Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network

In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation fi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics C Vol. 40; no. 8; pp. 130 - 135
Main Author 张才勋 林兴德 赵建玲 余训臻 王力 朱敬军 幸浩洋
Format Journal Article
LanguageEnglish
Published 01.08.2016
Subjects
Online AccessGet full text
ISSN1674-1137
0254-3052
DOI10.1088/1674-1137/40/8/086204

Cover

Abstract In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 4- 0.034 to 0.953 4- 0.037 by using the new method of the ENN. The proposed n/γdiscrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection.
AbstractList In this work, a new neutron and gamma (n/ gamma ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and gamma data were acquired from an EJ-335 LS detector, which was exposed in a super(241)Am- super(9)Be radiation field. Neutron and gamma events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/ gamma discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/ gamma discrimination. The FOM increases from 0.907 plus or minus 0.034 to 0.953 plus or minus 0.037 by using the new method of the ENN. The proposed n/ gamma discrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection.
In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 4- 0.034 to 0.953 4- 0.037 by using the new method of the ENN. The proposed n/γdiscrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection.
Author 张才勋 林兴德 赵建玲 余训臻 王力 朱敬军 幸浩洋
AuthorAffiliation Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China School of Physical Science and Technology, Sichuan University, Chengdu 610065, China Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Author_xml – sequence: 1
  fullname: 张才勋 林兴德 赵建玲 余训臻 王力 朱敬军 幸浩洋
BookMark eNqFkL1OwzAURi1UJErhEZAsJpbQ69hOHDEhKD9SJRaYGCwncYohtVvbFepz8R48Ey6tOrAwfcP9ztW95xgNrLMaoTMClwSEGJOiZBkhtBwzGIsxiCIHdoCGkHOWUeD5AA33nSN0HMI7QMESOkSvtyY03syNVdE4i12HrV5F72zAyrb4-yvzah2wsbg3y5VpcWiMjabvVXQe1yroFidu0s-V3aBe9Snip_MfJ-iwU33Qp7scoZe7yfPNQzZ9un-8uZ5mDSU0ZnlVqIrWrCWM1LTVGrqurauSsY5RJso6jUpVaQABRFEoc87zhjVcEGhp09IRutjuXXi3XOkQ5Tw9pdOJVrtVkERwTpMUWqXq1bbaeBeC151sTPz9PHpleklAbpTKjS650SUZSCG3ShPN_9CLpE759b_c-Y57c3a2NHa2B4ui4lVBc0p_AIl3iIM
CitedBy_id crossref_primary_10_2139_ssrn_4124621
crossref_primary_10_1109_TNS_2021_3103658
crossref_primary_10_1016_j_nima_2023_168025
crossref_primary_10_1016_j_net_2022_12_035
crossref_primary_10_1007_s41365_021_00915_w
crossref_primary_10_1007_s10967_023_09327_z
crossref_primary_10_1016_j_nima_2023_168492
crossref_primary_10_1007_s00170_022_10196_1
crossref_primary_10_1109_TNS_2019_2918439
crossref_primary_10_3390_app12052400
crossref_primary_10_1088_1748_0221_18_01_P01007
crossref_primary_10_1088_1748_0221_15_04_P04008
crossref_primary_10_1007_s41365_023_01305_0
crossref_primary_10_1016_j_matt_2022_10_010
Cites_doi 10.1016/S0168-9002(98)00654-8
10.1016/0029-554X(78)90746-2
10.1016/j.nima.2009.06.027
10.1016/0029-554X(59)90067-9
10.1016/j.nima.2008.09.028
10.1207/s15516709cog1402_1
10.1109/TNS.2010.2044246
10.1016/j.nima.2010.09.130
10.1016/j.astropartphys.2012.11.007
10.1016/0029-554X(61)90198-7
10.1016/S0168-9002(02)01063-X
10.1016/j.nima.2013.04.004
10.1016/S0927-6505(98)00012-7
10.1016/0029-554X(71)90054-1
10.1016/j.astropartphys.2004.07.005
10.1016/0029-554X(64)90333-7
10.1016/j.snb.2005.01.008
10.1016/j.nima.2014.12.087
10.1016/j.cpc.2011.02.008
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1137/40/8/086204
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network
EISSN 0254-3052
EndPage 135
ExternalDocumentID 10_1088_1674_1137_40_8_086204
669596323
GroupedDBID 02O
1JI
1WK
29B
2B.
2C.
2RA
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92L
92Q
93N
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ACAFW
ACGFS
ACHIP
AENEX
AFUIB
AFYNE
AIBLX
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ATQHT
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CW9
DU5
EBS
EDWGO
EJD
EPQRW
EQZZN
ER.
FA0
FEDTE
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
OK1
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
W28
~WA
-SA
-SC
-S~
AAYXX
ADEQX
AEINN
AERVB
AOAED
CAJEA
CAJEC
CITATION
Q--
U1G
U5K
U5M
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c313t-296a93b4d141b3dee0ffdb9744f43487bb4d7a9e00801a3072552c4c5810d3cd3
ISSN 1674-1137
IngestDate Fri Sep 05 08:24:05 EDT 2025
Wed Oct 01 03:43:18 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Wed Feb 14 10:22:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-296a93b4d141b3dee0ffdb9744f43487bb4d7a9e00801a3072552c4c5810d3cd3
Notes In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 4- 0.034 to 0.953 4- 0.037 by using the new method of the ENN. The proposed n/γdiscrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection.
11-5641/O4
liquid scintillator, n/γ discrimination, Elman neural network, BP neural network
Cai-Xun Zhang, Shin-Ted Lin, Jian-Ling Zhao, Xun-Zhen Yu, Li Wang, Jing-Jun Zhu,Hao-Yang Xing(Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology Siehuan University, Chengdu 610065, China 2 School of Physical Science and Technology, Sichuan University, Chengdu 610065, China 3 Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1855386239
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1855386239
crossref_citationtrail_10_1088_1674_1137_40_8_086204
crossref_primary_10_1088_1674_1137_40_8_086204
chongqing_primary_669596323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics C
PublicationTitleAlternate Chinese Physica C
PublicationYear 2016
References 22
23
24
25
Xing H. Y. (2) 2013; 37
Ding D. Z. (5) 2001
10
Esposito B. (15) 2004
11
12
13
14
Demuth H. (19)
16
17
18
1
3
4
6
7
8
9
20
21
References_xml – ident: 14
  doi: 10.1016/S0168-9002(98)00654-8
– ident: 7
  doi: 10.1016/0029-554X(78)90746-2
– ident: 16
  doi: 10.1016/j.nima.2009.06.027
– start-page: 132
  year: 2001
  ident: 5
  publication-title: Neutron Physics
– ident: 6
  doi: 10.1016/0029-554X(59)90067-9
– ident: 11
  doi: 10.1016/j.nima.2008.09.028
– ident: 17
  doi: 10.1207/s15516709cog1402_1
– ident: 25
  doi: 10.1109/TNS.2010.2044246
– ident: 10
  doi: 10.1016/j.nima.2010.09.130
– ident: 4
  doi: 10.1016/j.astropartphys.2012.11.007
– ident: 8
  doi: 10.1016/0029-554X(61)90198-7
– start-page: 4
  year: 2004
  ident: 15
  publication-title: Proceeding of the 2004 IEEE International joint Conference on Neural networks
– ident: 22
  doi: 10.1016/S0168-9002(02)01063-X
– ident: 20
– volume: 37
  year: 2013
  ident: 2
  publication-title: Chin. Phys.
– ident: 12
  doi: 10.1016/j.nima.2013.04.004
– ident: 19
– ident: 1
  doi: 10.1016/S0927-6505(98)00012-7
– ident: 24
  doi: 10.1016/0029-554X(71)90054-1
– ident: 3
  doi: 10.1016/j.astropartphys.2004.07.005
– ident: 9
  doi: 10.1016/0029-554X(64)90333-7
– ident: 18
  doi: 10.1016/j.snb.2005.01.008
– ident: 21
– ident: 13
  doi: 10.1016/j.nima.2014.12.087
– ident: 23
  doi: 10.1016/j.cpc.2011.02.008
SSID ssj0064088
Score 2.1505744
Snippet In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance...
In this work, a new neutron and gamma (n/ gamma ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130
SubjectTerms Artificial neural networks
Back propagation
BP神经网络
Data acquisition
Detectors
Discrimination
Elman神经网络
Liquids
Neural networks
Pulse shape
中子探测
人工神经网络
光芒
反向传播神经网络
液体闪烁探测器
脉冲形状甄别
Title Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network
URI http://lib.cqvip.com/qk/92043A/201608/669596323.html
https://www.proquest.com/docview/1855386239
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 0254-3052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064088
  issn: 1674-1137
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tixMxEA71RPCLnG9Y75QI3ifJtdmk6e5HrZVTfDmwB0WEsLvJ3i2UrXfdBfVv-T_8Tc4km20rh3p-WUq6MwuZJ5nJZF4IeapGJkM7mHHDIyaL3LIkTzLGeYrVz6WJxpjg_O69OjqRb-ajea_3dSNqqamzw_z7pXkl_yNVGAO5YpbsFSTbMYUB-A3yhSdIGJ7_JOOXJS56DGYJdl9lG_Rt-8LLB5PpwQvxjF2k31zU66I8b0qDOZBVjc2GaozUBC1m8MZgukBvPpa3BKFVPjh803LFRtt2ZVtXyGrtXe1czpO0ZPNmHeLjqxN8BDo2a1Oo_Ov-sgdwyd4Gxelag-EwMGCfztr8tNYbwVUXCxc2UDWWIGhfyCXssL4gU4ukeGO7jBEPl27ksPmhTyFwww5NGArpMhY6qu3y2b-ptS7Y0F2zx7FGZhqZaTnUsfZsrpHr0Vgp7H3x-sNx0OFKDl3H0u77Ifcrjgfd2EAOB_HAs8HKHGfL6vQcpm3bwtlW8M5qme2SW-1xgz732LlNera6Q24cexneJZ-3EUSXBQ0IooAg-vMHdeihZUU9eugmeqhDDwVChx7q0UNb9NwjJ6-ms8kRa_ttsFxwUbMoUWkiMmm45Jkw1g6LwmRw4JSFFLCgM_hrnCYWTxk8BeUAx9Eol_ko5kMjciPuk51qWdkHhMZCgKnLM3gPyIFScZthlxeZwvRZ2yd73XzpL76uilYqGYE-iESfyDCDOm9L1WPHlIX-oyz75LAjCzz_QvAkiEfDropXZWlll81KgxULlgAcDZKHV2W6R26uF8Y-2akvGvsIDNc6e-ww9gvdGo6q
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrimination+of+neutrons+and+%CE%B3+-rays+in+liquid+scintillator+based+on+Elman+neural+network&rft.jtitle=Chinese+physics+C&rft.au=Zhang%2C+Cai-Xun&rft.au=Lin%2C+Shin-Ted&rft.au=Zhao%2C+Jian-Ling&rft.au=Yu%2C+Xun-Zhen&rft.date=2016-08-01&rft.issn=1674-1137&rft.volume=40&rft.issue=8&rft.spage=86204&rft_id=info:doi/10.1088%2F1674-1137%2F40%2F8%2F086204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1137_40_8_086204
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F92043A%2F92043A.jpg