Microphone Array Speech Separation Algorithm Based on TC-ResNet
Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio (SNR) environments, and thus achieve unsatisfactory results. In this study, a convolutional neural network with temporal convolution and residual network (TC-...
        Saved in:
      
    
          | Published in | Computers, materials & continua Vol. 69; no. 2; pp. 2705 - 2716 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Henderson
          Tech Science Press
    
        2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1546-2226 1546-2218 1546-2226  | 
| DOI | 10.32604/cmc.2021.017080 | 
Cover
| Abstract | Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio (SNR) environments, and thus achieve unsatisfactory results. In this study, a convolutional neural network with temporal convolution and residual network (TC-ResNet) is proposed to realize speech separation in a complex acoustic environment. A simplified steered-response power phase transform, denoted as GSRP-PHAT, is employed to reduce the computational cost. The extracted features are reshaped to a special tensor as the system inputs and implements temporal convolution, which not only enlarges the receptive field of the convolution layer but also significantly reduces the network computational cost. Residual blocks are used to combine multiresolution features and accelerate the training procedure. A modified ideal ratio mask is applied as the training target. Simulation results demonstrate that the proposed microphone array speech separation algorithm based on TC-ResNet achieves a better performance in terms of distortion ratio, source-to-interference ratio, and short-time objective intelligibility in low SNR and high reverberant environments, particularly in untrained situations. This indicates that the proposed method has generalization to untrained conditions. | 
    
|---|---|
| AbstractList | Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio (SNR) environments, and thus achieve unsatisfactory results. In this study, a convolutional neural network with temporal convolution and residual network (TC-ResNet) is proposed to realize speech separation in a complex acoustic environment. A simplified steered-response power phase transform, denoted as GSRP-PHAT, is employed to reduce the computational cost. The extracted features are reshaped to a special tensor as the system inputs and implements temporal convolution, which not only enlarges the receptive field of the convolution layer but also significantly reduces the network computational cost. Residual blocks are used to combine multiresolution features and accelerate the training procedure. A modified ideal ratio mask is applied as the training target. Simulation results demonstrate that the proposed microphone array speech separation algorithm based on TC-ResNet achieves a better performance in terms of distortion ratio, source-to-interference ratio, and short-time objective intelligibility in low SNR and high reverberant environments, particularly in untrained situations. This indicates that the proposed method has generalization to untrained conditions. | 
    
| Author | Feng, Kun Shi, Jingang Wang, Tianyi Zhou, Lin Xu, Yue  | 
    
| Author_xml | – sequence: 1 givenname: Lin surname: Zhou fullname: Zhou, Lin – sequence: 2 givenname: Yue surname: Xu fullname: Xu, Yue – sequence: 3 givenname: Tianyi surname: Wang fullname: Wang, Tianyi – sequence: 4 givenname: Kun surname: Feng fullname: Feng, Kun – sequence: 5 givenname: Jingang surname: Shi fullname: Shi, Jingang  | 
    
| BookMark | eNqNkE1LAzEQhoNUsK3ePS543pqPTbY5SS1-QVWw9Rxmk9Ru2e6uSRbpvzd2PYggeJpheJ-X4RmhQd3UFqFzgieMCpxd6p2eUEzJBJMcT_ERGhKeiZRSKgY_9hM08n6LMRNM4iG6eiy1a9pNLEtmzsE-WbbW6k2ytC04CGVTJ7PqrXFl2OySa_DWJPG0mqcv1j_ZcIqO11B5e_Y9x-j19mY1v08Xz3cP89ki1YywkFKpuZBC0pxYJqXEhbGgBQUoDDVFwYFNNWPEAAGDi7ywnMQNDOec5WvKxoj0vV3dwv4Dqkq1rtyB2yuC1cGAigbUlwHVG4jMRc-0rnnvrA9q23Sujm8qynlOMpZNWUzhPhU9eO_s-j_F4heiy3BwFRyU1d_gJ7mxfTY | 
    
| CitedBy_id | crossref_primary_10_32604_iasc_2023_030180 crossref_primary_10_32604_iasc_2023_035051  | 
    
| Cites_doi | 10.32604/cmc.2020.09848 10.1109/TASSP.1976.1162830 10.32604/cmc.2020.010182 10.1109/TASLP.2019.2915167 10.1109/LSP.2007.910324 10.1121/1.382599 10.32604/jnm.2020.09356 10.1109/TASLP.2017.2726762 10.1109/TSA.2005.848875 10.1109/TCAD.2020.3012320 10.32604/cmc.2020.09964  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.32604/cmc.2021.017080 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1546-2226 | 
    
| EndPage | 2716 | 
    
| ExternalDocumentID | 10.32604/cmc.2021.017080 10_32604_cmc_2021_017080  | 
    
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c313t-29c56969271e39990bdeac62aabd2dbb5a38c331da1ad0b7be511adad55537f23 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1546-2226 1546-2218  | 
    
| IngestDate | Sun Oct 26 04:15:13 EDT 2025 Sun Jun 29 16:01:29 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed Oct 01 02:38:57 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c313t-29c56969271e39990bdeac62aabd2dbb5a38c331da1ad0b7be511adad55537f23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://file.techscience.com/ueditor/files/cmc/TSP_CMC_69-2/TSP_CMC_17080/TSP_CMC_17080.pdf | 
    
| PQID | 2557143483 | 
    
| PQPubID | 2048737 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2021_017080 proquest_journals_2557143483 crossref_primary_10_32604_cmc_2021_017080 crossref_citationtrail_10_32604_cmc_2021_017080  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-00-00 20210101  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Henderson | 
    
| PublicationPlace_xml | – name: Henderson | 
    
| PublicationTitle | Computers, materials & continua | 
    
| PublicationYear | 2021 | 
    
| Publisher | Tech Science Press | 
    
| Publisher_xml | – name: Tech Science Press | 
    
| References | Gu (ref12) 2020 Nannuru (ref22) 2019 Pfeifenberger (ref2) 2015 Wang (ref3) 2012 Park (ref1) 2020; 26 Yang (ref15) 2020; 2 Knapp (ref6) 1976; 24 ref10 Liu (ref5) 2020; 64 Zhao (ref7) 2020; 64 Wang (ref18) 2016 Zhou (ref4) 2020; 63 Bernardo (ref13) 2020 Yin (ref19) 2020 Han (ref16) 2019 Roux (ref17) 2019 Pariente (ref21) 2020 Choi (ref14) 2019 Alien (ref23) 1979; 65 Gillette (ref9) 2008; 15 Luo (ref11) 2019; 27 Silverman (ref8) 2005; 13 Firoozabadi (ref20) 2019  | 
    
| References_xml | – start-page: 9458 year: 2020 ident: ref19 publication-title: Advancement of Artificial Intelligence – start-page: 452 year: 2015 ident: ref2 article-title: Multi-channel speech processing architectures for noise robust speech recognition: 3rd chime challenge results – volume: 64 start-page: 253 year: 2020 ident: ref7 article-title: Sound source localization based on srp-phat spatial spectrum and deep neural network publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2020.09848 – start-page: 4355 year: 2019 ident: ref22 article-title: 2D beamforming on sparse arrays with sparse Bayesian learning – start-page: 3372 year: 2019 ident: ref14 article-title: Temporal convolution for real-time keyword spotting on mobile devices – start-page: 626 year: 2019 ident: ref17 article-title: SDR–half-baked or well done? – volume: 24 start-page: 320 year: 1976 ident: ref6 article-title: The generalized correlation method for estimation of time delay publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/TASSP.1976.1162830 – volume: 26 start-page: 149 year: 2020 ident: ref1 article-title: Noise cancellation based on voice activity detection using spectral variation for speech recognition in smart home devices publication-title: Intelligent Automation & Soft Computing – start-page: 7319 year: 2020 ident: ref12 article-title: Enhancing end-to-end multi-channel speech separation via spatial feature learning – volume: 63 start-page: 1373 year: 2020 ident: ref4 article-title: Binaural speech separation algorithm based on long and short time memory networks publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2020.010182 – volume: 27 start-page: 1256 year: 2019 ident: ref11 article-title: Conv-tasNet: Surpassing ideal time–Frequency magnitude masking for speech separation publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2019.2915167 – volume: 15 start-page: 1 year: 2008 ident: ref9 article-title: A linear closed-form algorithm for source localization from time-differences of arrival publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2007.910324 – start-page: 361 year: 2019 ident: ref16 article-title: Online deep attractor network for real-time single-channel speech separation – start-page: 1528 year: 2012 ident: ref3 article-title: Boosting classification based speech separation using temporal dynamics – volume: 65 start-page: 943 year: 1979 ident: ref23 article-title: Image method for efficiently simulating small-room acoustics publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.382599 – volume: 2 start-page: 1 year: 2020 ident: ref15 article-title: Mixed noise removal by residual learning of deep cnn publication-title: Journal of New Media doi: 10.32604/jnm.2020.09356 – ident: ref10 doi: 10.1109/TASLP.2017.2726762 – volume: 13 start-page: 593 year: 2005 ident: ref8 article-title: Performance of real-time source-location estimators for a large-aperture microphone array publication-title: IEEE Transactions on Speech and Audio Processing doi: 10.1109/TSA.2005.848875 – start-page: 4240 year: 2020 ident: ref13 article-title: Ultratrail: A configurable ultra-low power TC-resNet AI accelerator for efficient keyword spotting publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/TCAD.2020.3012320 – start-page: 1 year: 2016 ident: ref18 article-title: Oracle performance investigation of the ideal masks – start-page: 6364 year: 2020 ident: ref21 article-title: Filterbank design for End-to-end speech separation – volume: 64 start-page: 589 year: 2020 ident: ref5 article-title: Generalized array architecture with multiple sub-arrays and hole-repair algorithm for doa estimation publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2020.09964 – start-page: 208 year: 2019 ident: ref20 publication-title: Signal Processing: Algorithms, Architectures, Arrangements, and Applications,  | 
    
| SSID | ssj0036390 | 
    
| Score | 2.2059689 | 
    
| Snippet | Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio (SNR)... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 2705 | 
    
| SubjectTerms | Algorithms Arrays Artificial neural networks Computational efficiency Computing costs Deep learning Feature extraction Intelligibility Neural networks Separation Signal processing Signal to noise ratio Simulation Speech Tensors Training  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED6VMsDCG1FeysACkmlsx0k9INQiKoREhXhIbJFfpUMpBYIQ_567JgEm2KLIsZK7-O6zz_4-gAPljLBOJMxlXLOErjouS5mmWvtQSM09HRS-GqQX98nlg3powKA-C0PbKuuYOAvU_tnRGnkboS9JdScdeTp9YaQaRdXVWkLDVNIK_mRGMTYH84KYsZow3zsfXN_UsVliPp4dkVRJygRmt7JwiRAmTtruiSgNBT8mShmiifydqH7Q58L7ZGo-P8x4_CsR9VdgqUKQUbd0-So0wmQNlmt1hqgarOtwekV77WjrecDGr-Yzup2G4EbRbSj5vp8nUXf8iN9YjJ6iHmYzH-GtuzN2E94GodiA-_753dkFq-QSmJNcFkxop1KdapHxgLBDx9ZjVE2FMdYLb60ysuOk5N5w42Ob2YBgy3jjlVIyQ79sQnOC77QFUYzzPh2rmFtvEj7UWols6Dvp0CGe8iq0oF3bJncVlzhJWoxznFPMrJmjNXOyZl5aswWH309MSx6NP9ru1ubOqxH1lv_4vwVH3y74t6_tv_vagUVqXK6p7EKzeH0Pe4gyCrtf_TpfSwzM6A priority: 102 providerName: ProQuest  | 
    
| Title | Microphone Array Speech Separation Algorithm Based on TC-ResNet | 
    
| URI | https://www.proquest.com/docview/2557143483 https://file.techscience.com/ueditor/files/cmc/TSP_CMC_69-2/TSP_CMC_17080/TSP_CMC_17080.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 69 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a7YET41MUjSkHLiA5jZ3YqU-oqzZNSK2qtZWGOET-CiC6rmpToU3743lOnMI4gDhwsxPHH3kvfr8X278H8IYbxbRhGTE5lSTzqYHJBZF-rb1kqaTWHxQeT8T5IvtwyS8P4FN7FsazEcWevjQYgIYBEOdx9EDrm9u-uTL9-WxajMajQkjC9hmae47Ee7l4bcsH0BUcgXoHuovJdPixZlDNBGGs_vsX0iwsYiKcSTLfBvqOjMZJXc19o_UTiT7crdbq5rtaLn8xSmeHcNcOp9mL8i3eVTo2t78xPf6n8T6GRwHMRsNG-57AgVs9hcM2UEQU5o1n8H7st_35XfAOC2_UTTRbO-xNNHMN9fj1KhouP19vvlZfrqITNKw2wkvzEblw24mrnsPi7HQ-OichcgMxKU0rwqThQgrJcuoQAclEW5zgBVNKW2a15iodmDSlVlFlE51rh7hPWWU552mOKvICOivs00uIEnRBZcITqq3KaCklZ3lpB6I0CO0sdz3ot6IpTKA199E1lgW6N7UwC3yBhRdm0QizB2_3T6wbSo8_lD1qpV2Ej3tboBfmo8Zng7QH7_Ya8Ne6Xv1L4SPoVJude42Ip9LH0D05nUwvjoMG_wBU8_yn | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONBLS1_qttD60B5ayd3YjpP1ASGgoKWwqwoWiVvqV-CwLFs2CO2f62_rzCYBTvTELYpiy_o8mW_8mG8APmtvpfMy5T4Xhqf01PN5xg2dtZdSGREoUXgwzPqn6c8zfbYEf9tcGLpW2frEhaMOV572yLsY-lKp7rSntqZ_OFWNotPVtoSGbUorhM2FxFiT2HEY57e4hJttHvzA-f4i5f7eaLfPmyoD3CuhKi6N15nJjMxFRLY2iQvojDJprQsyOKet6nmlRLDChsTlLmKMYoMNWmuVlyR8gBSwgkMzuPhb2dkb_jpuuUAh_y9SMnWacYlsWh-UYsiUpF1_SRKKUnwnCRuSpXxIjPfR7urNZGrnt3Y8fkB8-2vwvIlY2XZtYi9hKU5ewYu2GgRrnMNr2BrQ3T666h7x42s7ZyfTGP0FO4m1vvjVhG2PzxHT6uKS7SB7BoavRrv8OM6GsXoDp08C3FtYnuCY3gFLcJ1pEp0IF2wqSmO0zMvQy0qP8VvQsQPdFpvCN9rlVEJjXOAaZoFmgWgWhGZRo9mBr3ctprVuxyPfrrdwF80fPCvu7a0D3-6m4L99vX-8r0-w2h8Njoqjg-HhB3hGDev9nHVYrq5v4gZGOJX72JgRg99Pbbn_AIlXCv8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3YET41MUDZQDF5Ccxk7s1CdUKqYJqdVEW2mIg-WvAKLrqjYV2rQ_nufEKYwDiAM3O3H8kffi93ux_XsAL7nVzFhWEFtSSYqQGtpSEBnW2iuWS-rCQeHJVJwuivfn_PwAPnVnYQIbURroS6MBaBkAcR5HD7S5uR3YCzuYz87UeDJWQhK2z9AycCTeyqVrV92BQ8ERqPfgcDE9G31sGFQLQRhr_v7FNIuLmAhnsiK0gb4jo2nWVHPbaP1Eond3q7W--q6Xy1-M0skR3HTDafeifEt3tUnt9W9Mj_9pvPfhXgSzyajVvgdw4FcP4agLFJHEeeMRvJmEbX9hF7zHwht9lczWHnuTzHxLPX65SkbLz5ebr_WXi-QtGlaX4KX5mHzw26mvH8Pi5N18fEpi5AZic5rXhEnLhRSSldQjApKZcTjBC6a1ccwZw3U-tHlOnabaZaY0HnGfdtpxzvMSVeQJ9FbYp6eQZOiCyoxn1Dhd0EpKzsrKDUVlEdo57vsw6ESjbKQ1D9E1lgrdm0aYCl-gCsJUrTD78Gr_xLql9PhD2eNO2ip-3FuFXliIGl8M8z683mvAX-t69i-Fj6FXb3b-OSKe2ryImvsDd3v7DQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microphone+Array+Speech+Separation+Algorithm+Based+on+TC-ResNet&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Zhou%2C+Lin&rft.au=Xu%2C+Yue&rft.au=Wang%2C+Tianyi&rft.au=Feng%2C+Kun&rft.date=2021&rft.issn=1546-2226&rft.volume=69&rft.issue=2&rft.spage=2705&rft.epage=2716&rft_id=info:doi/10.32604%2Fcmc.2021.017080&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2021_017080 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |