+via+Auto-Encoding+Variational+Bayes&rft.jtitle=Electronics+%28Basel%29&rft.au=Li%2C+Xinhai&rft.au=Meng+Chenxu&rft.au=Zhou%2C+Heng&rft.au=Guo%2C+Yi&rft.date=2025-07-07&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=13&rft.spage=2736&rft_id=info:doi/10.3390%2Felectronics14132736&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon