Rect-ViT: Rectified attention via feature attribution can improve the adversarial robustness of Vision Transformers

Deep neural networks (DNNs) have suffered from input perturbations and adversarial examples (AEs) for a long time, mainly caused by the distribution difference between robust and non-robust features. Recent research shows that Vision Transformers (ViTs) are more robust than traditional convolutional...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 190; p. 107666
Main Authors Kang, Xu, Song, Bin
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2025.107666

Cover

Abstract Deep neural networks (DNNs) have suffered from input perturbations and adversarial examples (AEs) for a long time, mainly caused by the distribution difference between robust and non-robust features. Recent research shows that Vision Transformers (ViTs) are more robust than traditional convolutional neural networks (CNNs). We studied the relationship between the activation distribution and robust features in the attention mechanism in ViTs, coming up with a discrepancy in the token distribution between natural and adversarial examples during adversarial training (AT). When predicting AEs, some tokens irrelevant to the targets are still activated, giving rise to the extraction of non-robust features, which reduces the robustness of ViTs. Therefore, we propose Rect-ViT, which can rectify robust features based on class-relevant gradients. Performing the relevance back-propagation of auxiliary tokens during forward prediction can achieve rectification and alignment of token activation distributions, thereby improving the robustness of ViTs during AT. The proposed rectified attention mechanism can be adapted to a variety of mainstream ViT architectures. Along with traditional AT, Rect-ViT can also be effective in other AT modes like TRADES and MART, even for state-of-the-art AT approaches. Experimental results reveal that Rect-ViT improves average robust accuracy by 0.64% and 1.72% on CIFAR10 and Imagenette against four classic attack methods. These modest gains have significant practical implications in safety-critical applications and suggest potential effectiveness for complex visual tasks.
AbstractList Deep neural networks (DNNs) have suffered from input perturbations and adversarial examples (AEs) for a long time, mainly caused by the distribution difference between robust and non-robust features. Recent research shows that Vision Transformers (ViTs) are more robust than traditional convolutional neural networks (CNNs). We studied the relationship between the activation distribution and robust features in the attention mechanism in ViTs, coming up with a discrepancy in the token distribution between natural and adversarial examples during adversarial training (AT). When predicting AEs, some tokens irrelevant to the targets are still activated, giving rise to the extraction of non-robust features, which reduces the robustness of ViTs. Therefore, we propose Rect-ViT, which can rectify robust features based on class-relevant gradients. Performing the relevance back-propagation of auxiliary tokens during forward prediction can achieve rectification and alignment of token activation distributions, thereby improving the robustness of ViTs during AT. The proposed rectified attention mechanism can be adapted to a variety of mainstream ViT architectures. Along with traditional AT, Rect-ViT can also be effective in other AT modes like TRADES and MART, even for state-of-the-art AT approaches. Experimental results reveal that Rect-ViT improves average robust accuracy by 0.64% and 1.72% on CIFAR10 and Imagenette against four classic attack methods. These modest gains have significant practical implications in safety-critical applications and suggest potential effectiveness for complex visual tasks.
Deep neural networks (DNNs) have suffered from input perturbations and adversarial examples (AEs) for a long time, mainly caused by the distribution difference between robust and non-robust features. Recent research shows that Vision Transformers (ViTs) are more robust than traditional convolutional neural networks (CNNs). We studied the relationship between the activation distribution and robust features in the attention mechanism in ViTs, coming up with a discrepancy in the token distribution between natural and adversarial examples during adversarial training (AT). When predicting AEs, some tokens irrelevant to the targets are still activated, giving rise to the extraction of non-robust features, which reduces the robustness of ViTs. Therefore, we propose Rect-ViT, which can rectify robust features based on class-relevant gradients. Performing the relevance back-propagation of auxiliary tokens during forward prediction can achieve rectification and alignment of token activation distributions, thereby improving the robustness of ViTs during AT. The proposed rectified attention mechanism can be adapted to a variety of mainstream ViT architectures. Along with traditional AT, Rect-ViT can also be effective in other AT modes like TRADES and MART, even for state-of-the-art AT approaches. Experimental results reveal that Rect-ViT improves average robust accuracy by 0.64% and 1.72% on CIFAR10 and Imagenette against four classic attack methods. These modest gains have significant practical implications in safety-critical applications and suggest potential effectiveness for complex visual tasks.Deep neural networks (DNNs) have suffered from input perturbations and adversarial examples (AEs) for a long time, mainly caused by the distribution difference between robust and non-robust features. Recent research shows that Vision Transformers (ViTs) are more robust than traditional convolutional neural networks (CNNs). We studied the relationship between the activation distribution and robust features in the attention mechanism in ViTs, coming up with a discrepancy in the token distribution between natural and adversarial examples during adversarial training (AT). When predicting AEs, some tokens irrelevant to the targets are still activated, giving rise to the extraction of non-robust features, which reduces the robustness of ViTs. Therefore, we propose Rect-ViT, which can rectify robust features based on class-relevant gradients. Performing the relevance back-propagation of auxiliary tokens during forward prediction can achieve rectification and alignment of token activation distributions, thereby improving the robustness of ViTs during AT. The proposed rectified attention mechanism can be adapted to a variety of mainstream ViT architectures. Along with traditional AT, Rect-ViT can also be effective in other AT modes like TRADES and MART, even for state-of-the-art AT approaches. Experimental results reveal that Rect-ViT improves average robust accuracy by 0.64% and 1.72% on CIFAR10 and Imagenette against four classic attack methods. These modest gains have significant practical implications in safety-critical applications and suggest potential effectiveness for complex visual tasks.
ArticleNumber 107666
Author Song, Bin
Kang, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Kang
  fullname: Kang, Xu
  email: xukang@stu.xidian.edu.com
– sequence: 2
  givenname: Bin
  orcidid: 0000-0002-8096-3370
  surname: Song
  fullname: Song, Bin
  email: bsong@mail.xidian.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40517746$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNU7Lb6DUTy2JdZk0kmf3wQpFRbKAiy9jVkkzuYZSepSWbBb2-mU33sUy4nv3NJzrlAZzFFQOg9JVtKqPh42EaYI9RtT_qhSVII8QptqJK666Xqz9CGKM06QRQ5RxelHAghQnH2Bp1zMlApudig8gNc7R7C7hNepjAG8NjWCrGGFPEpWDyCrXOGRc1hPz_pzkYcpsecToDrr3bnT5CLzcEecU77udQIpeA04odQFsMu21jGlKeGvUWvR3ss8O75vEQ_v97srm-7--_f7q6_3HeOUVY75ojgTGvJtQMlBbF6FIOVwDjhXGs-KCE9qEHuXRu0dlZ77ZVyzA_CMXaJrta97Z2_ZyjVTKE4OB5thDQXw3qqWySE0IZ-eEbn_QTePOYw2fzH_AuqAXwFXE6lZBj_I5SYpQ9zMGsfZunDrH002-fVBu2fpwDZFBcgOvAht7iNT-HlBX8BaSWWBg
Cites_doi 10.1109/TMI.2023.3317088
10.1109/MITS.2018.2806619
10.1109/TIFS.2019.2894031
10.1109/LGRS.2019.2931305
10.1016/j.ins.2023.01.019
10.1109/TIFS.2020.3036801
10.1007/s11263-019-01228-7
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2025.107666
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 40517746
10_1016_j_neunet_2025_107666
S0893608025005465
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAYXX
ACLOT
CITATION
~HD
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c313t-3c064399749ce8760a9f65a7e340449945867de857bc67d99ca9d9d88c3d56c33
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Oct 02 22:35:24 EDT 2025
Sat Aug 09 01:32:29 EDT 2025
Wed Oct 01 05:35:16 EDT 2025
Sat Sep 06 17:17:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Robustness
Rectified attention
Vision Transformer
Adversarial training
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-3c064399749ce8760a9f65a7e340449945867de857bc67d99ca9d9d88c3d56c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8096-3370
PMID 40517746
PQID 3219006001
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3219006001
pubmed_primary_40517746
crossref_primary_10_1016_j_neunet_2025_107666
elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Croce, Hein (b6) 2020; vol. 119
Krizhevsky, A., & Sutskever, I. (0000). Cifar-10 dataset URL
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., et al. (2014). Intriguing properties of neural networks. In Y. Bengio, Y. LeCun (Eds.)
Wang, Zou, Yi, Bailey, Ma, Gu (b41) 2020
Carlini, Wagner (b3) 2017
Paul, Chen (b30) 2022
Ren, Zhang, Wang, Chen, Zhou, Chen (b33) 2021
Papernot, McDaniel, Wu, Jha, Swami (b29) 2016
Croce, Hein (b5) 2020; vol. 119
Jmal, Hmida, Basta, Ikram, Kaafar, Walker (b15) 2023
Kim, Shim, Kim, Shim (b17) 2023
Mo, Wu, Wang, Guo, Wang (b26) 2022
.
Shao, Shi, Yi, Chen, Hsieh (b35) 2022; 2022
Rebuffi, Croce, Gowal (b32) 2023
Howard, J. (0000). Imagenette dataset. URL
Herrmann, Sargent, Jiang, Zabih, Chang, Liu (b13) 2022
Lovisotto, Finnie, Munoz, Murnmadi, Metzen (b22) 2022
Wu, Gu, Li, Cai, He, Liu (b43) 2022; vol. 13673
Namiot, Ilyushin (b27) 2022; 10
Yin, Yao, Shi, Du, Xiao (b46) 2023
Yan, Guo, Zhang (b44) 2018
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette (b10) 2016; 17
Fawzi, Moosavi-Dezfooli, Frossard (b9) 2016
Qin, Zhang, Chen, Lakshminarayanan, Beutel, Wang (b31) 2022
Bhojanapalli, Chakrabarti, Glasner, Li, Unterthiner, Veit (b2) 2021
Chang, Wang, Meng, Xiang, Pan (b4) 2018; 10
Kang, Song, Guo, Qin, Du, Guizani (b16) 2023; 624
Ling, Wang, Dai, Yu, Liang, Kong (b20) 2024; 43
Wang, Gao, Qi (b40) 2017
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (b34) 2020; 128
Hafemann, Sabourin, Oliveira (b12) 2019; 14
Teng, Wang, Shi, Liu, Wang (b37) 2020; 17
Tramèr, Carlini, Brendel, Madry (b39) 2020
Liu, Lin, Cao, Hu, Wei, Zhang (b21) 2021
Zhou, Wang, Peng, Gao, Wang, Yu (b49) 2021
Mahmood, Mahmood, van Dijk (b24) 2021
Mao, Qi, Chen, Li, Duan, Ye (b25) 2022
Yan, Zhang, Niu, Feng, Tan, Sugiyama (b45) 2021; vol. 139
Andriushchenko, Croce, Flammarion, Hein (b1) 2020; vol. 12368
d’Ascoli, Touvron, Leavitt, Morcos, Biroli, Sagun (b7) 2021; vol. 139
Ni, Shen, Chen, Cao, Yang (b28) 2022; 71
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner (b8) 2021
Zhang, Yu, Jiao, Xing, Ghaoui, Jordan (b47) 2019; vol. 97
Touvron, Cord, Douze, Massa, Sablayrolles, Jégou (b38) 2021; vol. 139
Wei, Wang, Guo, Wang (b42) 2023
Zhong, Deng (b48) 2021; 16
Li, Xu (b19) 2023
Goodfellow, Shlens, Szegedy (b11) 2015
Madry, Makelov, Schmidt, Tsipras, Vladu (b23) 2018
Goodfellow (10.1016/j.neunet.2025.107666_b11) 2015
Carlini (10.1016/j.neunet.2025.107666_b3) 2017
Mo (10.1016/j.neunet.2025.107666_b26) 2022
Chang (10.1016/j.neunet.2025.107666_b4) 2018; 10
Yan (10.1016/j.neunet.2025.107666_b45) 2021; vol. 139
Mao (10.1016/j.neunet.2025.107666_b25) 2022
Wang (10.1016/j.neunet.2025.107666_b40) 2017
Wei (10.1016/j.neunet.2025.107666_b42) 2023
Zhong (10.1016/j.neunet.2025.107666_b48) 2021; 16
Wu (10.1016/j.neunet.2025.107666_b43) 2022; vol. 13673
Bhojanapalli (10.1016/j.neunet.2025.107666_b2) 2021
Jmal (10.1016/j.neunet.2025.107666_b15) 2023
Ling (10.1016/j.neunet.2025.107666_b20) 2024; 43
Ni (10.1016/j.neunet.2025.107666_b28) 2022; 71
Qin (10.1016/j.neunet.2025.107666_b31) 2022
Paul (10.1016/j.neunet.2025.107666_b30) 2022
Shao (10.1016/j.neunet.2025.107666_b35) 2022; 2022
Yan (10.1016/j.neunet.2025.107666_b44) 2018
Zhou (10.1016/j.neunet.2025.107666_b49) 2021
10.1016/j.neunet.2025.107666_b18
10.1016/j.neunet.2025.107666_b14
Wang (10.1016/j.neunet.2025.107666_b41) 2020
Croce (10.1016/j.neunet.2025.107666_b5) 2020; vol. 119
Zhang (10.1016/j.neunet.2025.107666_b47) 2019; vol. 97
Tramèr (10.1016/j.neunet.2025.107666_b39) 2020
Kang (10.1016/j.neunet.2025.107666_b16) 2023; 624
Liu (10.1016/j.neunet.2025.107666_b21) 2021
Lovisotto (10.1016/j.neunet.2025.107666_b22) 2022
Mahmood (10.1016/j.neunet.2025.107666_b24) 2021
d’Ascoli (10.1016/j.neunet.2025.107666_b7) 2021; vol. 139
Yin (10.1016/j.neunet.2025.107666_b46) 2023
Croce (10.1016/j.neunet.2025.107666_b6) 2020; vol. 119
Papernot (10.1016/j.neunet.2025.107666_b29) 2016
Ren (10.1016/j.neunet.2025.107666_b33) 2021
Selvaraju (10.1016/j.neunet.2025.107666_b34) 2020; 128
Kim (10.1016/j.neunet.2025.107666_b17) 2023
Andriushchenko (10.1016/j.neunet.2025.107666_b1) 2020; vol. 12368
Herrmann (10.1016/j.neunet.2025.107666_b13) 2022
Fawzi (10.1016/j.neunet.2025.107666_b9) 2016
Touvron (10.1016/j.neunet.2025.107666_b38) 2021; vol. 139
Teng (10.1016/j.neunet.2025.107666_b37) 2020; 17
Madry (10.1016/j.neunet.2025.107666_b23) 2018
Li (10.1016/j.neunet.2025.107666_b19) 2023
10.1016/j.neunet.2025.107666_b36
Dosovitskiy (10.1016/j.neunet.2025.107666_b8) 2021
Hafemann (10.1016/j.neunet.2025.107666_b12) 2019; 14
Ganin (10.1016/j.neunet.2025.107666_b10) 2016; 17
Namiot (10.1016/j.neunet.2025.107666_b27) 2022; 10
Rebuffi (10.1016/j.neunet.2025.107666_b32) 2023
References_xml – volume: 17
  start-page: 59:1
  year: 2016
  end-page: 59:35
  ident: b10
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– year: 2022
  ident: b26
  article-title: When adversarial training meets vision transformers: Recipes from training to architecture
  publication-title: NeurIPS
– year: 2022
  ident: b31
  article-title: Understanding and improving robustness of vision transformers through patch-based negative augmentation
  publication-title: Advances in neural information processing systems 35: Annual conference on neural information processing systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022
– volume: 10
  start-page: 126
  year: 2022
  end-page: 134
  ident: b27
  article-title: On the robustness and security of artificial intelligence systems
  publication-title: International Journal of Open Information Technologies
– start-page: 39
  year: 2017
  end-page: 57
  ident: b3
  article-title: Towards evaluating the robustness of neural networks
  publication-title: 2017 IEEE symposium on security and privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017
– volume: vol. 119
  start-page: 2206
  year: 2020
  end-page: 2216
  ident: b6
  article-title: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
  publication-title: Proceedings of the 37th international conference on machine learning, ICML 2020, 13-18 July 2020, virtual event
– start-page: 7858
  year: 2021
  end-page: 7867
  ident: b49
  article-title: Removing adversarial noise in class activation feature space
  publication-title: 2021 IEEE/CVF international conference on computer vision
– volume: 16
  start-page: 1452
  year: 2021
  end-page: 1466
  ident: b48
  article-title: Towards transferable adversarial attack against deep face recognition
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 7818
  year: 2021
  end-page: 7827
  ident: b24
  article-title: On the robustness of vision transformers to adversarial examples
  publication-title: 2021 IEEE/CVF international conference on computer vision
– volume: 624
  start-page: 624
  year: 2023
  end-page: 638
  ident: b16
  article-title: Black-box attacks on image classification model with advantage actor-critic algorithm in latent space
  publication-title: Information Sciences
– reference: Krizhevsky, A., & Sutskever, I. (0000). Cifar-10 dataset URL
– volume: 43
  start-page: 674
  year: 2024
  end-page: 685
  ident: b20
  article-title: Mtanet: Multi-task attention network for automatic medical image segmentation and classification
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 1624
  year: 2016
  end-page: 1632
  ident: b9
  article-title: Robustness of classifiers: from adversarial to random noise
  publication-title: Advances in neural information processing systems 29: Annual conference on neural information processing systems 2016, December 5-10, 2016, Barcelona, Spain
– reference: Howard, J. (0000). Imagenette dataset. URL
– year: 2020
  ident: b39
  article-title: On adaptive attacks to adversarial example defenses
  publication-title: Advances in neural information processing systems 33: Annual conference on neural information processing systems 2020, NeurIPS 2020, December 6-12, 2020, virtual
– volume: vol. 12368
  start-page: 484
  year: 2020
  end-page: 501
  ident: b1
  article-title: Square attack: A query-efficient black-box adversarial attack via random search
  publication-title: Computer vision - ECCV 2020-16th European conference, Glasgow, UK, August 23-28, 2020, proceedings, part XXIII
– volume: vol. 139
  start-page: 2286
  year: 2021
  end-page: 2296
  ident: b7
  article-title: Convit: Improving vision transformers with soft convolutional inductive biases
  publication-title: Proceedings of the 38th international conference on machine learning, ICML 2021, 18-24 July 2021 virtual event
– year: 2023
  ident: b15
  article-title: Spgnn-api: A transferable graph neural network for attack paths identification and autonomous mitigation
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2023
  ident: b32
  article-title: Revisiting adapters with adversarial training
  publication-title: The eleventh international conference on learning representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023
– start-page: 8193
  year: 2023
  end-page: 8201
  ident: b42
  article-title: Cfa: Class-wise calibrated fair adversarial training
  publication-title: 2023 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 15213
  year: 2022
  end-page: 15222
  ident: b22
  article-title: Give me your attention: Dot-product attention considered harmful for adversarial patch robustness
  publication-title: 2022 IEEE/CVF conference on computer vision and pattern recognition
– year: 2018
  ident: b23
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: 6th international conference on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, conference track proceedings
– start-page: 12032
  year: 2022
  end-page: 12041
  ident: b25
  article-title: Towards robust vision transformer
  publication-title: 2022 IEEE/CVF conference on computer vision and pattern recognition
– year: 2017
  ident: b40
  article-title: A theoretical framework for robustness of (deep) classifiers against adversarial samples
  publication-title: 5th international conference on learning representations, ICLR 2017, Toulon, France, April 24-26, 2017, workshop track proceedings
– volume: 10
  start-page: 80
  year: 2018
  end-page: 92
  ident: b4
  article-title: Vision-based occlusion handling and vehicle classification for traffic surveillance systems
  publication-title: IEEE Intelligent Transportation Systems Magazine
– start-page: 13409
  year: 2022
  end-page: 13419
  ident: b13
  article-title: Pyramid adversarial training improves vit performance
  publication-title: 2022 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 9992
  year: 2021
  end-page: 10002
  ident: b21
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
  publication-title: 2021 IEEE/CVF international conference on computer vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021
– year: 2020
  ident: b41
  article-title: Improving adversarial robustness requires revisiting misclassified examples
  publication-title: 8th international conference on learning representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020
– volume: 128
  start-page: 336
  year: 2020
  end-page: 359
  ident: b34
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
  publication-title: International Journal of Computer Vision
– volume: vol. 13673
  start-page: 307
  year: 2022
  end-page: 325
  ident: b43
  article-title: Towards efficient adversarial training on vision transformers
  publication-title: Computer vision - ECCV 2022-17th European conference, Tel Aviv, Israel, October 23-27, 2022,, proceedings, part XIII
– year: 2021
  ident: b33
  article-title: A unified game-theoretic interpretation of adversarial robustness
– volume: vol. 139
  start-page: 10347
  year: 2021
  end-page: 10357
  ident: b38
  article-title: Training data-efficient image transformers & distillation through attention
  publication-title: Proceedings of the 38th international conference on machine learning, ICML 2021, 18-24 July 2021 virtual event
– volume: 71
  start-page: 1
  year: 2022
  end-page: 14
  ident: b28
  article-title: An improved deep network-based scene classification method for self-driving cars
  publication-title: IEEE Transactions on Instrumentation and Measurement
– start-page: 1
  year: 2023
  end-page: 5
  ident: b17
  article-title: Vision transformer-based feature extraction for generalized zero-shot learning
  publication-title: ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal processing
– start-page: 417
  year: 2018
  end-page: 426
  ident: b44
  article-title: Deep defense: Training dnns with improved adversarial robustness
  publication-title: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada
– volume: 14
  start-page: 2153
  year: 2019
  end-page: 2166
  ident: b12
  article-title: Characterizing and evaluating adversarial examples for offline handwritten signature verification
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 10211
  year: 2021
  end-page: 10221
  ident: b2
  article-title: Understanding robustness of transformers for image classification
  publication-title: 2021 IEEE/CVF international conference on computer vision
– volume: 17
  start-page: 789
  year: 2020
  end-page: 793
  ident: b37
  article-title: Classifier-constrained deep adversarial domain adaptation for cross-domain semisupervised classification in remote sensing images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– reference: .
– year: 2015
  ident: b11
  article-title: Explaining and harnessing adversarial examples
  publication-title: 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, conference track proceedings
– start-page: 7558
  year: 2023
  end-page: 7568
  ident: b19
  article-title: Trade-off between robustness and accuracy of vision transformers
  publication-title: IEEE/CVF conference on computer vision and pattern recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023
– start-page: 582
  year: 2016
  end-page: 597
  ident: b29
  article-title: Distillation as a defense to adversarial perturbations against deep neural networks
  publication-title: 2016 IEEE symposium on security and privacy
– volume: vol. 139
  start-page: 11693
  year: 2021
  end-page: 11703
  ident: b45
  article-title: CIFS: improving adversarial robustness of cnns via channel-wise importance-based feature selection
  publication-title: Proceedings of the 38th international conference on machine learning, ICML 2021, 18-24 July 2021, virtual event
– year: 2021
  ident: b8
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: 9th international conference on learning representations, ICLR 2021, virtual event, Austria, May 3-7, 2021
– volume: vol. 97
  start-page: 7472
  year: 2019
  end-page: 7482
  ident: b47
  article-title: Theoretically principled trade-off between robustness and accuracy
  publication-title: Proceedings of the 36th international conference on machine learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
– volume: 2022
  year: 2022
  ident: b35
  article-title: On the adversarial robustness of vision transformers
  publication-title: Transactions on Machine Learning Research
– volume: vol. 119
  start-page: 2196
  year: 2020
  end-page: 2205
  ident: b5
  article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack
  publication-title: Proceedings of the 37th international conference on machine learning, ICML 2020 13-18 July 2020, virtual event
– start-page: 20544
  year: 2023
  end-page: 20553
  ident: b46
  article-title: Again: Adversarial training with attribution span enlargement and hybrid feature fusion
  publication-title: 2023 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 2071
  year: 2022
  end-page: 2081
  ident: b30
  article-title: Vision transformers are robust learners
  publication-title: Thirty-sixth AAAI conference on artificial intelligence, AAAI 2022, thirty-fourth conference on innovative applications of artificial intelligence, IAAI 2022, the twelveth symposium on educational advances in artificial intelligence, EAAI 2022 virtual event, February 22 - March 1, 2022
– reference: Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., et al. (2014). Intriguing properties of neural networks. In Y. Bengio, Y. LeCun (Eds.),
– start-page: 7558
  year: 2023
  ident: 10.1016/j.neunet.2025.107666_b19
  article-title: Trade-off between robustness and accuracy of vision transformers
– year: 2020
  ident: 10.1016/j.neunet.2025.107666_b41
  article-title: Improving adversarial robustness requires revisiting misclassified examples
– start-page: 10211
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b2
  article-title: Understanding robustness of transformers for image classification
– year: 2021
  ident: 10.1016/j.neunet.2025.107666_b33
– ident: 10.1016/j.neunet.2025.107666_b36
– volume: vol. 13673
  start-page: 307
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b43
  article-title: Towards efficient adversarial training on vision transformers
– volume: 43
  start-page: 674
  issue: 2
  year: 2024
  ident: 10.1016/j.neunet.2025.107666_b20
  article-title: Mtanet: Multi-task attention network for automatic medical image segmentation and classification
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2023.3317088
– volume: 10
  start-page: 80
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2025.107666_b4
  article-title: Vision-based occlusion handling and vehicle classification for traffic surveillance systems
  publication-title: IEEE Intelligent Transportation Systems Magazine
  doi: 10.1109/MITS.2018.2806619
– volume: 14
  start-page: 2153
  issue: 8
  year: 2019
  ident: 10.1016/j.neunet.2025.107666_b12
  article-title: Characterizing and evaluating adversarial examples for offline handwritten signature verification
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2894031
– start-page: 20544
  year: 2023
  ident: 10.1016/j.neunet.2025.107666_b46
  article-title: Again: Adversarial training with attribution span enlargement and hybrid feature fusion
– year: 2015
  ident: 10.1016/j.neunet.2025.107666_b11
  article-title: Explaining and harnessing adversarial examples
– volume: vol. 119
  start-page: 2196
  year: 2020
  ident: 10.1016/j.neunet.2025.107666_b5
  article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack
– year: 2022
  ident: 10.1016/j.neunet.2025.107666_b26
  article-title: When adversarial training meets vision transformers: Recipes from training to architecture
– volume: 10
  start-page: 126
  issue: 9
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b27
  article-title: On the robustness and security of artificial intelligence systems
  publication-title: International Journal of Open Information Technologies
– start-page: 582
  year: 2016
  ident: 10.1016/j.neunet.2025.107666_b29
  article-title: Distillation as a defense to adversarial perturbations against deep neural networks
– volume: vol. 12368
  start-page: 484
  year: 2020
  ident: 10.1016/j.neunet.2025.107666_b1
  article-title: Square attack: A query-efficient black-box adversarial attack via random search
– volume: 17
  start-page: 789
  issue: 5
  year: 2020
  ident: 10.1016/j.neunet.2025.107666_b37
  article-title: Classifier-constrained deep adversarial domain adaptation for cross-domain semisupervised classification in remote sensing images
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2019.2931305
– year: 2020
  ident: 10.1016/j.neunet.2025.107666_b39
  article-title: On adaptive attacks to adversarial example defenses
– year: 2023
  ident: 10.1016/j.neunet.2025.107666_b32
  article-title: Revisiting adapters with adversarial training
– volume: vol. 139
  start-page: 10347
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b38
  article-title: Training data-efficient image transformers & distillation through attention
– year: 2018
  ident: 10.1016/j.neunet.2025.107666_b23
  article-title: Towards deep learning models resistant to adversarial attacks
– volume: 624
  start-page: 624
  year: 2023
  ident: 10.1016/j.neunet.2025.107666_b16
  article-title: Black-box attacks on image classification model with advantage actor-critic algorithm in latent space
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.01.019
– volume: 17
  start-page: 59:1
  year: 2016
  ident: 10.1016/j.neunet.2025.107666_b10
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– volume: 2022
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b35
  article-title: On the adversarial robustness of vision transformers
  publication-title: Transactions on Machine Learning Research
– volume: vol. 119
  start-page: 2206
  year: 2020
  ident: 10.1016/j.neunet.2025.107666_b6
  article-title: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
– volume: vol. 97
  start-page: 7472
  year: 2019
  ident: 10.1016/j.neunet.2025.107666_b47
  article-title: Theoretically principled trade-off between robustness and accuracy
– volume: vol. 139
  start-page: 2286
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b7
  article-title: Convit: Improving vision transformers with soft convolutional inductive biases
– year: 2022
  ident: 10.1016/j.neunet.2025.107666_b31
  article-title: Understanding and improving robustness of vision transformers through patch-based negative augmentation
– year: 2017
  ident: 10.1016/j.neunet.2025.107666_b40
  article-title: A theoretical framework for robustness of (deep) classifiers against adversarial samples
– start-page: 7858
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b49
  article-title: Removing adversarial noise in class activation feature space
– year: 2021
  ident: 10.1016/j.neunet.2025.107666_b8
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– start-page: 12032
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b25
  article-title: Towards robust vision transformer
– start-page: 13409
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b13
  article-title: Pyramid adversarial training improves vit performance
– volume: 16
  start-page: 1452
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b48
  article-title: Towards transferable adversarial attack against deep face recognition
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2020.3036801
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b28
  article-title: An improved deep network-based scene classification method for self-driving cars
  publication-title: IEEE Transactions on Instrumentation and Measurement
– start-page: 39
  year: 2017
  ident: 10.1016/j.neunet.2025.107666_b3
  article-title: Towards evaluating the robustness of neural networks
– start-page: 1624
  year: 2016
  ident: 10.1016/j.neunet.2025.107666_b9
  article-title: Robustness of classifiers: from adversarial to random noise
– start-page: 7818
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b24
  article-title: On the robustness of vision transformers to adversarial examples
– start-page: 2071
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b30
  article-title: Vision transformers are robust learners
– start-page: 8193
  year: 2023
  ident: 10.1016/j.neunet.2025.107666_b42
  article-title: Cfa: Class-wise calibrated fair adversarial training
– volume: vol. 139
  start-page: 11693
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b45
  article-title: CIFS: improving adversarial robustness of cnns via channel-wise importance-based feature selection
– start-page: 15213
  year: 2022
  ident: 10.1016/j.neunet.2025.107666_b22
  article-title: Give me your attention: Dot-product attention considered harmful for adversarial patch robustness
– year: 2023
  ident: 10.1016/j.neunet.2025.107666_b15
  article-title: Spgnn-api: A transferable graph neural network for attack paths identification and autonomous mitigation
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 128
  start-page: 336
  issue: 2
  year: 2020
  ident: 10.1016/j.neunet.2025.107666_b34
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01228-7
– ident: 10.1016/j.neunet.2025.107666_b18
– start-page: 1
  year: 2023
  ident: 10.1016/j.neunet.2025.107666_b17
  article-title: Vision transformer-based feature extraction for generalized zero-shot learning
– start-page: 9992
  year: 2021
  ident: 10.1016/j.neunet.2025.107666_b21
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
– start-page: 417
  year: 2018
  ident: 10.1016/j.neunet.2025.107666_b44
  article-title: Deep defense: Training dnns with improved adversarial robustness
– ident: 10.1016/j.neunet.2025.107666_b14
SSID ssj0006843
Score 2.4693298
Snippet Deep neural networks (DNNs) have suffered from input perturbations and adversarial examples (AEs) for a long time, mainly caused by the distribution difference...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 107666
SubjectTerms Adversarial training
Algorithms
Attention
Deep Learning
Humans
Neural Networks, Computer
Rectified attention
Robustness
Vision Transformer
Title Rect-ViT: Rectified attention via feature attribution can improve the adversarial robustness of Vision Transformers
URI https://dx.doi.org/10.1016/j.neunet.2025.107666
https://www.ncbi.nlm.nih.gov/pubmed/40517746
https://www.proquest.com/docview/3219006001
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-wwFA6iGzden_eOLyLcbZzO5NHGnYgyKrpxFHchTRPoXXTE6bj0t3tO2ngRFMFdGtI25CRfvrTnO4eQv0EKVB1YpnXpmOCuAByUlvGxDtoGWVUa9c43t2pyL64e5eMSOUtaGHSr7LG_w_SI1n3NsB_N4VNdD-8y2GoVSkUl8g6FQnMhcsxicPz6381DFZ3nHDRm2DrJ56KPV-MXjUePyrGEqlzFWImfbk9f0c-4DV2sk7WeP9LTrosbZMk3m-RXys1A-6W6RebAB1v2UE9PKJbqAFSTYizN6N1IX2pLg49BPbE2Zb2iMNC0jt8ZPAVqSC3ma55bnKX0eVYu5i1CI50F-hBF6XSaiC802yb3F-fTswnrEywwx0e8ZdxFQgJHCu08wGJmdVDS5p6LTMBRSMhC5ZUvZF46KGjtrAbbFYXjlVSO8x2y3Mwa_4fQ0cjmLihnrUVt6rgMHh43rnxmKy8zOyAsjat56uJomORg9s90djBoB9PZYUDyNPjmw3wwAPXf3HmUbGVgqeD_D9v42WJuOKAzxp_JRgPyuzPie18ExirLhdr98Xv3yCpedY5--2S5fV74AyAsbXkYZ-QhWTm9vJ7cvgFVJexL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigX3o_laSSu7mbjR2JuqKJaoO2FbdWb5Ti2lB6yVTfLsb-9M04MqlSExM1ynMSasT9_Tr4ZA3yKSlLUgePGNJ5L4WvEQeW4KE00Lqq2NRTvfHyil6fy-7k634GDHAtDssoJ-0dMT2g91cwna84vu27-s8ClVlOoqCLeodU9uC9VWdEObP_6j85D16N0Dltzap7j55LIqw_bPpCkslRYVemULPHO9elv_DOtQ4eP4eFEINmXsY9PYCf0T-FRPpyBTXP1GWyQEA78rFt9ZlTqInJNRsk0k7yR_eociyFl9aTafOwVQ0uzLn1oCAy5IXN0YPPG0TBlV-tmuxkIG9k6srMUlc5Wmflis-dwevh1dbDk0wkL3IuFGLjwiZHgnsL4gLhYOBO1clUQspC4F5Kq1lUbalU1HgvGeGfQeXXtRau0F-IF7PbrPrwCtli4ykftnXMUnFo2MeDjyjYUrg2qcDPg2a72ckykYbPC7MKOfrDkBzv6YQZVNr69NSAsYv0_7vyYfWVxrtAPENeH9XZjBcIzJaApFjN4OTrxd18kJSurpH793-_9AHvL1fGRPfp28uMNPKAro-rvLewOV9vwDtnL0LxPo_MG1vLt4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rect-ViT%3A+Rectified+attention+via+feature+attribution+can+improve+the+adversarial+robustness+of+Vision+Transformers&rft.jtitle=Neural+networks&rft.au=Kang%2C+Xu&rft.au=Song%2C+Bin&rft.date=2025-10-01&rft.issn=0893-6080&rft.volume=190&rft.spage=107666&rft_id=info:doi/10.1016%2Fj.neunet.2025.107666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2025_107666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon