Scalable one-pass multi-view clustering with tensorized multiscale bipartite graphs fusion
In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more...
        Saved in:
      
    
          | Published in | Neural networks Vol. 190; p. 107669 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.10.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0893-6080 1879-2782 1879-2782  | 
| DOI | 10.1016/j.neunet.2025.107669 | 
Cover
| Abstract | In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view’s partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data. | 
    
|---|---|
| AbstractList | In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view's partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data. In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view's partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data.In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view's partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data.  | 
    
| ArticleNumber | 107669 | 
    
| Author | Lu, Gui-Fu Wang, Fei  | 
    
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0009-0004-1393-9444 surname: Wang fullname: Wang, Fei – sequence: 2 givenname: Gui-Fu surname: Lu fullname: Lu, Gui-Fu email: lu-guifu@ahpu.edu.cn  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40554302$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kMtKxTAQhoMoery8gUiXbnqcZHrdCCLeQHChbtyENJ1qDj1pTVJFn95I1aWrgeH7f2a-XbZpB0uMHXJYcuDFyWppabIUlgJEHldlUdQbbMGrsk5FWYlNtoCqxrSACnbYrvcrACiqDLfZTgZ5niGIBXu616pXTU9JbE9H5X2ynvpg0jdD74nuJx_IGfucvJvwkgSyfnDmk9qZ8jFMSWNG5YIJlDw7Nb74pJu8Gew-2-pU7-ngZ-6xx8uLh_Pr9Pbu6ub87DbVyDGkvEAgyOL1lUKBXYOFylTWEbUcoFWABUBZlrxpGmxAY8kF10LoPAfBc8Q9djz3jm54ncgHuY6HUd8rS8PkJQqBtagR8oge_aBTs6ZWjs6slfuQvz4ikM2AdoP3jro_hIP81i5XctYuv7XLWXuMnc4xin9Gc056bchqao0jHWQ7mP8LvgAzDYyU | 
    
| Cites_doi | 10.1109/TNN.2010.2081999 10.1609/aaai.v36i7.20723 10.1109/TKDE.2024.3399738 10.1109/TMM.2020.3045259 10.1016/j.patcog.2023.109860 10.1016/j.inffus.2018.09.008 10.1109/ICCV51070.2023.01772 10.1109/TPAMI.2013.57 10.1016/j.inffus.2024.102225 10.1109/TIP.2024.3444320 10.1016/j.inffus.2023.101832 10.1109/TPAMI.2020.3011148 10.1109/ICCV.2015.185 10.1609/aaai.v34i04.5867 10.1109/TIP.2023.3310339 10.1007/s11280-021-00958-4 10.1145/3552487.3556441 10.1016/j.neunet.2024.106103 10.1109/TCYB.2018.2868742 10.1609/aaai.v27i1.8683 10.1109/TPAMI.2020.3017672 10.1109/TIP.2024.3459651 10.1109/TKDE.2022.3199587 10.1016/j.inffus.2024.102587 10.1109/TIP.2021.3131941 10.1109/TSIPN.2024.3414134 10.1016/j.neunet.2018.08.007 10.1109/TPAMI.2022.3187976 10.1145/3292500.3330846 10.1109/TMM.2021.3081930 10.1109/TKDE.2022.3172687 10.1109/TMM.2022.3193855  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.neunet.2025.107669 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1879-2782 | 
    
| ExternalDocumentID | 40554302 10_1016_j_neunet_2025_107669 S0893608025005490  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AAYXX ACLOT CITATION ~HD AGRNS BNPGV CGR CUY CVF ECM EIF NPM RIG 7X8  | 
    
| ID | FETCH-LOGICAL-c313t-1630e046698a323fb36a4a4feed100da036007771bbb3b0c37121c22c55021533 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0893-6080 1879-2782  | 
    
| IngestDate | Thu Oct 02 22:31:55 EDT 2025 Sat Aug 09 01:32:29 EDT 2025 Wed Oct 01 05:36:42 EDT 2025 Sat Sep 06 17:17:11 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multi-view clustering Bipartite graph Large-scale dataset  | 
    
| Language | English | 
    
| License | Copyright © 2025 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c313t-1630e046698a323fb36a4a4feed100da036007771bbb3b0c37121c22c55021533 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0009-0004-1393-9444 | 
    
| PMID | 40554302 | 
    
| PQID | 3223929305 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3223929305 pubmed_primary_40554302 crossref_primary_10_1016_j_neunet_2025_107669 elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107669  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-10-01 | 
    
| PublicationDateYYYYMMDD | 2025-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Neural networks | 
    
| PublicationTitleAlternate | Neural Netw | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Huang, Du, Fu, Wu, Wang (b5) 2024 Ou, Wang, Zhang, Zhou, Zhu (b19) 2024; 106 (pp. 431–437). (pp. 25–33). In Liu, S., Wang, S., Zhang, P., Xu, K., Liu, X., Zhang, C., & Gao, F. (2022). Efficient one-pass multi-view subspace clustering with consensus anchors. Zhang, C., Fu, H., Liu, S., Liu, G., & Cao, X. (2015). Low-rank tensor constrained multiview subspace clustering. In Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., & Xu, Z. (2020). Large-scale multi-view subspace clustering in linear time. Xia, Gao, Wang, Gao, Ding, Tao (b31) 2022; 45 Pang, Xie, Nie, Li (b20) 2020; 50 Yu, Liu, Zhang, Sun, Zhang (b35) 2023; 144 Shu, Zhang, Gao, Yang, Wang, Gao (b22) 2023; 25 Wang, Liu, Zhu, Zhang, Zhang, Gao, Zhu (b28) 2022; 31 Wen, Zhu, Chen, Zhang (b30) 2021; 25 Chen, Mao, Peng, Zhang, Peng (b1) 2023; 32 Elhamifar, Vidal (b2) 2013; 35 Ji, J., & Feng, S. (2023). Anchor Structure Regularization Induced Multi-view Subspace Clustering via Enhanced Tensor Rank Minimization. In (pp. 1582–1590). Liu, Palade, Zheng (b14) 2024; 172 Li, Gao, Wang, Yang, Xia (b10) 2024; 36 Tzortzis, Likas (b24) 2010; 21 Huang, Liu, Tsang, Xu, Lv (b6) 2022; 35 (pp. 7576–7584). Wang, Li, Tang, Liu, Wan, Liu (b26) 2024; 36 Li, Tang, Liu, Zheng, Zhang, Zhu (b11) 2021; 24 Long, Zhu, Chen, Li, Ren, Liu (b16) 2023 Xiao, Gong, Hua, Chen (b32) 2020; 23 Nie, F., Wang, C.-L., & Li, X. (2019). K-multiple-means: A multiple-means clustering method with specified k clusters. In Yan, Gu, Ren, Yue, Liu, Xu, Lin (b33) 2023; 98 Li, Zhang, Wang, Nie (b12) 2022; 44 (pp. 19343–19352). Qin, Qin, Zhang, Feng (b21) 2024; 33 Liu, Liao, Wang, Liu, Zhu (b13) 2024 Tang, Li, Wang, Liu, Zhang, Zhu (b23) 2022; 35 Lu, Min, Zhao, Zhu, Huang, Yan (b17) 2012 Hossain, Muhammad (b4) 2019; 49 Huang, J., Nie, F., & Huang, H. (2013). Spectral rotation versus k-means in spectral clustering. (pp. 4412–4419). Yang, H., Zhao, W., Gao, Q., Zhang, X., & Xia, W. (2022). Optimal Tensor Bipartite Graph Learning. In Gao, Zhang, Xia, Xie, Gao, Tao (b3) 2020; 43 Zhang, Hang, Sun, Nie, Wang, Li (b37) 2025; 113 Wan, Liu, Gan, Liu, Wang, Wen, Wan, Zhu (b25) 2024 Wang, Liu, Liu, Tu, Zhu (b27) 2024; 33 (pp. 959–967). Wen, Fang, Xu, Tian, Fei (b29) 2018; 108 Zhao, Li, Xu, Gao, Wang, Gao (b38) 2024 Wen (10.1016/j.neunet.2025.107669_b29) 2018; 108 Liu (10.1016/j.neunet.2025.107669_b13) 2024 Wang (10.1016/j.neunet.2025.107669_b28) 2022; 31 Li (10.1016/j.neunet.2025.107669_b11) 2021; 24 Hossain (10.1016/j.neunet.2025.107669_b4) 2019; 49 Wang (10.1016/j.neunet.2025.107669_b27) 2024; 33 10.1016/j.neunet.2025.107669_b15 10.1016/j.neunet.2025.107669_b36 10.1016/j.neunet.2025.107669_b34 Liu (10.1016/j.neunet.2025.107669_b14) 2024; 172 Zhao (10.1016/j.neunet.2025.107669_b38) 2024 Wan (10.1016/j.neunet.2025.107669_b25) 2024 Shu (10.1016/j.neunet.2025.107669_b22) 2023; 25 Zhang (10.1016/j.neunet.2025.107669_b37) 2025; 113 Tang (10.1016/j.neunet.2025.107669_b23) 2022; 35 10.1016/j.neunet.2025.107669_b18 Qin (10.1016/j.neunet.2025.107669_b21) 2024; 33 Pang (10.1016/j.neunet.2025.107669_b20) 2020; 50 10.1016/j.neunet.2025.107669_b7 Yu (10.1016/j.neunet.2025.107669_b35) 2023; 144 10.1016/j.neunet.2025.107669_b8 10.1016/j.neunet.2025.107669_b9 Xia (10.1016/j.neunet.2025.107669_b31) 2022; 45 Li (10.1016/j.neunet.2025.107669_b10) 2024; 36 Long (10.1016/j.neunet.2025.107669_b16) 2023 Chen (10.1016/j.neunet.2025.107669_b1) 2023; 32 Gao (10.1016/j.neunet.2025.107669_b3) 2020; 43 Tzortzis (10.1016/j.neunet.2025.107669_b24) 2010; 21 Wang (10.1016/j.neunet.2025.107669_b26) 2024; 36 Yan (10.1016/j.neunet.2025.107669_b33) 2023; 98 Huang (10.1016/j.neunet.2025.107669_b6) 2022; 35 Xiao (10.1016/j.neunet.2025.107669_b32) 2020; 23 Ou (10.1016/j.neunet.2025.107669_b19) 2024; 106 Li (10.1016/j.neunet.2025.107669_b12) 2022; 44 Wen (10.1016/j.neunet.2025.107669_b30) 2021; 25 Elhamifar (10.1016/j.neunet.2025.107669_b2) 2013; 35 Lu (10.1016/j.neunet.2025.107669_b17) 2012 Huang (10.1016/j.neunet.2025.107669_b5) 2024  | 
    
| References_xml | – volume: 44 start-page: 330 year: 2022 end-page: 344 ident: b12 article-title: Multiview clustering: A scalable and parameter-free bipartite graph fusion method publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 98 year: 2023 ident: b33 article-title: Collaborative structure and feature learning for multi-view clustering publication-title: Information Fusion – reference: (pp. 1582–1590). – reference: (pp. 4412–4419). – reference: Yang, H., Zhao, W., Gao, Q., Zhang, X., & Xia, W. (2022). Optimal Tensor Bipartite Graph Learning. In – year: 2024 ident: b38 article-title: Anchor graph-based feature selection for one-step multi-view clustering publication-title: IEEE Transactions on Multimedia – volume: 49 start-page: 69 year: 2019 end-page: 78 ident: b4 article-title: Emotion recognition using deep learning approach from audio–visual emotional big data publication-title: Information Fusion – volume: 35 start-page: 6449 year: 2022 end-page: 6460 ident: b23 article-title: Unified one-step multi-view spectral clustering publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 24 start-page: 2461 year: 2021 end-page: 2472 ident: b11 article-title: Consensus graph learning for multi-view clustering publication-title: IEEE Transactions on Multimedia – year: 2024 ident: b13 article-title: Robust and consistent anchor graph learning for multi-view clustering publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 21 start-page: 1925 year: 2010 end-page: 1938 ident: b24 article-title: Multiple view clustering using a weighted combination of exemplar-based mixture models publication-title: IEEE Transactions on Neural Networks – volume: 25 start-page: 259 year: 2021 end-page: 280 ident: b30 article-title: One-step spectral rotation clustering with balanced constrains publication-title: World Wide Web – reference: (pp. 19343–19352). – start-page: 347 year: 2012 end-page: 360 ident: b17 article-title: Robust and efficient subspace segmentation via least squares regression publication-title: Computer vision–ECCV 2012: 12th European conference on computer vision, Florence, Italy, October 7-13, 2012, proceedings, part VII 12 – volume: 50 start-page: 247 year: 2020 end-page: 258 ident: b20 article-title: Spectral clustering by joint spectral embedding and spectral rotation publication-title: IEEE Transactions on Cybernetics – volume: 144 year: 2023 ident: b35 article-title: Multi-view clustering via efficient representation learning with anchors publication-title: Pattern Recognition – volume: 35 start-page: 2765 year: 2013 end-page: 2781 ident: b2 article-title: Sparse subspace clustering: Algorithm, theory, and applications publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2024 ident: b5 article-title: Tensor-derived large-scale multi-view subspace clustering with faithful semantics publication-title: IEEE Transactions on Signal and Information Processing over Networks – reference: Liu, S., Wang, S., Zhang, P., Xu, K., Liu, X., Zhang, C., & Gao, F. (2022). Efficient one-pass multi-view subspace clustering with consensus anchors. – reference: Nie, F., Wang, C.-L., & Li, X. (2019). K-multiple-means: A multiple-means clustering method with specified k clusters. In – volume: 32 start-page: 5153 year: 2023 end-page: 5166 ident: b1 article-title: Multiview clustering by consensus spectral rotation fusion publication-title: IEEE Transactions on Image Processing – reference: Zhang, C., Fu, H., Liu, S., Liu, G., & Cao, X. (2015). Low-rank tensor constrained multiview subspace clustering. In – reference: Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., & Xu, Z. (2020). Large-scale multi-view subspace clustering in linear time. – reference: (pp. 25–33). – start-page: 1 year: 2024 end-page: 13 ident: b25 article-title: One-step multi-view clustering with diverse representation publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 172 year: 2024 ident: b14 article-title: Learning the consensus and complementary information for large-scale multi-view clustering publication-title: Neural Networks – volume: 25 start-page: 5485 year: 2023 end-page: 5499 ident: b22 article-title: Self-weighted anchor graph learning for multi-view clustering publication-title: IEEE Transactions on Multimedia – reference: (pp. 431–437). – reference: Huang, J., Nie, F., & Huang, H. (2013). Spectral rotation versus k-means in spectral clustering. – reference: Ji, J., & Feng, S. (2023). Anchor Structure Regularization Induced Multi-view Subspace Clustering via Enhanced Tensor Rank Minimization. In – volume: 36 start-page: 6641 year: 2024 end-page: 6652 ident: b26 article-title: Multiple kernel clustering with adaptive multi-scale partition selection publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 31 start-page: 556 year: 2022 end-page: 568 ident: b28 article-title: Fast parameter-free multi-view subspace clustering with consensus anchor guidance publication-title: IEEE Transactions on Image Processing – year: 2023 ident: b16 article-title: Multi-view MERA subspace clustering publication-title: IEEE Transactions on Multimedia – volume: 108 start-page: 83 year: 2018 end-page: 96 ident: b29 article-title: Low-rank representation with adaptive graph regularization publication-title: Neural Networks – reference: , In – volume: 36 year: 2024 ident: b10 article-title: Orthogonal non-negative tensor factorization based multi-view clustering publication-title: Advances in Neural Information Processing Systems – volume: 35 start-page: 8270 year: 2022 end-page: 8281 ident: b6 article-title: Multi-view subspace clustering by joint measuring of consistency and diversity publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (pp. 7576–7584). – volume: 43 start-page: 2133 year: 2020 end-page: 2140 ident: b3 article-title: Enhanced tensor RPCA and its application publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 33 start-page: 5298 year: 2024 end-page: 5311 ident: b21 article-title: Dual consensus anchor learning for fast multi-view clustering publication-title: IEEE Transactions on Image Processing – volume: 33 start-page: 4627 year: 2024 end-page: 4639 ident: b27 article-title: Scalable and structural multi-view graph clustering with adaptive anchor fusion publication-title: IEEE Transactions on Image Processing – volume: 23 start-page: 4555 year: 2020 end-page: 4566 ident: b32 article-title: On reliable multi-view affinity learning for subspace clustering publication-title: IEEE Transactions on Multimedia – volume: 113 year: 2025 ident: b37 article-title: Anchor-based fast spectral ensemble clustering publication-title: Information Fusion – volume: 45 start-page: 5187 year: 2022 end-page: 5202 ident: b31 article-title: Tensorized bipartite graph learning for multi-view clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 106 year: 2024 ident: b19 article-title: Anchor-based multi-view subspace clustering with hierarchical feature descent publication-title: Information Fusion – reference: (pp. 959–967). – volume: 21 start-page: 1925 issue: 12 year: 2010 ident: 10.1016/j.neunet.2025.107669_b24 article-title: Multiple view clustering using a weighted combination of exemplar-based mixture models publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2081999 – ident: 10.1016/j.neunet.2025.107669_b15 doi: 10.1609/aaai.v36i7.20723 – volume: 36 start-page: 6641 year: 2024 ident: 10.1016/j.neunet.2025.107669_b26 article-title: Multiple kernel clustering with adaptive multi-scale partition selection publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2024.3399738 – volume: 23 start-page: 4555 year: 2020 ident: 10.1016/j.neunet.2025.107669_b32 article-title: On reliable multi-view affinity learning for subspace clustering publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2020.3045259 – volume: 144 year: 2023 ident: 10.1016/j.neunet.2025.107669_b35 article-title: Multi-view clustering via efficient representation learning with anchors publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.109860 – volume: 49 start-page: 69 year: 2019 ident: 10.1016/j.neunet.2025.107669_b4 article-title: Emotion recognition using deep learning approach from audio–visual emotional big data publication-title: Information Fusion doi: 10.1016/j.inffus.2018.09.008 – ident: 10.1016/j.neunet.2025.107669_b8 doi: 10.1109/ICCV51070.2023.01772 – volume: 35 start-page: 2765 issue: 11 year: 2013 ident: 10.1016/j.neunet.2025.107669_b2 article-title: Sparse subspace clustering: Algorithm, theory, and applications publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.57 – year: 2024 ident: 10.1016/j.neunet.2025.107669_b38 article-title: Anchor graph-based feature selection for one-step multi-view clustering publication-title: IEEE Transactions on Multimedia – volume: 106 year: 2024 ident: 10.1016/j.neunet.2025.107669_b19 article-title: Anchor-based multi-view subspace clustering with hierarchical feature descent publication-title: Information Fusion doi: 10.1016/j.inffus.2024.102225 – volume: 33 start-page: 4627 year: 2024 ident: 10.1016/j.neunet.2025.107669_b27 article-title: Scalable and structural multi-view graph clustering with adaptive anchor fusion publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2024.3444320 – volume: 98 year: 2023 ident: 10.1016/j.neunet.2025.107669_b33 article-title: Collaborative structure and feature learning for multi-view clustering publication-title: Information Fusion doi: 10.1016/j.inffus.2023.101832 – volume: 44 start-page: 330 year: 2022 ident: 10.1016/j.neunet.2025.107669_b12 article-title: Multiview clustering: A scalable and parameter-free bipartite graph fusion method publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.3011148 – ident: 10.1016/j.neunet.2025.107669_b36 doi: 10.1109/ICCV.2015.185 – ident: 10.1016/j.neunet.2025.107669_b9 doi: 10.1609/aaai.v34i04.5867 – volume: 32 start-page: 5153 year: 2023 ident: 10.1016/j.neunet.2025.107669_b1 article-title: Multiview clustering by consensus spectral rotation fusion publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2023.3310339 – year: 2024 ident: 10.1016/j.neunet.2025.107669_b13 article-title: Robust and consistent anchor graph learning for multi-view clustering publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 36 year: 2024 ident: 10.1016/j.neunet.2025.107669_b10 article-title: Orthogonal non-negative tensor factorization based multi-view clustering publication-title: Advances in Neural Information Processing Systems – volume: 25 start-page: 259 year: 2021 ident: 10.1016/j.neunet.2025.107669_b30 article-title: One-step spectral rotation clustering with balanced constrains publication-title: World Wide Web doi: 10.1007/s11280-021-00958-4 – ident: 10.1016/j.neunet.2025.107669_b34 doi: 10.1145/3552487.3556441 – volume: 172 year: 2024 ident: 10.1016/j.neunet.2025.107669_b14 article-title: Learning the consensus and complementary information for large-scale multi-view clustering publication-title: Neural Networks doi: 10.1016/j.neunet.2024.106103 – volume: 50 start-page: 247 year: 2020 ident: 10.1016/j.neunet.2025.107669_b20 article-title: Spectral clustering by joint spectral embedding and spectral rotation publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2868742 – ident: 10.1016/j.neunet.2025.107669_b7 doi: 10.1609/aaai.v27i1.8683 – volume: 43 start-page: 2133 issue: 6 year: 2020 ident: 10.1016/j.neunet.2025.107669_b3 article-title: Enhanced tensor RPCA and its application publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.3017672 – volume: 33 start-page: 5298 year: 2024 ident: 10.1016/j.neunet.2025.107669_b21 article-title: Dual consensus anchor learning for fast multi-view clustering publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2024.3459651 – volume: 35 start-page: 8270 issue: 8 year: 2022 ident: 10.1016/j.neunet.2025.107669_b6 article-title: Multi-view subspace clustering by joint measuring of consistency and diversity publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2022.3199587 – volume: 113 year: 2025 ident: 10.1016/j.neunet.2025.107669_b37 article-title: Anchor-based fast spectral ensemble clustering publication-title: Information Fusion doi: 10.1016/j.inffus.2024.102587 – volume: 31 start-page: 556 year: 2022 ident: 10.1016/j.neunet.2025.107669_b28 article-title: Fast parameter-free multi-view subspace clustering with consensus anchor guidance publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2021.3131941 – start-page: 1 year: 2024 ident: 10.1016/j.neunet.2025.107669_b25 article-title: One-step multi-view clustering with diverse representation publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2024 ident: 10.1016/j.neunet.2025.107669_b5 article-title: Tensor-derived large-scale multi-view subspace clustering with faithful semantics publication-title: IEEE Transactions on Signal and Information Processing over Networks doi: 10.1109/TSIPN.2024.3414134 – volume: 108 start-page: 83 year: 2018 ident: 10.1016/j.neunet.2025.107669_b29 article-title: Low-rank representation with adaptive graph regularization publication-title: Neural Networks doi: 10.1016/j.neunet.2018.08.007 – volume: 45 start-page: 5187 issue: 4 year: 2022 ident: 10.1016/j.neunet.2025.107669_b31 article-title: Tensorized bipartite graph learning for multi-view clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2022.3187976 – year: 2023 ident: 10.1016/j.neunet.2025.107669_b16 article-title: Multi-view MERA subspace clustering publication-title: IEEE Transactions on Multimedia – ident: 10.1016/j.neunet.2025.107669_b18 doi: 10.1145/3292500.3330846 – volume: 24 start-page: 2461 year: 2021 ident: 10.1016/j.neunet.2025.107669_b11 article-title: Consensus graph learning for multi-view clustering publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2021.3081930 – volume: 35 start-page: 6449 issue: 6 year: 2022 ident: 10.1016/j.neunet.2025.107669_b23 article-title: Unified one-step multi-view spectral clustering publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2022.3172687 – volume: 25 start-page: 5485 year: 2023 ident: 10.1016/j.neunet.2025.107669_b22 article-title: Self-weighted anchor graph learning for multi-view clustering publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2022.3193855 – start-page: 347 year: 2012 ident: 10.1016/j.neunet.2025.107669_b17 article-title: Robust and efficient subspace segmentation via least squares regression  | 
    
| SSID | ssj0006843 | 
    
| Score | 2.4692547 | 
    
| Snippet | In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 107669 | 
    
| SubjectTerms | Algorithms Bipartite graph Cluster Analysis Humans Large-scale dataset Multi-view clustering Neural Networks, Computer  | 
    
| Title | Scalable one-pass multi-view clustering with tensorized multiscale bipartite graphs fusion | 
    
| URI | https://dx.doi.org/10.1016/j.neunet.2025.107669 https://www.ncbi.nlm.nih.gov/pubmed/40554302 https://www.proquest.com/docview/3223929305  | 
    
| Volume | 190 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXQ9sKlpdCPbQEZiatZJ_5IckQrVgsILoC06sWyHUfaqspGbHLh0N_OTJwUVSqqxDGWrVjP8cxz_GaGkFNdWJ0EVTLNS8-k9R72XFEwV-kkL6UteB8-dnOrlw_yaqVWO2Q-xsKgrHKw_dGm99Z6aJkNaM6a9Xp2x8HVagwVVcg7Cjy3S5lhFYOz3y8yD51H5Rx0Zth7DJ_rNV516OqAispUQVOmUfb8b_f0Gv3s3dBij7wf-CM9j1P8SHZCvU8-jLUZ6LBVD8iPOwAfw6Lopg6sAYpMe-0gw6sA6n91mCAB3BbFH7EUZeybx_VTKGOvLQwO1K0bhKINtE9rvaVVh__WPpGHxcX9fMmGOgrMi0S0DCgXD3AO1kVuRSoqJ7SVVlbgHhPOSwtODLP6ZIlzTjjuRZakiU9TD6eXFPngZzKpYbJfCfU2zyuuyqxSXgasoxgqUSpd5kUonFZTwkb4TBPTZZhRR_bTRLgNwm0i3FOSjRibv5bdgEX_z8iTcUkM7Ai85rB12HRbAyYKSR8Ysin5Etfqz1yAniopePrtze_9TnbxKer5DsmkfezCEfCS1h33H94xeXd-eb28fQZVmOJg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734fqzPCF7jpk2TtkcRZX1eVBAvIUlTWJHu4m4vHvztzjStIiiC1zSh4Usz803zzYSQI5UbFXlZMMULxxLjHOy5PGe2VFFWJCbnTfrYza0aPCSXj_Jxhpx2uTAoq2xtf7DpjbVuW_otmv3xcNi_4-BqFaaKSuQdOcTtc4mMU4zAjt-_dB4qC9I56M2we5c_14i8Kl9XHiWVsYSmVKHu-Wf_9Bv_bPzQ-TJZbAkkPQlzXCEzvlolS93lDLTdq2vk6Q7Qx7woOqo8GwNHpo14kOFZAHUvNVZIAL9F8U8sRR376HX45ovQawKDPbXDMWIx9bSpaz2hZY0_19bJw_nZ_emAtRcpMCciMWXAubiHQFjlmRGxKK1QJjFJCf4x4rww4MWwrE8aWWuF5U6kURy5OHYQvsRICDfIbAWT3SLUmSwruSzSUrrE40WKvhSFVEWW-9wq2SOsg0-PQ70M3QnJnnWAWyPcOsDdI2mHsf627hpM-h8jD7sl0bAl8JzDVH5UTzTYKGR9YMl6ZDOs1edcgJ_KRPB4-9_vPSDzg_uba319cXu1QxbwSRD37ZLZ6Wvt94CkTO1-8xF-AKoh4_U | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+one-pass+multi-view+clustering+with+tensorized+multiscale+bipartite+graphs+fusion&rft.jtitle=Neural+networks&rft.au=Wang%2C+Fei&rft.au=Lu%2C+Gui-Fu&rft.date=2025-10-01&rft.issn=0893-6080&rft.volume=190&rft.spage=107669&rft_id=info:doi/10.1016%2Fj.neunet.2025.107669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2025_107669 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |