A novel observer design method for neural mass models

Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie s...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 9; pp. 68 - 72
Main Author 刘仙 苗东凯 高庆 徐式蕴
Format Journal Article
LanguageEnglish
Published 01.09.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/9/090207

Cover

Abstract Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations.
AbstractList Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations.
Neural mass models can simulate the generation of electroencephalography (EEG) signals with different rhythms, and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations.
Author 刘仙 苗东凯 高庆 徐式蕴
AuthorAffiliation Key Laboratory of Industrial Computer Control Engineering of Hebei Province Institute of Electrical Engineering, . Yanshan University, Qinhuangdao 066004, China China Electric Power Research Institute, Beijing 100192, China
Author_xml – sequence: 1
  fullname: 刘仙 苗东凯 高庆 徐式蕴
BookMark eNqFkDtrwzAURkVJoUnan1AQnbq4uZKsh-kUQl8Q6NLOQravExdbSiQn0H_fhJQMXTrd5ZzvwpmQkQ8eCbll8MDAmBlTOs8YSDXj-ayYQQEc9AUZc5AmE0bkIzI-M1dkktIXgGLAxZjIOfVhjx0NZcK4x0hrTO3K0x6HdahpEyL1uIuuo71Lifahxi5dk8vGdQlvfu-UfD4_fSxes-X7y9tivswqwcSQceFYjbLMBQcEzcuGCaWhrJzWiCUTmMtal06aApuiNI1DzVSj2UFgecHFlNyfdjcxbHeYBtu3qcKucx7DLlmmC8EFN6w4oPKEVjGkFLGxm9j2Ln5bBvaYyR4T2GMCy3Nb2FOmg_f4x6vawQ1t8EN0bfevffdrr4NfbVu_Or9VShqlJYD4AQA6eVc
CitedBy_id crossref_primary_10_1016_j_irbm_2019_01_001
crossref_primary_10_1063_5_0020184
crossref_primary_10_1016_j_physa_2016_11_038
crossref_primary_10_3934_math_20241577
Cites_doi 10.1007/s11071-009-9539-3
10.1155/2014/215943
10.1016/j.physa.2007.05.030
10.1103/PhysRevE.90.032913
10.1103/PhysRevE.88.042905
10.1007/s11071-012-0638-1
10.1016/S0005-1098(00)00180-1
10.1155/2013/792507
10.1007/BF00199471
10.1007/s11571-014-9306-0
10.1109/TAC.2013.2294826
10.1016/S0167-6911(03)00170-1
10.1109/TBME.2014.2306424
10.1016/j.sysconle.2008.11.007
10.1016/j.neuroimage.2011.08.060
10.7551/mitpress/8436.001.0001
10.1137/1.9781611970777
10.1007/BF00270757
10.1007/s004220000160
10.1007/s10827-014-0517-5
10.1016/j.physa.2007.08.029
10.1109/TAC.2014.2310331
10.1002/rnc.1460
10.1016/j.neuroimage.2003.07.015
10.1016/j.automatica.2012.08.008
10.1016/j.neuropsychologia.2014.07.016
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/24/9/090207
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A novel observer design method for neural mass models
EISSN 2058-3834
1741-4199
EndPage 72
ExternalDocumentID 10_1088_1674_1056_24_9_090207
665867500
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c313t-23a1de5b4320e072bf13670bca77eeb13e45d7ba589ef9b8fae716f7143214923
ISSN 1674-1056
IngestDate Fri Sep 05 14:46:50 EDT 2025
Thu Apr 24 22:52:15 EDT 2025
Wed Oct 01 03:34:56 EDT 2025
Wed Feb 14 10:28:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-23a1de5b4320e072bf13670bca77eeb13e45d7ba589ef9b8fae716f7143214923
Notes Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of these models plays a significant role in brain research. The structure of neural mass models is special in that they can be expressed as Lurie systems. The developed techniques in Lurie system theory are applicable to these models. We here provide a new observer design method for neural mass models by transforming these models and the corresponding error systems into nonlinear systems with Lurie form. The purpose is to establish appropriate conditions which ensure the convergence of the estimation error. The effectiveness of the proposed method is illustrated by numerical simulations.
observer design,neural mass model,Lurie system theory
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793232819
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1793232819
crossref_primary_10_1088_1674_1056_24_9_090207
crossref_citationtrail_10_1088_1674_1056_24_9_090207
chongqing_primary_665867500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2015
References Liu X (6) 2014; 23
22
23
24
25
26
27
28
29
Liu X (30) 2010; 20
Wang J (2) 2012; 21
31
Xu S Y (32) 2011; 20
10
11
12
13
14
15
16
18
19
Li L (1) 2011; 20
3
4
5
7
Liang H J (17) 2014; 23
8
9
Schiff S J (20) 2011
Leonov G A (21) 1996
References_xml – ident: 31
  doi: 10.1007/s11071-009-9539-3
– ident: 27
  doi: 10.1155/2014/215943
– ident: 28
  doi: 10.1016/j.physa.2007.05.030
– ident: 3
  doi: 10.1103/PhysRevE.90.032913
– volume: 23
  issn: 1674-1056
  year: 2014
  ident: 6
  publication-title: Chin. Phys. B
– ident: 15
  doi: 10.1103/PhysRevE.88.042905
– volume: 20
  issn: 1674-1056
  year: 2011
  ident: 1
  publication-title: Chin. Phys. B
– ident: 13
  doi: 10.1007/s11071-012-0638-1
– ident: 23
  doi: 10.1016/S0005-1098(00)00180-1
– ident: 14
  doi: 10.1155/2013/792507
– volume: 23
  issn: 1674-1056
  year: 2014
  ident: 17
  publication-title: Chin. Phys. B
– volume: 20
  issn: 1674-1056
  year: 2011
  ident: 32
  publication-title: Chin. Phys. B
– ident: 7
  doi: 10.1007/BF00199471
– ident: 16
  doi: 10.1007/s11571-014-9306-0
– ident: 19
  doi: 10.1109/TAC.2013.2294826
– ident: 24
  doi: 10.1016/S0167-6911(03)00170-1
– ident: 4
  doi: 10.1109/TBME.2014.2306424
– ident: 25
  doi: 10.1016/j.sysconle.2008.11.007
– ident: 11
  doi: 10.1016/j.neuroimage.2011.08.060
– year: 2011
  ident: 20
  publication-title: Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience
  doi: 10.7551/mitpress/8436.001.0001
– ident: 22
  doi: 10.1137/1.9781611970777
– ident: 8
  doi: 10.1007/BF00270757
– ident: 9
  doi: 10.1007/s004220000160
– ident: 12
  doi: 10.1007/s10827-014-0517-5
– ident: 29
  doi: 10.1016/j.physa.2007.08.029
– ident: 18
  doi: 10.1109/TAC.2014.2310331
– volume: 20
  start-page: 659
  year: 2010
  ident: 30
  publication-title: Int. J. Robust Nonlin.
  doi: 10.1002/rnc.1460
– ident: 10
  doi: 10.1016/j.neuroimage.2003.07.015
– year: 1996
  ident: 21
  publication-title: Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications
– volume: 21
  issn: 1674-1056
  year: 2012
  ident: 2
  publication-title: Chin. Phys. B
– ident: 26
  doi: 10.1016/j.automatica.2012.08.008
– ident: 5
  doi: 10.1016/j.neuropsychologia.2014.07.016
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0339622
Snippet Neural mass models can simulate the generation of electroencephalography(EEG) signals with different rhythms,and therefore the observation of the states of...
Neural mass models can simulate the generation of electroencephalography (EEG) signals with different rhythms, and therefore the observation of the states of...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Brain
Computer simulation
Convergence
Design engineering
Dynamical systems
Electroencephalography
Errors
Lurie型
Lurie系统
Mathematical models
数值模拟
神经网络观测器
系统理论
设计方法
质量模型
非线性系统
Title A novel observer design method for neural mass models
URI http://lib.cqvip.com/qk/85823A/201509/665867500.html
https://www.proquest.com/docview/1793232819
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LjtMw0IJFSFwQT1EWUJDwqcrWiZ3YPiYl1YLE47Ar7c1yUgcOKAXa5cDXM2PHaVcgXpfIcpxxNDOahz0PQl4wDkTvuyxdczy6aTVLNev6VLbcCms5WAh4o_vmbXl6Ll5fFBf7wxyfXbJrT7rvv8wr-R-qwhzQFbNk_4GyE1CYgDHQF55AYXj-FY2r-bD55sCabPFs1ff6xniMsS20jyDEepWYIGJj15vtoTlKG0FrRauXtCmormkNA0mVppXGgWZUlTVtVrReUl3RRlEFizLalFSXVMlxtZriYRGOUlQrD7mmWs_Hr7QcN9NLv0jSagXvYKvaLy9oXcFucz9qcGscLKlaIQANY3F4QpEVUwhWFKqlFCDui7HktZ_LWaFSHg8yA4_pA0Eaeu2MKjk09_lJ2IOAxHOHCB1zWwQGfPgLKTCD5V7HTZGHJVhc4CMxdp3cyEERYLePV-_eR-VdYiUL9NEj0Jj0pdRimlvkYqEXYQssyfFxM3z4AobGVdPmqmb35srZHXJ79DOSKjDNXXLNDffITR_v223vk6JKPOskkXWSwDpJYJ0EWCcJrJMg6ySBdR6Q81VztjxNxw4aacczvktzbrO1K1rBc-aYzNseK_SxtrNSOtDS3IliLVtbKO163areOvCfewlGdJ5h6b6H5GjYDO4RSTi81XkP_rdbi95l1oJhu2a9zTKe94LPyPGECPM5VEoxE7ZnRETUmG4sPo89UD4ZHwShlEHsGsSuyYXRJmB3Rk6mzyLMP3zwPOLdgJzEyy87uM3l1qAiAu8BDODHv_3TY3Jrz8NPyNHu66V7Cnbnrn3mOeUHvX5jQw
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+observer+design+method+for+neural+mass+models&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%88%98%E4%BB%99+%E8%8B%97%E4%B8%9C%E5%87%AF+%E9%AB%98%E5%BA%86+%E5%BE%90%E5%BC%8F%E8%95%B4&rft.date=2015-09-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=9&rft.spage=68&rft.epage=72&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F9%2F090207&rft.externalDocID=665867500
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg