A novel observer design method for neural mass models
Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie s...
Saved in:
| Published in | Chinese physics B Vol. 24; no. 9; pp. 68 - 72 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.09.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 1741-4199 |
| DOI | 10.1088/1674-1056/24/9/090207 |
Cover
| Abstract | Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations. |
|---|---|
| AbstractList | Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations. Neural mass models can simulate the generation of electroencephalography (EEG) signals with different rhythms, and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations. |
| Author | 刘仙 苗东凯 高庆 徐式蕴 |
| AuthorAffiliation | Key Laboratory of Industrial Computer Control Engineering of Hebei Province Institute of Electrical Engineering, . Yanshan University, Qinhuangdao 066004, China China Electric Power Research Institute, Beijing 100192, China |
| Author_xml | – sequence: 1 fullname: 刘仙 苗东凯 高庆 徐式蕴 |
| BookMark | eNqFkDtrwzAURkVJoUnan1AQnbq4uZKsh-kUQl8Q6NLOQravExdbSiQn0H_fhJQMXTrd5ZzvwpmQkQ8eCbll8MDAmBlTOs8YSDXj-ayYQQEc9AUZc5AmE0bkIzI-M1dkktIXgGLAxZjIOfVhjx0NZcK4x0hrTO3K0x6HdahpEyL1uIuuo71Lifahxi5dk8vGdQlvfu-UfD4_fSxes-X7y9tivswqwcSQceFYjbLMBQcEzcuGCaWhrJzWiCUTmMtal06aApuiNI1DzVSj2UFgecHFlNyfdjcxbHeYBtu3qcKucx7DLlmmC8EFN6w4oPKEVjGkFLGxm9j2Ln5bBvaYyR4T2GMCy3Nb2FOmg_f4x6vawQ1t8EN0bfevffdrr4NfbVu_Or9VShqlJYD4AQA6eVc |
| CitedBy_id | crossref_primary_10_1016_j_irbm_2019_01_001 crossref_primary_10_1063_5_0020184 crossref_primary_10_1016_j_physa_2016_11_038 crossref_primary_10_3934_math_20241577 |
| Cites_doi | 10.1007/s11071-009-9539-3 10.1155/2014/215943 10.1016/j.physa.2007.05.030 10.1103/PhysRevE.90.032913 10.1103/PhysRevE.88.042905 10.1007/s11071-012-0638-1 10.1016/S0005-1098(00)00180-1 10.1155/2013/792507 10.1007/BF00199471 10.1007/s11571-014-9306-0 10.1109/TAC.2013.2294826 10.1016/S0167-6911(03)00170-1 10.1109/TBME.2014.2306424 10.1016/j.sysconle.2008.11.007 10.1016/j.neuroimage.2011.08.060 10.7551/mitpress/8436.001.0001 10.1137/1.9781611970777 10.1007/BF00270757 10.1007/s004220000160 10.1007/s10827-014-0517-5 10.1016/j.physa.2007.08.029 10.1109/TAC.2014.2310331 10.1002/rnc.1460 10.1016/j.neuroimage.2003.07.015 10.1016/j.automatica.2012.08.008 10.1016/j.neuropsychologia.2014.07.016 |
| ContentType | Journal Article |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
| DOI | 10.1088/1674-1056/24/9/090207 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | A novel observer design method for neural mass models |
| EISSN | 2058-3834 1741-4199 |
| EndPage | 72 |
| ExternalDocumentID | 10_1088_1674_1056_24_9_090207 665867500 |
| GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c313t-23a1de5b4320e072bf13670bca77eeb13e45d7ba589ef9b8fae716f7143214923 |
| ISSN | 1674-1056 |
| IngestDate | Fri Sep 05 14:46:50 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Wed Oct 01 03:34:56 EDT 2025 Wed Feb 14 10:28:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c313t-23a1de5b4320e072bf13670bca77eeb13e45d7ba589ef9b8fae716f7143214923 |
| Notes | Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations. observer design,neural mass model,Lurie system theory 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1793232819 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1793232819 crossref_primary_10_1088_1674_1056_24_9_090207 crossref_citationtrail_10_1088_1674_1056_24_9_090207 chongqing_primary_665867500 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-01 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chinese Physics |
| PublicationYear | 2015 |
| References | Liu X (6) 2014; 23 22 23 24 25 26 27 28 29 Liu X (30) 2010; 20 Wang J (2) 2012; 21 31 Xu S Y (32) 2011; 20 10 11 12 13 14 15 16 18 19 Li L (1) 2011; 20 3 4 5 7 Liang H J (17) 2014; 23 8 9 Schiff S J (20) 2011 Leonov G A (21) 1996 |
| References_xml | – ident: 31 doi: 10.1007/s11071-009-9539-3 – ident: 27 doi: 10.1155/2014/215943 – ident: 28 doi: 10.1016/j.physa.2007.05.030 – ident: 3 doi: 10.1103/PhysRevE.90.032913 – volume: 23 issn: 1674-1056 year: 2014 ident: 6 publication-title: Chin. Phys. B – ident: 15 doi: 10.1103/PhysRevE.88.042905 – volume: 20 issn: 1674-1056 year: 2011 ident: 1 publication-title: Chin. Phys. B – ident: 13 doi: 10.1007/s11071-012-0638-1 – ident: 23 doi: 10.1016/S0005-1098(00)00180-1 – ident: 14 doi: 10.1155/2013/792507 – volume: 23 issn: 1674-1056 year: 2014 ident: 17 publication-title: Chin. Phys. B – volume: 20 issn: 1674-1056 year: 2011 ident: 32 publication-title: Chin. Phys. B – ident: 7 doi: 10.1007/BF00199471 – ident: 16 doi: 10.1007/s11571-014-9306-0 – ident: 19 doi: 10.1109/TAC.2013.2294826 – ident: 24 doi: 10.1016/S0167-6911(03)00170-1 – ident: 4 doi: 10.1109/TBME.2014.2306424 – ident: 25 doi: 10.1016/j.sysconle.2008.11.007 – ident: 11 doi: 10.1016/j.neuroimage.2011.08.060 – year: 2011 ident: 20 publication-title: Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience doi: 10.7551/mitpress/8436.001.0001 – ident: 22 doi: 10.1137/1.9781611970777 – ident: 8 doi: 10.1007/BF00270757 – ident: 9 doi: 10.1007/s004220000160 – ident: 12 doi: 10.1007/s10827-014-0517-5 – ident: 29 doi: 10.1016/j.physa.2007.08.029 – ident: 18 doi: 10.1109/TAC.2014.2310331 – volume: 20 start-page: 659 year: 2010 ident: 30 publication-title: Int. J. Robust Nonlin. doi: 10.1002/rnc.1460 – ident: 10 doi: 10.1016/j.neuroimage.2003.07.015 – year: 1996 ident: 21 publication-title: Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications – volume: 21 issn: 1674-1056 year: 2012 ident: 2 publication-title: Chin. Phys. B – ident: 26 doi: 10.1016/j.automatica.2012.08.008 – ident: 5 doi: 10.1016/j.neuropsychologia.2014.07.016 |
| SSID | ssj0061023 ssib054405859 ssib000804704 |
| Score | 2.0339622 |
| Snippet | Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of... Neural mass models can simulate the generation of electroencephalography (EEG) signals with different rhythms, and therefore the observation of the states of... |
| SourceID | proquest crossref chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 68 |
| SubjectTerms | Brain Computer simulation Convergence Design engineering Dynamical systems Electroencephalography Errors Lurie型 Lurie系统 Mathematical models 数值模拟 神经网络观测器 系统理论 设计方法 质量模型 非线性系统 |
| Title | A novel observer design method for neural mass models |
| URI | http://lib.cqvip.com/qk/85823A/201509/665867500.html https://www.proquest.com/docview/1793232819 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LjtMw0IJFSFwQT1EWUJDwqcrWiZ3YPiYl1YLE47Ar7c1yUgcOKAXa5cDXM2PHaVcgXpfIcpxxNDOahz0PQl4wDkTvuyxdczy6aTVLNev6VLbcCms5WAh4o_vmbXl6Ll5fFBf7wxyfXbJrT7rvv8wr-R-qwhzQFbNk_4GyE1CYgDHQF55AYXj-FY2r-bD55sCabPFs1ff6xniMsS20jyDEepWYIGJj15vtoTlKG0FrRauXtCmormkNA0mVppXGgWZUlTVtVrReUl3RRlEFizLalFSXVMlxtZriYRGOUlQrD7mmWs_Hr7QcN9NLv0jSagXvYKvaLy9oXcFucz9qcGscLKlaIQANY3F4QpEVUwhWFKqlFCDui7HktZ_LWaFSHg8yA4_pA0Eaeu2MKjk09_lJ2IOAxHOHCB1zWwQGfPgLKTCD5V7HTZGHJVhc4CMxdp3cyEERYLePV-_eR-VdYiUL9NEj0Jj0pdRimlvkYqEXYQssyfFxM3z4AobGVdPmqmb35srZHXJ79DOSKjDNXXLNDffITR_v223vk6JKPOskkXWSwDpJYJ0EWCcJrJMg6ySBdR6Q81VztjxNxw4aacczvktzbrO1K1rBc-aYzNseK_SxtrNSOtDS3IliLVtbKO163areOvCfewlGdJ5h6b6H5GjYDO4RSTi81XkP_rdbi95l1oJhu2a9zTKe94LPyPGECPM5VEoxE7ZnRETUmG4sPo89UD4ZHwShlEHsGsSuyYXRJmB3Rk6mzyLMP3zwPOLdgJzEyy87uM3l1qAiAu8BDODHv_3TY3Jrz8NPyNHu66V7Cnbnrn3mOeUHvX5jQw |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+observer+design+method+for+neural+mass+models&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%88%98%E4%BB%99+%E8%8B%97%E4%B8%9C%E5%87%AF+%E9%AB%98%E5%BA%86+%E5%BE%90%E5%BC%8F%E8%95%B4&rft.date=2015-09-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=9&rft.spage=68&rft.epage=72&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F9%2F090207&rft.externalDocID=665867500 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |