Object classification on video data of meteors and meteor-like phenomena: algorithm and data

ABSTRACT Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 516; no. 1; pp. 811 - 823
Main Authors Sennlaub, Rabea, Hofmann, Martin, Hankey, Mike, Ennes, Mario, Müller, Thomas, Kroll, Peter, Mäder, Patrick
Format Journal Article
LanguageEnglish
Published Oxford University Press 31.08.2022
Subjects
Online AccessGet full text
ISSN0035-8711
1365-8711
1365-2966
1365-2966
DOI10.1093/mnras/stac1948

Cover

Abstract ABSTRACT Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, namely classification, feature learning, anomaly detection, and extrapolation. For the classification task, a mean accuracy of 99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625.
AbstractList Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, namely classification, feature learning, anomaly detection, and extrapolation. For the classification task, a mean accuracy of 99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625.
ABSTRACT Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the composition of our solar systems’ celestial bodies. Researchers therefore carry out a wide-area-sky-monitoring to secure 360-degree video material, saving every single entry of a meteor. Existing machine intelligence cannot accurately recognize events of meteors intersecting the earth’s atmosphere due to a lack of high-quality training data publicly available. This work presents four reusable open source solutions for researchers trained on data we collected due to the lack of available labelled high-quality training data. We refer to the proposed data set as the NightSkyUCP data set, consisting of a balanced set of 10 000 meteor- and 10 000 non-meteor-events. Our solutions apply various machine-learning techniques, namely classification, feature learning, anomaly detection, and extrapolation. For the classification task, a mean accuracy of 99.1 per cent is achieved. The code and data are made public at figshare with DOI 10.6084/m9.figshare.16451625.
Author Mäder, Patrick
Hofmann, Martin
Müller, Thomas
Hankey, Mike
Ennes, Mario
Sennlaub, Rabea
Kroll, Peter
Author_xml – sequence: 1
  givenname: Rabea
  surname: Sennlaub
  fullname: Sennlaub, Rabea
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-4440-3317
  surname: Hofmann
  fullname: Hofmann, Martin
  email: Martin.Hofmann@tu-ilmenau.de
– sequence: 3
  givenname: Mike
  surname: Hankey
  fullname: Hankey, Mike
– sequence: 4
  givenname: Mario
  surname: Ennes
  fullname: Ennes, Mario
– sequence: 5
  givenname: Thomas
  surname: Müller
  fullname: Müller, Thomas
– sequence: 6
  givenname: Peter
  surname: Kroll
  fullname: Kroll, Peter
– sequence: 7
  givenname: Patrick
  orcidid: 0000-0001-6871-2707
  surname: Mäder
  fullname: Mäder, Patrick
BookMark eNqFkM1LAzEQxYNUsK1ePefqYdtks7vNepPiFxS86E1YZrMTm7qblCRV-t-7_fAiSGFg5vB-M2_eiAyss0jINWcTzkox7ayHMA0RFC8zeUaGXBR5kpZFMSBDxkSeyBnnF2QUwooxlom0GJL3l3qFKlLVQghGGwXROEv7-jINOtpABOo07TCi84GCbY5z0ppPpOslWtehhVsK7YfzJi67vWgHXpJzDW3Aq2Mfk7eH-9f5U7J4eXye3y0SJbiIiZC8VExKoaBQOqsbIXgqMBeFrGuUWYm9W1ANSsU1y1POy1pjWYCeYQ80Ykymh70bu4btN7RttfamA7-tOKt24VT7cKrfcHoiOxDKuxA86kqZuH89ejDt_9jkD3byzs0BcJv1Ke0Pt2yOog
CitedBy_id crossref_primary_10_1134_S1063772923060100
crossref_primary_10_1016_j_pss_2023_105802
crossref_primary_10_31857_S0004629923060105
Cites_doi 10.1007/978-3-319-24261-3_7
10.1109/TNNLS.2021.3050422
10.1016/j.pss.2018.02.013
10.1145/3439950
10.1016/j.icarus.2011.08.012
10.1093/mnras/stab2008
10.1109/TPAMI.2015.2389824
10.1126/science.290.5500.2319
10.1371/journal.pone.0152173
10.3390/e23121690
10.1109/ACCESS.2021.3083060
10.5220/0007248601810190
ContentType Journal Article
Copyright 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
Copyright_xml – notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1093/mnras/stac1948
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 823
ExternalDocumentID 10.1093/mnras/stac1948
10_1093_mnras_stac1948
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABVLG
AHGBF
CITATION
AAMMB
ADTOC
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
UNPAY
ID FETCH-LOGICAL-c313t-3819c0883ca6cf4bd33123e5368bbe849e004acde8c1f052119bfe96af7e6cfd3
IEDL.DBID UNPAY
ISSN 0035-8711
1365-8711
1365-2966
IngestDate Sun Oct 26 03:55:48 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Wed Oct 01 04:09:25 EDT 2025
Wed Apr 02 07:06:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords methods: data analysis
techniques: image processing
meteors
astronomical data bases: miscellaneous
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-3819c0883ca6cf4bd33123e5368bbe849e004acde8c1f052119bfe96af7e6cfd3
ORCID 0000-0002-4440-3317
0000-0001-6871-2707
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/mnras/article-pdf/516/1/811/45615898/stac1948.pdf
PageCount 13
ParticipantIDs unpaywall_primary_10_1093_mnras_stac1948
crossref_citationtrail_10_1093_mnras_stac1948
crossref_primary_10_1093_mnras_stac1948
oup_primary_10_1093_mnras_stac1948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-31
PublicationDateYYYYMMDD 2022-08-31
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-31
  day: 31
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bühler (2022083100081545300_bib5) 1988
Carreira (2022083100081545300_bib6) 2019
He (2022083100081545300_bib16) 2015; 37
Chechik (2022083100081545300_bib7) 2010; 11
AllSky7 Fireball Network Germany (2022083100081545300_bib1) 2020
Vaswani (2022083100081545300_bib34) 2017
SonotaCo Network Simultaneously Observed Meteor Data Sets SNM20xxx (2022083100081545300_bib31) 2021
Le Lan (2022083100081545300_bib27) 2021; 23
Hofmann (2022083100081545300_bib19) 2022
NASA’s All Sky Fireball Network (2022083100081545300_bib28) 2021
Clopper (2022083100081545300_bib10) 1934
YouTube-8M Dataset (2022083100081545300_bib37) 2021
Vida (2022083100081545300_bib35) 2021; 506
Jenniskens (2022083100081545300_bib23) 2018; 154
Ioffe (2022083100081545300_bib20) 2015
Kornos (2022083100081545300_bib26) 2014
Video Meteor Database (2022083100081545300_bib36) 2021
AMS Fireball Camera Generation (2022083100081545300_bib2) 2021
Goldstein (2022083100081545300_bib13) 2016; 11
Hoffer (2022083100081545300_bib18) 2015
Chladni (2022083100081545300_bib9) 1794
He (2022083100081545300_bib17) 2016
Hankey (2022083100081545300_bib15) 2020
Gural (2022083100081545300_bib14) 2019; 489
Brust (2022083100081545300_bib4) 2019
Kingma (2022083100081545300_bib24) 2015
Korlević (2022083100081545300_bib25) 2013; 41
Ferus (2022083100081545300_bib11) 2020
Janches (2022083100081545300_bib21) 2020
Tenenbaum (2022083100081545300_bib32) 2000; 290
Gebru (2022083100081545300_bib12) 2021
Pang (2022083100081545300_bib30) 2021; 54
Nassif (2022083100081545300_bib29) 2021; 9
Jenniskens (2022083100081545300_bib22) 2011; 216
Chen (2022083100081545300_bib8) 2020
Asteroids Dynamic Site (2022083100081545300_bib3) 2021
Van der Maaten (2022083100081545300_bib33) 2008
References_xml – year: 2021
  ident: 2022083100081545300_bib2
– year: 2021
  ident: 2022083100081545300_bib37
– start-page: 448
  volume-title: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. ICML’15. JMLR.org
  year: 2015
  ident: 2022083100081545300_bib20
  article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
– year: 2021
  ident: 2022083100081545300_bib36
– start-page: 84
  volume-title: International Workshop on Similarity-Based Pattern Recognition
  year: 2015
  ident: 2022083100081545300_bib18
  article-title: Deep Metric Learning Using Triplet Network
  doi: 10.1007/978-3-319-24261-3_7
– start-page: 3094
  year: 2022
  ident: 2022083100081545300_bib19
  doi: 10.1109/TNNLS.2021.3050422
– year: 2021
  ident: 2022083100081545300_bib28
– start-page: 404
  volume-title: Biometrika
  year: 1934
  ident: 2022083100081545300_bib10
– volume: 154
  start-page: 21
  year: 2018
  ident: 2022083100081545300_bib23
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2018.02.013
– volume: 489
  start-page: 5109
  year: 2019
  ident: 2022083100081545300_bib14
  publication-title: MNRAS
– start-page: 1597
  volume-title: Proceedings of the 37th International Conference on Machine Learning
  year: 2020
  ident: 2022083100081545300_bib8
  article-title: A simple framework for contrastive learning of visual representations
– start-page: 23
  volume-title: Proceedings of the International Meteor Conference
  year: 2014
  ident: 2022083100081545300_bib26
– volume: 54
  start-page: 1
  year: 2021
  ident: 2022083100081545300_bib30
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3439950
– start-page: 895
  volume-title: The Astrophysical Journal Letters
  year: 2020
  ident: 2022083100081545300_bib21
– volume-title: Planetary and Space Science
  year: 2020
  ident: 2022083100081545300_bib15
– volume: 216
  start-page: 40
  year: 2011
  ident: 2022083100081545300_bib22
  publication-title: Icarus
  doi: 10.1016/j.icarus.2011.08.012
– year: 2021
  ident: 2022083100081545300_bib31
– volume: 506
  start-page: 5046
  year: 2021
  ident: 2022083100081545300_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2008
– start-page: 86
  volume-title: Communications of the ACM
  year: 2021
  ident: 2022083100081545300_bib12
– volume-title: A Short Note on the Kinetics-700 Human Action Dataset
  year: 2019
  ident: 2022083100081545300_bib6
– volume: 11
  year: 2010
  ident: 2022083100081545300_bib7
  publication-title: J. Mach. Learn. Res.
– volume: 37
  start-page: 1904
  year: 2015
  ident: 2022083100081545300_bib16
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 290
  start-page: 2319
  year: 2000
  ident: 2022083100081545300_bib32
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– start-page: 770
  volume-title: Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: 2022083100081545300_bib17
  article-title: Deep residual learning for image recognition
– start-page: 193
  volume-title: Meteorite. Urmaterie aus dem interplanetaren Raum
  year: 1988
  ident: 2022083100081545300_bib5
– year: 2020
  ident: 2022083100081545300_bib1
– volume: 41
  start-page: 48
  year: 2013
  ident: 2022083100081545300_bib25
  publication-title: WGN, J. Int. Meteor. Organ.
– start-page: 341
  volume-title: Icarus
  year: 2020
  ident: 2022083100081545300_bib11
– volume: 11
  start-page: 1
  year: 2016
  ident: 2022083100081545300_bib13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0152173
– volume-title: ICLR 2015
  year: 2015
  ident: 2022083100081545300_bib24
  article-title: Adam: A Method for Stochastic Optimization
– volume: 23
  issue: 12
  year: 2021
  ident: 2022083100081545300_bib27
  publication-title: Entropy
  doi: 10.3390/e23121690
– volume: 9
  start-page: 78658
  year: 2021
  ident: 2022083100081545300_bib29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083060
– start-page: 181
  volume-title: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP
  year: 2019
  ident: 2022083100081545300_bib4
  doi: 10.5220/0007248601810190
– year: 2021
  ident: 2022083100081545300_bib3
– start-page: 63
  volume-title: Über den Ursprung der von Pallas gefundenen und anderer ihr ähnlicher Eisenmassen und über einige damit in Verbindung stehende Naturerscheinungen
  year: 1794
  ident: 2022083100081545300_bib9
– start-page: 2579
  volume-title: Journal of machine learning research
  year: 2008
  ident: 2022083100081545300_bib33
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2022083100081545300_bib34
  article-title: Attention is All you Need
SSID ssj0004326
Score 2.4255674
Snippet ABSTRACT Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights...
Every moment, countless meteoroids enter our atmosphere unseen. The detection and measurement of meteors offer the unique opportunity to gain insights into the...
SourceID unpaywall
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 811
Title Object classification on video data of meteors and meteor-like phenomena: algorithm and data
URI https://academic.oup.com/mnras/article-pdf/516/1/811/45615898/stac1948.pdf
UnpaywallVersion publishedVersion
Volume 516
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 1365-2966
  databaseCode: KQ8
  dateStart: 18270209
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 1365-2966
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1365-2966
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdb-rC97KPbaPZRxBjbXhTXkWxLewulpQzajtFABoOgzy7EsUPiMLq_fidZztrC6B4GxsjWSUbSybo73e-E0DtNgVGGIieW54wwDVNR8QNHDowSTAqqCuHxzqdn-cmYfZ5kk-j_5LEwMnqFDzpIw6JayXUSu5EsjUuyNE_ShKdp4hf_jAuegCClQRvnA8i_j3byDOTyHtoZn30ZfeviMoJm8AeEJcImZkj799tojjR-r6vwxmrVIuAebKqlvPopy_LaQnT8GM27JrT-J_PBplED_etWdMf_08Yn6FGUV_GoLfUU3bPVLtobrb0FvV5c4fc4pFsDyXoX9U9BCq9XwVgPmYflDETi8PQMfT9X3uqDtZfYvYtS4AoMlwcD1th7q-La4UWoYo1lZWKalLO5xd4dzQeMkJ-wLC_r1az5sQhEvuBzND4-ujg8IfF0B6JpShviVUUN_ziqZa4dUwa4ZkhtRnOulOVMWJi_UhvLdeo8xDgVylmRS1dYKGDoC9Sr6sruIVwUmjnBQDlyjjlqBDdKG615oXJjjOoj0o3iVMfQ5_4EjnLabsHTaRiBadfFffRhS79sg378lfItDOKdRB-3PHMH6ct_J32FHg49FCPYt1-jXrPa2DcgIDVqH1SDr0O4X5xP9uMs-A0maRMZ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELege4AXBgO0MkAWQsCLm6V2HJu3amKakDZ4oNKQkCp_jqppUrWp0PjrOTtO-ZDQeEDKgxOfbdk-x3fn-50RemkoMMpYcuIEZ4QZWIpaHHtybLVkSlJdyoB3Pr_gZ1P2_rK4TP5PAQujklf4qIc0LOu12mRpGMnK-qzIeZZnIs-zsPkXQooMBCkD2rgYQf5ttMcLkMsHaG968XHyuY_LCJrBTxCWjIeYMR2-76I50tReX-Fvu1WHgLuzrVfq-puqql82otN9tOi70PmfLEbbVo_M9z-iO_6fPt5H95K8iiddqQfolqsP0OFkEyzozfIav8Ix3RlINgdoeA5SeLOOxnrIPKnmIBLHt4foywcdrD7YBIk9uChFrsDwBDBgg4O3Km48XsYqNljVNqVJNV84HNzRQsAI9Rar6qpZz9uvy0gUCj5C09N3n07OSLrdgRia05YEVdHAP44axY1n2gLXjKkrKBdaO8Gkg_WrjHXC5D5AjHOpvZNc-dJBAUsfo0Hd1O4Q4bI0zEsGypH3zFMrhdXGGiNKza21eohIP4szk0Kfhxs4qll3BE9ncQZm_RAP0esd_aoL-vFXyhcwiTcSvdnxzA2kT_6d9AjdHQcoRrRvP0WDdr11z0BAavXzxPk_AFL4ERQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+classification+on+video+data+of+meteors+and+meteor-like+phenomena%3A+algorithm+and+data&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Sennlaub%2C+Rabea&rft.au=Hofmann%2C+Martin&rft.au=Hankey%2C+Mike&rft.au=Ennes%2C+Mario&rft.date=2022-08-31&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=516&rft.issue=1&rft.spage=811&rft.epage=823&rft_id=info:doi/10.1093%2Fmnras%2Fstac1948&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stac1948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon