Object classification on video data of meteors and meteor-like phenomena: algorithm and data
ABSTRACT Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree...
Saved in:
| Published in | Monthly notices of the Royal Astronomical Society Vol. 516; no. 1; pp. 811 - 823 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford University Press
31.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0035-8711 1365-8711 1365-2966 1365-2966 |
| DOI | 10.1093/mnras/stac1948 |
Cover
| Abstract | ABSTRACT
Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, namely classification, feature learning, anomaly detection, and extrapolation. For the classification task, a mean accuracy of 99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625. |
|---|---|
| AbstractList | Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, namely classification, feature learning, anomaly detection, and extrapolation. For the classification task, a mean accuracy of 99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625. ABSTRACT Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, namely classification, feature learning, anomaly detection, and extrapolation. For the classification task, a mean accuracy of 99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625. |
| Author | Mäder, Patrick Hofmann, Martin Müller, Thomas Hankey, Mike Ennes, Mario Sennlaub, Rabea Kroll, Peter |
| Author_xml | – sequence: 1 givenname: Rabea surname: Sennlaub fullname: Sennlaub, Rabea – sequence: 2 givenname: Martin orcidid: 0000-0002-4440-3317 surname: Hofmann fullname: Hofmann, Martin email: Martin.Hofmann@tu-ilmenau.de – sequence: 3 givenname: Mike surname: Hankey fullname: Hankey, Mike – sequence: 4 givenname: Mario surname: Ennes fullname: Ennes, Mario – sequence: 5 givenname: Thomas surname: Müller fullname: Müller, Thomas – sequence: 6 givenname: Peter surname: Kroll fullname: Kroll, Peter – sequence: 7 givenname: Patrick orcidid: 0000-0001-6871-2707 surname: Mäder fullname: Mäder, Patrick |
| BookMark | eNqFkM1LAzEQxYNUsK1ePefqYdtks7vNepPiFxS86E1YZrMTm7qblCRV-t-7_fAiSGFg5vB-M2_eiAyss0jINWcTzkox7ayHMA0RFC8zeUaGXBR5kpZFMSBDxkSeyBnnF2QUwooxlom0GJL3l3qFKlLVQghGGwXROEv7-jINOtpABOo07TCi84GCbY5z0ppPpOslWtehhVsK7YfzJi67vWgHXpJzDW3Aq2Mfk7eH-9f5U7J4eXye3y0SJbiIiZC8VExKoaBQOqsbIXgqMBeFrGuUWYm9W1ANSsU1y1POy1pjWYCeYQ80Ykymh70bu4btN7RttfamA7-tOKt24VT7cKrfcHoiOxDKuxA86kqZuH89ejDt_9jkD3byzs0BcJv1Ke0Pt2yOog |
| CitedBy_id | crossref_primary_10_1134_S1063772923060100 crossref_primary_10_1016_j_pss_2023_105802 crossref_primary_10_31857_S0004629923060105 |
| Cites_doi | 10.1007/978-3-319-24261-3_7 10.1109/TNNLS.2021.3050422 10.1016/j.pss.2018.02.013 10.1145/3439950 10.1016/j.icarus.2011.08.012 10.1093/mnras/stab2008 10.1109/TPAMI.2015.2389824 10.1126/science.290.5500.2319 10.1371/journal.pone.0152173 10.3390/e23121690 10.1109/ACCESS.2021.3083060 10.5220/0007248601810190 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022 |
| Copyright_xml | – notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022 |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1093/mnras/stac1948 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Astronomy & Astrophysics |
| EISSN | 1365-2966 |
| EndPage | 823 |
| ExternalDocumentID | 10.1093/mnras/stac1948 10_1093_mnras_stac1948 |
| GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABVLG AHGBF CITATION AAMMB ADTOC AEFGJ AGQPQ AGXDD AIDQK AIDYY UNPAY |
| ID | FETCH-LOGICAL-c313t-3819c0883ca6cf4bd33123e5368bbe849e004acde8c1f052119bfe96af7e6cfd3 |
| IEDL.DBID | UNPAY |
| ISSN | 0035-8711 1365-8711 1365-2966 |
| IngestDate | Sun Oct 26 03:55:48 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Wed Oct 01 04:09:25 EDT 2025 Wed Apr 02 07:06:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | methods: data analysis techniques: image processing meteors astronomical data bases: miscellaneous |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-3819c0883ca6cf4bd33123e5368bbe849e004acde8c1f052119bfe96af7e6cfd3 |
| ORCID | 0000-0002-4440-3317 0000-0001-6871-2707 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/mnras/article-pdf/516/1/811/45615898/stac1948.pdf |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1093_mnras_stac1948 crossref_citationtrail_10_1093_mnras_stac1948 crossref_primary_10_1093_mnras_stac1948 oup_primary_10_1093_mnras_stac1948 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-31 |
| PublicationDateYYYYMMDD | 2022-08-31 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Monthly notices of the Royal Astronomical Society |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Bühler (2022083100081545300_bib5) 1988 Carreira (2022083100081545300_bib6) 2019 He (2022083100081545300_bib16) 2015; 37 Chechik (2022083100081545300_bib7) 2010; 11 AllSky7 Fireball Network Germany (2022083100081545300_bib1) 2020 Vaswani (2022083100081545300_bib34) 2017 SonotaCo Network Simultaneously Observed Meteor Data Sets SNM20xxx (2022083100081545300_bib31) 2021 Le Lan (2022083100081545300_bib27) 2021; 23 Hofmann (2022083100081545300_bib19) 2022 NASA’s All Sky Fireball Network (2022083100081545300_bib28) 2021 Clopper (2022083100081545300_bib10) 1934 YouTube-8M Dataset (2022083100081545300_bib37) 2021 Vida (2022083100081545300_bib35) 2021; 506 Jenniskens (2022083100081545300_bib23) 2018; 154 Ioffe (2022083100081545300_bib20) 2015 Kornos (2022083100081545300_bib26) 2014 Video Meteor Database (2022083100081545300_bib36) 2021 AMS Fireball Camera Generation (2022083100081545300_bib2) 2021 Goldstein (2022083100081545300_bib13) 2016; 11 Hoffer (2022083100081545300_bib18) 2015 Chladni (2022083100081545300_bib9) 1794 He (2022083100081545300_bib17) 2016 Hankey (2022083100081545300_bib15) 2020 Gural (2022083100081545300_bib14) 2019; 489 Brust (2022083100081545300_bib4) 2019 Kingma (2022083100081545300_bib24) 2015 Korlević (2022083100081545300_bib25) 2013; 41 Ferus (2022083100081545300_bib11) 2020 Janches (2022083100081545300_bib21) 2020 Tenenbaum (2022083100081545300_bib32) 2000; 290 Gebru (2022083100081545300_bib12) 2021 Pang (2022083100081545300_bib30) 2021; 54 Nassif (2022083100081545300_bib29) 2021; 9 Jenniskens (2022083100081545300_bib22) 2011; 216 Chen (2022083100081545300_bib8) 2020 Asteroids Dynamic Site (2022083100081545300_bib3) 2021 Van der Maaten (2022083100081545300_bib33) 2008 |
| References_xml | – year: 2021 ident: 2022083100081545300_bib2 – year: 2021 ident: 2022083100081545300_bib37 – start-page: 448 volume-title: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. ICML’15. JMLR.org year: 2015 ident: 2022083100081545300_bib20 article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift – year: 2021 ident: 2022083100081545300_bib36 – start-page: 84 volume-title: International Workshop on Similarity-Based Pattern Recognition year: 2015 ident: 2022083100081545300_bib18 article-title: Deep Metric Learning Using Triplet Network doi: 10.1007/978-3-319-24261-3_7 – start-page: 3094 year: 2022 ident: 2022083100081545300_bib19 doi: 10.1109/TNNLS.2021.3050422 – year: 2021 ident: 2022083100081545300_bib28 – start-page: 404 volume-title: Biometrika year: 1934 ident: 2022083100081545300_bib10 – volume: 154 start-page: 21 year: 2018 ident: 2022083100081545300_bib23 publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2018.02.013 – volume: 489 start-page: 5109 year: 2019 ident: 2022083100081545300_bib14 publication-title: MNRAS – start-page: 1597 volume-title: Proceedings of the 37th International Conference on Machine Learning year: 2020 ident: 2022083100081545300_bib8 article-title: A simple framework for contrastive learning of visual representations – start-page: 23 volume-title: Proceedings of the International Meteor Conference year: 2014 ident: 2022083100081545300_bib26 – volume: 54 start-page: 1 year: 2021 ident: 2022083100081545300_bib30 publication-title: ACM Comput. Surv. doi: 10.1145/3439950 – start-page: 895 volume-title: The Astrophysical Journal Letters year: 2020 ident: 2022083100081545300_bib21 – volume-title: Planetary and Space Science year: 2020 ident: 2022083100081545300_bib15 – volume: 216 start-page: 40 year: 2011 ident: 2022083100081545300_bib22 publication-title: Icarus doi: 10.1016/j.icarus.2011.08.012 – year: 2021 ident: 2022083100081545300_bib31 – volume: 506 start-page: 5046 year: 2021 ident: 2022083100081545300_bib35 publication-title: MNRAS doi: 10.1093/mnras/stab2008 – start-page: 86 volume-title: Communications of the ACM year: 2021 ident: 2022083100081545300_bib12 – volume-title: A Short Note on the Kinetics-700 Human Action Dataset year: 2019 ident: 2022083100081545300_bib6 – volume: 11 year: 2010 ident: 2022083100081545300_bib7 publication-title: J. Mach. Learn. Res. – volume: 37 start-page: 1904 year: 2015 ident: 2022083100081545300_bib16 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 290 start-page: 2319 year: 2000 ident: 2022083100081545300_bib32 publication-title: Science doi: 10.1126/science.290.5500.2319 – start-page: 770 volume-title: Conference on Computer Vision and Pattern Recognition (CVPR) year: 2016 ident: 2022083100081545300_bib17 article-title: Deep residual learning for image recognition – start-page: 193 volume-title: Meteorite. Urmaterie aus dem interplanetaren Raum year: 1988 ident: 2022083100081545300_bib5 – year: 2020 ident: 2022083100081545300_bib1 – volume: 41 start-page: 48 year: 2013 ident: 2022083100081545300_bib25 publication-title: WGN, J. Int. Meteor. Organ. – start-page: 341 volume-title: Icarus year: 2020 ident: 2022083100081545300_bib11 – volume: 11 start-page: 1 year: 2016 ident: 2022083100081545300_bib13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0152173 – volume-title: ICLR 2015 year: 2015 ident: 2022083100081545300_bib24 article-title: Adam: A Method for Stochastic Optimization – volume: 23 issue: 12 year: 2021 ident: 2022083100081545300_bib27 publication-title: Entropy doi: 10.3390/e23121690 – volume: 9 start-page: 78658 year: 2021 ident: 2022083100081545300_bib29 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083060 – start-page: 181 volume-title: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP year: 2019 ident: 2022083100081545300_bib4 doi: 10.5220/0007248601810190 – year: 2021 ident: 2022083100081545300_bib3 – start-page: 63 volume-title: Über den Ursprung der von Pallas gefundenen und anderer ihr ähnlicher Eisenmassen und über einige damit in Verbindung stehende Naturerscheinungen year: 1794 ident: 2022083100081545300_bib9 – start-page: 2579 volume-title: Journal of machine learning research year: 2008 ident: 2022083100081545300_bib33 – volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2022083100081545300_bib34 article-title: Attention is All you Need |
| SSID | ssj0004326 |
| Score | 2.4255674 |
| Snippet | ABSTRACT
Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights... Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the... |
| SourceID | unpaywall crossref oup |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 811 |
| Title | Object classification on video data of meteors and meteor-like phenomena: algorithm and data |
| URI | https://academic.oup.com/mnras/article-pdf/516/1/811/45615898/stac1948.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 516 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 1365-2966 databaseCode: KQ8 dateStart: 18270209 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 1365-2966 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1365-2966 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdb-rC97KPbaPZRxBjbXhTXkWxLewulpQzajtFABoOgzy7EsUPiMLq_fidZztrC6B4GxsjWSUbSybo73e-E0DtNgVGGIieW54wwDVNR8QNHDowSTAqqCuHxzqdn-cmYfZ5kk-j_5LEwMnqFDzpIw6JayXUSu5EsjUuyNE_ShKdp4hf_jAuegCClQRvnA8i_j3byDOTyHtoZn30ZfeviMoJm8AeEJcImZkj799tojjR-r6vwxmrVIuAebKqlvPopy_LaQnT8GM27JrT-J_PBplED_etWdMf_08Yn6FGUV_GoLfUU3bPVLtobrb0FvV5c4fc4pFsDyXoX9U9BCq9XwVgPmYflDETi8PQMfT9X3uqDtZfYvYtS4AoMlwcD1th7q-La4UWoYo1lZWKalLO5xd4dzQeMkJ-wLC_r1az5sQhEvuBzND4-ujg8IfF0B6JpShviVUUN_ziqZa4dUwa4ZkhtRnOulOVMWJi_UhvLdeo8xDgVylmRS1dYKGDoC9Sr6sruIVwUmjnBQDlyjjlqBDdKG615oXJjjOoj0o3iVMfQ5_4EjnLabsHTaRiBadfFffRhS79sg378lfItDOKdRB-3PHMH6ct_J32FHg49FCPYt1-jXrPa2DcgIDVqH1SDr0O4X5xP9uMs-A0maRMZ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELege4AXBgO0MkAWQsCLm6V2HJu3amKakDZ4oNKQkCp_jqppUrWp0PjrOTtO-ZDQeEDKgxOfbdk-x3fn-50RemkoMMpYcuIEZ4QZWIpaHHtybLVkSlJdyoB3Pr_gZ1P2_rK4TP5PAQujklf4qIc0LOu12mRpGMnK-qzIeZZnIs-zsPkXQooMBCkD2rgYQf5ttMcLkMsHaG968XHyuY_LCJrBTxCWjIeYMR2-76I50tReX-Fvu1WHgLuzrVfq-puqql82otN9tOi70PmfLEbbVo_M9z-iO_6fPt5H95K8iiddqQfolqsP0OFkEyzozfIav8Ix3RlINgdoeA5SeLOOxnrIPKnmIBLHt4foywcdrD7YBIk9uChFrsDwBDBgg4O3Km48XsYqNljVNqVJNV84HNzRQsAI9Rar6qpZz9uvy0gUCj5C09N3n07OSLrdgRia05YEVdHAP44axY1n2gLXjKkrKBdaO8Gkg_WrjHXC5D5AjHOpvZNc-dJBAUsfo0Hd1O4Q4bI0zEsGypH3zFMrhdXGGiNKza21eohIP4szk0Kfhxs4qll3BE9ncQZm_RAP0esd_aoL-vFXyhcwiTcSvdnxzA2kT_6d9AjdHQcoRrRvP0WDdr11z0BAavXzxPk_AFL4ERQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+classification+on+video+data+of+meteors+and+meteor-like+phenomena%3A+algorithm+and+data&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Sennlaub%2C+Rabea&rft.au=Hofmann%2C+Martin&rft.au=Hankey%2C+Mike&rft.au=Ennes%2C+Mario&rft.date=2022-08-31&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=516&rft.issue=1&rft.spage=811&rft.epage=823&rft_id=info:doi/10.1093%2Fmnras%2Fstac1948&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stac1948 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |