Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network
In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation fi...
Saved in:
Published in | Chinese physics C Vol. 40; no. 8; pp. 130 - 135 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1137 0254-3052 |
DOI | 10.1088/1674-1137/40/8/086204 |
Cover
Abstract | In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 4- 0.034 to 0.953 4- 0.037 by using the new method of the ENN. The proposed n/γdiscrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection. |
---|---|
AbstractList | In this work, a new neutron and gamma (n/ gamma ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and gamma data were acquired from an EJ-335 LS detector, which was exposed in a super(241)Am- super(9)Be radiation field. Neutron and gamma events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/ gamma discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/ gamma discrimination. The FOM increases from 0.907 plus or minus 0.034 to 0.953 plus or minus 0.037 by using the new method of the ENN. The proposed n/ gamma discrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection. In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 4- 0.034 to 0.953 4- 0.037 by using the new method of the ENN. The proposed n/γdiscrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection. |
Author | 张才勋 林兴德 赵建玲 余训臻 王力 朱敬军 幸浩洋 |
AuthorAffiliation | Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China School of Physical Science and Technology, Sichuan University, Chengdu 610065, China Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084, China |
Author_xml | – sequence: 1 fullname: 张才勋 林兴德 赵建玲 余训臻 王力 朱敬军 幸浩洋 |
BookMark | eNqFkL1OwzAURi1UJErhEZAsJpbQ69hOHDEhKD9SJRaYGCwncYohtVvbFepz8R48Ey6tOrAwfcP9ztW95xgNrLMaoTMClwSEGJOiZBkhtBwzGIsxiCIHdoCGkHOWUeD5AA33nSN0HMI7QMESOkSvtyY03syNVdE4i12HrV5F72zAyrb4-yvzah2wsbg3y5VpcWiMjabvVXQe1yroFidu0s-V3aBe9Snip_MfJ-iwU33Qp7scoZe7yfPNQzZ9un-8uZ5mDSU0ZnlVqIrWrCWM1LTVGrqurauSsY5RJso6jUpVaQABRFEoc87zhjVcEGhp09IRutjuXXi3XOkQ5Tw9pdOJVrtVkERwTpMUWqXq1bbaeBeC151sTPz9PHpleklAbpTKjS650SUZSCG3ShPN_9CLpE759b_c-Y57c3a2NHa2B4ui4lVBc0p_AIl3iIM |
CitedBy_id | crossref_primary_10_2139_ssrn_4124621 crossref_primary_10_1109_TNS_2021_3103658 crossref_primary_10_1016_j_nima_2023_168025 crossref_primary_10_1016_j_net_2022_12_035 crossref_primary_10_1007_s41365_021_00915_w crossref_primary_10_1007_s10967_023_09327_z crossref_primary_10_1016_j_nima_2023_168492 crossref_primary_10_1007_s00170_022_10196_1 crossref_primary_10_1109_TNS_2019_2918439 crossref_primary_10_3390_app12052400 crossref_primary_10_1088_1748_0221_18_01_P01007 crossref_primary_10_1088_1748_0221_15_04_P04008 crossref_primary_10_1007_s41365_023_01305_0 crossref_primary_10_1016_j_matt_2022_10_010 |
Cites_doi | 10.1016/S0168-9002(98)00654-8 10.1016/0029-554X(78)90746-2 10.1016/j.nima.2009.06.027 10.1016/0029-554X(59)90067-9 10.1016/j.nima.2008.09.028 10.1207/s15516709cog1402_1 10.1109/TNS.2010.2044246 10.1016/j.nima.2010.09.130 10.1016/j.astropartphys.2012.11.007 10.1016/0029-554X(61)90198-7 10.1016/S0168-9002(02)01063-X 10.1016/j.nima.2013.04.004 10.1016/S0927-6505(98)00012-7 10.1016/0029-554X(71)90054-1 10.1016/j.astropartphys.2004.07.005 10.1016/0029-554X(64)90333-7 10.1016/j.snb.2005.01.008 10.1016/j.nima.2014.12.087 10.1016/j.cpc.2011.02.008 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1137/40/8/086204 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network |
EISSN | 0254-3052 |
EndPage | 135 |
ExternalDocumentID | 10_1088_1674_1137_40_8_086204 669596323 |
GroupedDBID | 02O 1JI 1WK 29B 2B. 2C. 2RA 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92L 92Q 93N AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ACAFW ACGFS ACHIP AENEX AFUIB AFYNE AIBLX AKPSB ALMA_UNASSIGNED_HOLDINGS ATQHT BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CW9 DU5 EBS EDWGO EJD EPQRW EQZZN ER. FA0 FEDTE HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. OK1 PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP W28 ~WA -SA -SC -S~ AAYXX ADEQX AEINN AERVB AOAED CAJEA CAJEC CITATION Q-- U1G U5K U5M 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c313t-296a93b4d141b3dee0ffdb9744f43487bb4d7a9e00801a3072552c4c5810d3cd3 |
ISSN | 1674-1137 |
IngestDate | Fri Sep 05 08:24:05 EDT 2025 Wed Oct 01 03:43:18 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Wed Feb 14 10:22:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-296a93b4d141b3dee0ffdb9744f43487bb4d7a9e00801a3072552c4c5810d3cd3 |
Notes | In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 4- 0.034 to 0.953 4- 0.037 by using the new method of the ENN. The proposed n/γdiscrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection. 11-5641/O4 liquid scintillator, n/γ discrimination, Elman neural network, BP neural network Cai-Xun Zhang, Shin-Ted Lin, Jian-Ling Zhao, Xun-Zhen Yu, Li Wang, Jing-Jun Zhu,Hao-Yang Xing(Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology Siehuan University, Chengdu 610065, China 2 School of Physical Science and Technology, Sichuan University, Chengdu 610065, China 3 Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1855386239 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1855386239 crossref_citationtrail_10_1088_1674_1137_40_8_086204 crossref_primary_10_1088_1674_1137_40_8_086204 chongqing_primary_669596323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics C |
PublicationTitleAlternate | Chinese Physica C |
PublicationYear | 2016 |
References | 22 23 24 25 Xing H. Y. (2) 2013; 37 Ding D. Z. (5) 2001 10 Esposito B. (15) 2004 11 12 13 14 Demuth H. (19) 16 17 18 1 3 4 6 7 8 9 20 21 |
References_xml | – ident: 14 doi: 10.1016/S0168-9002(98)00654-8 – ident: 7 doi: 10.1016/0029-554X(78)90746-2 – ident: 16 doi: 10.1016/j.nima.2009.06.027 – start-page: 132 year: 2001 ident: 5 publication-title: Neutron Physics – ident: 6 doi: 10.1016/0029-554X(59)90067-9 – ident: 11 doi: 10.1016/j.nima.2008.09.028 – ident: 17 doi: 10.1207/s15516709cog1402_1 – ident: 25 doi: 10.1109/TNS.2010.2044246 – ident: 10 doi: 10.1016/j.nima.2010.09.130 – ident: 4 doi: 10.1016/j.astropartphys.2012.11.007 – ident: 8 doi: 10.1016/0029-554X(61)90198-7 – start-page: 4 year: 2004 ident: 15 publication-title: Proceeding of the 2004 IEEE International joint Conference on Neural networks – ident: 22 doi: 10.1016/S0168-9002(02)01063-X – ident: 20 – volume: 37 year: 2013 ident: 2 publication-title: Chin. Phys. – ident: 12 doi: 10.1016/j.nima.2013.04.004 – ident: 19 – ident: 1 doi: 10.1016/S0927-6505(98)00012-7 – ident: 24 doi: 10.1016/0029-554X(71)90054-1 – ident: 3 doi: 10.1016/j.astropartphys.2004.07.005 – ident: 9 doi: 10.1016/0029-554X(64)90333-7 – ident: 18 doi: 10.1016/j.snb.2005.01.008 – ident: 21 – ident: 13 doi: 10.1016/j.nima.2014.12.087 – ident: 23 doi: 10.1016/j.cpc.2011.02.008 |
SSID | ssj0064088 |
Score | 2.1505744 |
Snippet | In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance... In this work, a new neutron and gamma (n/ gamma ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130 |
SubjectTerms | Artificial neural networks Back propagation BP神经网络 Data acquisition Detectors Discrimination Elman神经网络 Liquids Neural networks Pulse shape 中子探测 人工神经网络 光芒 反向传播神经网络 液体闪烁探测器 脉冲形状甄别 |
Title | Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network |
URI | http://lib.cqvip.com/qk/92043A/201608/669596323.html https://www.proquest.com/docview/1855386239 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: AUTh Library subscriptions: IOP Publishing customDbUrl: eissn: 0254-3052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064088 issn: 1674-1137 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tixMxEA71RPCLnG9Y75QI3ifJtdmk6e5HrZVTfDmwB0WEsLvJ3i2UrXfdBfVv-T_8Tc4km20rh3p-WUq6MwuZJ5nJZF4IeapGJkM7mHHDIyaL3LIkTzLGeYrVz6WJxpjg_O69OjqRb-ajea_3dSNqqamzw_z7pXkl_yNVGAO5YpbsFSTbMYUB-A3yhSdIGJ7_JOOXJS56DGYJdl9lG_Rt-8LLB5PpwQvxjF2k31zU66I8b0qDOZBVjc2GaozUBC1m8MZgukBvPpa3BKFVPjh803LFRtt2ZVtXyGrtXe1czpO0ZPNmHeLjqxN8BDo2a1Oo_Ov-sgdwyd4Gxelag-EwMGCfztr8tNYbwVUXCxc2UDWWIGhfyCXssL4gU4ukeGO7jBEPl27ksPmhTyFwww5NGArpMhY6qu3y2b-ptS7Y0F2zx7FGZhqZaTnUsfZsrpHr0Vgp7H3x-sNx0OFKDl3H0u77Ifcrjgfd2EAOB_HAs8HKHGfL6vQcpm3bwtlW8M5qme2SW-1xgz732LlNera6Q24cexneJZ-3EUSXBQ0IooAg-vMHdeihZUU9eugmeqhDDwVChx7q0UNb9NwjJ6-ms8kRa_ttsFxwUbMoUWkiMmm45Jkw1g6LwmRw4JSFFLCgM_hrnCYWTxk8BeUAx9Eol_ko5kMjciPuk51qWdkHhMZCgKnLM3gPyIFScZthlxeZwvRZ2yd73XzpL76uilYqGYE-iESfyDCDOm9L1WPHlIX-oyz75LAjCzz_QvAkiEfDropXZWlll81KgxULlgAcDZKHV2W6R26uF8Y-2akvGvsIDNc6e-ww9gvdGo6q |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrimination+of+neutrons+and+%CE%B3+-rays+in+liquid+scintillator+based+on+Elman+neural+network&rft.jtitle=Chinese+physics+C&rft.au=Zhang%2C+Cai-Xun&rft.au=Lin%2C+Shin-Ted&rft.au=Zhao%2C+Jian-Ling&rft.au=Yu%2C+Xun-Zhen&rft.date=2016-08-01&rft.issn=1674-1137&rft.volume=40&rft.issue=8&rft.spage=86204&rft_id=info:doi/10.1088%2F1674-1137%2F40%2F8%2F086204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1137_40_8_086204 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F92043A%2F92043A.jpg |