Scalable one-pass multi-view clustering with tensorized multiscale bipartite graphs fusion

In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 190; p. 107669
Main Authors Wang, Fei, Lu, Gui-Fu
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2025.107669

Cover

Abstract In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view’s partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data.
AbstractList In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view's partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data.
In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view's partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data.In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view's partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data.
ArticleNumber 107669
Author Lu, Gui-Fu
Wang, Fei
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0009-0004-1393-9444
  surname: Wang
  fullname: Wang, Fei
– sequence: 2
  givenname: Gui-Fu
  surname: Lu
  fullname: Lu, Gui-Fu
  email: lu-guifu@ahpu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40554302$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxTAQhoMoery8gUiXbnqcZHrdCCLeQHChbtyENJ1qDj1pTVJFn95I1aWrgeH7f2a-XbZpB0uMHXJYcuDFyWppabIUlgJEHldlUdQbbMGrsk5FWYlNtoCqxrSACnbYrvcrACiqDLfZTgZ5niGIBXu616pXTU9JbE9H5X2ynvpg0jdD74nuJx_IGfucvJvwkgSyfnDmk9qZ8jFMSWNG5YIJlDw7Nb74pJu8Gew-2-pU7-ngZ-6xx8uLh_Pr9Pbu6ub87DbVyDGkvEAgyOL1lUKBXYOFylTWEbUcoFWABUBZlrxpGmxAY8kF10LoPAfBc8Q9djz3jm54ncgHuY6HUd8rS8PkJQqBtagR8oge_aBTs6ZWjs6slfuQvz4ikM2AdoP3jro_hIP81i5XctYuv7XLWXuMnc4xin9Gc056bchqao0jHWQ7mP8LvgAzDYyU
Cites_doi 10.1109/TNN.2010.2081999
10.1609/aaai.v36i7.20723
10.1109/TKDE.2024.3399738
10.1109/TMM.2020.3045259
10.1016/j.patcog.2023.109860
10.1016/j.inffus.2018.09.008
10.1109/ICCV51070.2023.01772
10.1109/TPAMI.2013.57
10.1016/j.inffus.2024.102225
10.1109/TIP.2024.3444320
10.1016/j.inffus.2023.101832
10.1109/TPAMI.2020.3011148
10.1109/ICCV.2015.185
10.1609/aaai.v34i04.5867
10.1109/TIP.2023.3310339
10.1007/s11280-021-00958-4
10.1145/3552487.3556441
10.1016/j.neunet.2024.106103
10.1109/TCYB.2018.2868742
10.1609/aaai.v27i1.8683
10.1109/TPAMI.2020.3017672
10.1109/TIP.2024.3459651
10.1109/TKDE.2022.3199587
10.1016/j.inffus.2024.102587
10.1109/TIP.2021.3131941
10.1109/TSIPN.2024.3414134
10.1016/j.neunet.2018.08.007
10.1109/TPAMI.2022.3187976
10.1145/3292500.3330846
10.1109/TMM.2021.3081930
10.1109/TKDE.2022.3172687
10.1109/TMM.2022.3193855
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2025.107669
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 40554302
10_1016_j_neunet_2025_107669
S0893608025005490
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAYXX
ACLOT
CITATION
~HD
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c313t-1630e046698a323fb36a4a4feed100da036007771bbb3b0c37121c22c55021533
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Oct 02 22:31:55 EDT 2025
Sat Aug 09 01:32:29 EDT 2025
Wed Oct 01 05:36:42 EDT 2025
Sat Sep 06 17:17:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-view clustering
Bipartite graph
Large-scale dataset
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-1630e046698a323fb36a4a4feed100da036007771bbb3b0c37121c22c55021533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0004-1393-9444
PMID 40554302
PQID 3223929305
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3223929305
pubmed_primary_40554302
crossref_primary_10_1016_j_neunet_2025_107669
elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Du, Fu, Wu, Wang (b5) 2024
Ou, Wang, Zhang, Zhou, Zhu (b19) 2024; 106
(pp. 431–437).
(pp. 25–33).
In
Liu, S., Wang, S., Zhang, P., Xu, K., Liu, X., Zhang, C., & Gao, F. (2022). Efficient one-pass multi-view subspace clustering with consensus anchors.
Zhang, C., Fu, H., Liu, S., Liu, G., & Cao, X. (2015). Low-rank tensor constrained multiview subspace clustering. In
Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., & Xu, Z. (2020). Large-scale multi-view subspace clustering in linear time.
Xia, Gao, Wang, Gao, Ding, Tao (b31) 2022; 45
Pang, Xie, Nie, Li (b20) 2020; 50
Yu, Liu, Zhang, Sun, Zhang (b35) 2023; 144
Shu, Zhang, Gao, Yang, Wang, Gao (b22) 2023; 25
Wang, Liu, Zhu, Zhang, Zhang, Gao, Zhu (b28) 2022; 31
Wen, Zhu, Chen, Zhang (b30) 2021; 25
Chen, Mao, Peng, Zhang, Peng (b1) 2023; 32
Elhamifar, Vidal (b2) 2013; 35
Ji, J., & Feng, S. (2023). Anchor Structure Regularization Induced Multi-view Subspace Clustering via Enhanced Tensor Rank Minimization. In
(pp. 1582–1590).
Liu, Palade, Zheng (b14) 2024; 172
Li, Gao, Wang, Yang, Xia (b10) 2024; 36
Tzortzis, Likas (b24) 2010; 21
Huang, Liu, Tsang, Xu, Lv (b6) 2022; 35
(pp. 7576–7584).
Wang, Li, Tang, Liu, Wan, Liu (b26) 2024; 36
Li, Tang, Liu, Zheng, Zhang, Zhu (b11) 2021; 24
Long, Zhu, Chen, Li, Ren, Liu (b16) 2023
Xiao, Gong, Hua, Chen (b32) 2020; 23
Nie, F., Wang, C.-L., & Li, X. (2019). K-multiple-means: A multiple-means clustering method with specified k clusters. In
Yan, Gu, Ren, Yue, Liu, Xu, Lin (b33) 2023; 98
Li, Zhang, Wang, Nie (b12) 2022; 44
(pp. 19343–19352).
Qin, Qin, Zhang, Feng (b21) 2024; 33
Liu, Liao, Wang, Liu, Zhu (b13) 2024
Tang, Li, Wang, Liu, Zhang, Zhu (b23) 2022; 35
Lu, Min, Zhao, Zhu, Huang, Yan (b17) 2012
Hossain, Muhammad (b4) 2019; 49
Huang, J., Nie, F., & Huang, H. (2013). Spectral rotation versus k-means in spectral clustering.
(pp. 4412–4419).
Yang, H., Zhao, W., Gao, Q., Zhang, X., & Xia, W. (2022). Optimal Tensor Bipartite Graph Learning. In
Gao, Zhang, Xia, Xie, Gao, Tao (b3) 2020; 43
Zhang, Hang, Sun, Nie, Wang, Li (b37) 2025; 113
Wan, Liu, Gan, Liu, Wang, Wen, Wan, Zhu (b25) 2024
Wang, Liu, Liu, Tu, Zhu (b27) 2024; 33
(pp. 959–967).
Wen, Fang, Xu, Tian, Fei (b29) 2018; 108
Zhao, Li, Xu, Gao, Wang, Gao (b38) 2024
Wen (10.1016/j.neunet.2025.107669_b29) 2018; 108
Liu (10.1016/j.neunet.2025.107669_b13) 2024
Wang (10.1016/j.neunet.2025.107669_b28) 2022; 31
Li (10.1016/j.neunet.2025.107669_b11) 2021; 24
Hossain (10.1016/j.neunet.2025.107669_b4) 2019; 49
Wang (10.1016/j.neunet.2025.107669_b27) 2024; 33
10.1016/j.neunet.2025.107669_b15
10.1016/j.neunet.2025.107669_b36
10.1016/j.neunet.2025.107669_b34
Liu (10.1016/j.neunet.2025.107669_b14) 2024; 172
Zhao (10.1016/j.neunet.2025.107669_b38) 2024
Wan (10.1016/j.neunet.2025.107669_b25) 2024
Shu (10.1016/j.neunet.2025.107669_b22) 2023; 25
Zhang (10.1016/j.neunet.2025.107669_b37) 2025; 113
Tang (10.1016/j.neunet.2025.107669_b23) 2022; 35
10.1016/j.neunet.2025.107669_b18
Qin (10.1016/j.neunet.2025.107669_b21) 2024; 33
Pang (10.1016/j.neunet.2025.107669_b20) 2020; 50
10.1016/j.neunet.2025.107669_b7
Yu (10.1016/j.neunet.2025.107669_b35) 2023; 144
10.1016/j.neunet.2025.107669_b8
10.1016/j.neunet.2025.107669_b9
Xia (10.1016/j.neunet.2025.107669_b31) 2022; 45
Li (10.1016/j.neunet.2025.107669_b10) 2024; 36
Long (10.1016/j.neunet.2025.107669_b16) 2023
Chen (10.1016/j.neunet.2025.107669_b1) 2023; 32
Gao (10.1016/j.neunet.2025.107669_b3) 2020; 43
Tzortzis (10.1016/j.neunet.2025.107669_b24) 2010; 21
Wang (10.1016/j.neunet.2025.107669_b26) 2024; 36
Yan (10.1016/j.neunet.2025.107669_b33) 2023; 98
Huang (10.1016/j.neunet.2025.107669_b6) 2022; 35
Xiao (10.1016/j.neunet.2025.107669_b32) 2020; 23
Ou (10.1016/j.neunet.2025.107669_b19) 2024; 106
Li (10.1016/j.neunet.2025.107669_b12) 2022; 44
Wen (10.1016/j.neunet.2025.107669_b30) 2021; 25
Elhamifar (10.1016/j.neunet.2025.107669_b2) 2013; 35
Lu (10.1016/j.neunet.2025.107669_b17) 2012
Huang (10.1016/j.neunet.2025.107669_b5) 2024
References_xml – volume: 44
  start-page: 330
  year: 2022
  end-page: 344
  ident: b12
  article-title: Multiview clustering: A scalable and parameter-free bipartite graph fusion method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 98
  year: 2023
  ident: b33
  article-title: Collaborative structure and feature learning for multi-view clustering
  publication-title: Information Fusion
– reference: (pp. 1582–1590).
– reference: (pp. 4412–4419).
– reference: Yang, H., Zhao, W., Gao, Q., Zhang, X., & Xia, W. (2022). Optimal Tensor Bipartite Graph Learning. In
– year: 2024
  ident: b38
  article-title: Anchor graph-based feature selection for one-step multi-view clustering
  publication-title: IEEE Transactions on Multimedia
– volume: 49
  start-page: 69
  year: 2019
  end-page: 78
  ident: b4
  article-title: Emotion recognition using deep learning approach from audio–visual emotional big data
  publication-title: Information Fusion
– volume: 35
  start-page: 6449
  year: 2022
  end-page: 6460
  ident: b23
  article-title: Unified one-step multi-view spectral clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 24
  start-page: 2461
  year: 2021
  end-page: 2472
  ident: b11
  article-title: Consensus graph learning for multi-view clustering
  publication-title: IEEE Transactions on Multimedia
– year: 2024
  ident: b13
  article-title: Robust and consistent anchor graph learning for multi-view clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 21
  start-page: 1925
  year: 2010
  end-page: 1938
  ident: b24
  article-title: Multiple view clustering using a weighted combination of exemplar-based mixture models
  publication-title: IEEE Transactions on Neural Networks
– volume: 25
  start-page: 259
  year: 2021
  end-page: 280
  ident: b30
  article-title: One-step spectral rotation clustering with balanced constrains
  publication-title: World Wide Web
– reference: (pp. 19343–19352).
– start-page: 347
  year: 2012
  end-page: 360
  ident: b17
  article-title: Robust and efficient subspace segmentation via least squares regression
  publication-title: Computer vision–ECCV 2012: 12th European conference on computer vision, Florence, Italy, October 7-13, 2012, proceedings, part VII 12
– volume: 50
  start-page: 247
  year: 2020
  end-page: 258
  ident: b20
  article-title: Spectral clustering by joint spectral embedding and spectral rotation
  publication-title: IEEE Transactions on Cybernetics
– volume: 144
  year: 2023
  ident: b35
  article-title: Multi-view clustering via efficient representation learning with anchors
  publication-title: Pattern Recognition
– volume: 35
  start-page: 2765
  year: 2013
  end-page: 2781
  ident: b2
  article-title: Sparse subspace clustering: Algorithm, theory, and applications
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2024
  ident: b5
  article-title: Tensor-derived large-scale multi-view subspace clustering with faithful semantics
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
– reference: Liu, S., Wang, S., Zhang, P., Xu, K., Liu, X., Zhang, C., & Gao, F. (2022). Efficient one-pass multi-view subspace clustering with consensus anchors.
– reference: Nie, F., Wang, C.-L., & Li, X. (2019). K-multiple-means: A multiple-means clustering method with specified k clusters. In
– volume: 32
  start-page: 5153
  year: 2023
  end-page: 5166
  ident: b1
  article-title: Multiview clustering by consensus spectral rotation fusion
  publication-title: IEEE Transactions on Image Processing
– reference: Zhang, C., Fu, H., Liu, S., Liu, G., & Cao, X. (2015). Low-rank tensor constrained multiview subspace clustering. In
– reference: Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., & Xu, Z. (2020). Large-scale multi-view subspace clustering in linear time.
– reference: (pp. 25–33).
– start-page: 1
  year: 2024
  end-page: 13
  ident: b25
  article-title: One-step multi-view clustering with diverse representation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 172
  year: 2024
  ident: b14
  article-title: Learning the consensus and complementary information for large-scale multi-view clustering
  publication-title: Neural Networks
– volume: 25
  start-page: 5485
  year: 2023
  end-page: 5499
  ident: b22
  article-title: Self-weighted anchor graph learning for multi-view clustering
  publication-title: IEEE Transactions on Multimedia
– reference: (pp. 431–437).
– reference: Huang, J., Nie, F., & Huang, H. (2013). Spectral rotation versus k-means in spectral clustering.
– reference: Ji, J., & Feng, S. (2023). Anchor Structure Regularization Induced Multi-view Subspace Clustering via Enhanced Tensor Rank Minimization. In
– volume: 36
  start-page: 6641
  year: 2024
  end-page: 6652
  ident: b26
  article-title: Multiple kernel clustering with adaptive multi-scale partition selection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 31
  start-page: 556
  year: 2022
  end-page: 568
  ident: b28
  article-title: Fast parameter-free multi-view subspace clustering with consensus anchor guidance
  publication-title: IEEE Transactions on Image Processing
– year: 2023
  ident: b16
  article-title: Multi-view MERA subspace clustering
  publication-title: IEEE Transactions on Multimedia
– volume: 108
  start-page: 83
  year: 2018
  end-page: 96
  ident: b29
  article-title: Low-rank representation with adaptive graph regularization
  publication-title: Neural Networks
– reference: , In
– volume: 36
  year: 2024
  ident: b10
  article-title: Orthogonal non-negative tensor factorization based multi-view clustering
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 8270
  year: 2022
  end-page: 8281
  ident: b6
  article-title: Multi-view subspace clustering by joint measuring of consistency and diversity
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 7576–7584).
– volume: 43
  start-page: 2133
  year: 2020
  end-page: 2140
  ident: b3
  article-title: Enhanced tensor RPCA and its application
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 33
  start-page: 5298
  year: 2024
  end-page: 5311
  ident: b21
  article-title: Dual consensus anchor learning for fast multi-view clustering
  publication-title: IEEE Transactions on Image Processing
– volume: 33
  start-page: 4627
  year: 2024
  end-page: 4639
  ident: b27
  article-title: Scalable and structural multi-view graph clustering with adaptive anchor fusion
  publication-title: IEEE Transactions on Image Processing
– volume: 23
  start-page: 4555
  year: 2020
  end-page: 4566
  ident: b32
  article-title: On reliable multi-view affinity learning for subspace clustering
  publication-title: IEEE Transactions on Multimedia
– volume: 113
  year: 2025
  ident: b37
  article-title: Anchor-based fast spectral ensemble clustering
  publication-title: Information Fusion
– volume: 45
  start-page: 5187
  year: 2022
  end-page: 5202
  ident: b31
  article-title: Tensorized bipartite graph learning for multi-view clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 106
  year: 2024
  ident: b19
  article-title: Anchor-based multi-view subspace clustering with hierarchical feature descent
  publication-title: Information Fusion
– reference: (pp. 959–967).
– volume: 21
  start-page: 1925
  issue: 12
  year: 2010
  ident: 10.1016/j.neunet.2025.107669_b24
  article-title: Multiple view clustering using a weighted combination of exemplar-based mixture models
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2081999
– ident: 10.1016/j.neunet.2025.107669_b15
  doi: 10.1609/aaai.v36i7.20723
– volume: 36
  start-page: 6641
  year: 2024
  ident: 10.1016/j.neunet.2025.107669_b26
  article-title: Multiple kernel clustering with adaptive multi-scale partition selection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2024.3399738
– volume: 23
  start-page: 4555
  year: 2020
  ident: 10.1016/j.neunet.2025.107669_b32
  article-title: On reliable multi-view affinity learning for subspace clustering
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2020.3045259
– volume: 144
  year: 2023
  ident: 10.1016/j.neunet.2025.107669_b35
  article-title: Multi-view clustering via efficient representation learning with anchors
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.109860
– volume: 49
  start-page: 69
  year: 2019
  ident: 10.1016/j.neunet.2025.107669_b4
  article-title: Emotion recognition using deep learning approach from audio–visual emotional big data
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.09.008
– ident: 10.1016/j.neunet.2025.107669_b8
  doi: 10.1109/ICCV51070.2023.01772
– volume: 35
  start-page: 2765
  issue: 11
  year: 2013
  ident: 10.1016/j.neunet.2025.107669_b2
  article-title: Sparse subspace clustering: Algorithm, theory, and applications
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.57
– year: 2024
  ident: 10.1016/j.neunet.2025.107669_b38
  article-title: Anchor graph-based feature selection for one-step multi-view clustering
  publication-title: IEEE Transactions on Multimedia
– volume: 106
  year: 2024
  ident: 10.1016/j.neunet.2025.107669_b19
  article-title: Anchor-based multi-view subspace clustering with hierarchical feature descent
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2024.102225
– volume: 33
  start-page: 4627
  year: 2024
  ident: 10.1016/j.neunet.2025.107669_b27
  article-title: Scalable and structural multi-view graph clustering with adaptive anchor fusion
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2024.3444320
– volume: 98
  year: 2023
  ident: 10.1016/j.neunet.2025.107669_b33
  article-title: Collaborative structure and feature learning for multi-view clustering
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.101832
– volume: 44
  start-page: 330
  year: 2022
  ident: 10.1016/j.neunet.2025.107669_b12
  article-title: Multiview clustering: A scalable and parameter-free bipartite graph fusion method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.3011148
– ident: 10.1016/j.neunet.2025.107669_b36
  doi: 10.1109/ICCV.2015.185
– ident: 10.1016/j.neunet.2025.107669_b9
  doi: 10.1609/aaai.v34i04.5867
– volume: 32
  start-page: 5153
  year: 2023
  ident: 10.1016/j.neunet.2025.107669_b1
  article-title: Multiview clustering by consensus spectral rotation fusion
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2023.3310339
– year: 2024
  ident: 10.1016/j.neunet.2025.107669_b13
  article-title: Robust and consistent anchor graph learning for multi-view clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 36
  year: 2024
  ident: 10.1016/j.neunet.2025.107669_b10
  article-title: Orthogonal non-negative tensor factorization based multi-view clustering
  publication-title: Advances in Neural Information Processing Systems
– volume: 25
  start-page: 259
  year: 2021
  ident: 10.1016/j.neunet.2025.107669_b30
  article-title: One-step spectral rotation clustering with balanced constrains
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00958-4
– ident: 10.1016/j.neunet.2025.107669_b34
  doi: 10.1145/3552487.3556441
– volume: 172
  year: 2024
  ident: 10.1016/j.neunet.2025.107669_b14
  article-title: Learning the consensus and complementary information for large-scale multi-view clustering
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106103
– volume: 50
  start-page: 247
  year: 2020
  ident: 10.1016/j.neunet.2025.107669_b20
  article-title: Spectral clustering by joint spectral embedding and spectral rotation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2868742
– ident: 10.1016/j.neunet.2025.107669_b7
  doi: 10.1609/aaai.v27i1.8683
– volume: 43
  start-page: 2133
  issue: 6
  year: 2020
  ident: 10.1016/j.neunet.2025.107669_b3
  article-title: Enhanced tensor RPCA and its application
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.3017672
– volume: 33
  start-page: 5298
  year: 2024
  ident: 10.1016/j.neunet.2025.107669_b21
  article-title: Dual consensus anchor learning for fast multi-view clustering
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2024.3459651
– volume: 35
  start-page: 8270
  issue: 8
  year: 2022
  ident: 10.1016/j.neunet.2025.107669_b6
  article-title: Multi-view subspace clustering by joint measuring of consistency and diversity
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2022.3199587
– volume: 113
  year: 2025
  ident: 10.1016/j.neunet.2025.107669_b37
  article-title: Anchor-based fast spectral ensemble clustering
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2024.102587
– volume: 31
  start-page: 556
  year: 2022
  ident: 10.1016/j.neunet.2025.107669_b28
  article-title: Fast parameter-free multi-view subspace clustering with consensus anchor guidance
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2021.3131941
– start-page: 1
  year: 2024
  ident: 10.1016/j.neunet.2025.107669_b25
  article-title: One-step multi-view clustering with diverse representation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2024
  ident: 10.1016/j.neunet.2025.107669_b5
  article-title: Tensor-derived large-scale multi-view subspace clustering with faithful semantics
  publication-title: IEEE Transactions on Signal and Information Processing over Networks
  doi: 10.1109/TSIPN.2024.3414134
– volume: 108
  start-page: 83
  year: 2018
  ident: 10.1016/j.neunet.2025.107669_b29
  article-title: Low-rank representation with adaptive graph regularization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.08.007
– volume: 45
  start-page: 5187
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2025.107669_b31
  article-title: Tensorized bipartite graph learning for multi-view clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2022.3187976
– year: 2023
  ident: 10.1016/j.neunet.2025.107669_b16
  article-title: Multi-view MERA subspace clustering
  publication-title: IEEE Transactions on Multimedia
– ident: 10.1016/j.neunet.2025.107669_b18
  doi: 10.1145/3292500.3330846
– volume: 24
  start-page: 2461
  year: 2021
  ident: 10.1016/j.neunet.2025.107669_b11
  article-title: Consensus graph learning for multi-view clustering
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2021.3081930
– volume: 35
  start-page: 6449
  issue: 6
  year: 2022
  ident: 10.1016/j.neunet.2025.107669_b23
  article-title: Unified one-step multi-view spectral clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2022.3172687
– volume: 25
  start-page: 5485
  year: 2023
  ident: 10.1016/j.neunet.2025.107669_b22
  article-title: Self-weighted anchor graph learning for multi-view clustering
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2022.3193855
– start-page: 347
  year: 2012
  ident: 10.1016/j.neunet.2025.107669_b17
  article-title: Robust and efficient subspace segmentation via least squares regression
SSID ssj0006843
Score 2.4692547
Snippet In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 107669
SubjectTerms Algorithms
Bipartite graph
Cluster Analysis
Humans
Large-scale dataset
Multi-view clustering
Neural Networks, Computer
Title Scalable one-pass multi-view clustering with tensorized multiscale bipartite graphs fusion
URI https://dx.doi.org/10.1016/j.neunet.2025.107669
https://www.ncbi.nlm.nih.gov/pubmed/40554302
https://www.proquest.com/docview/3223929305
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXQ9sKlpdCPbQEZiatZJ_5IckQrVgsILoC06sWyHUfaqspGbHLh0N_OTJwUVSqqxDGWrVjP8cxz_GaGkFNdWJ0EVTLNS8-k9R72XFEwV-kkL6UteB8-dnOrlw_yaqVWO2Q-xsKgrHKw_dGm99Z6aJkNaM6a9Xp2x8HVagwVVcg7Cjy3S5lhFYOz3y8yD51H5Rx0Zth7DJ_rNV516OqAispUQVOmUfb8b_f0Gv3s3dBij7wf-CM9j1P8SHZCvU8-jLUZ6LBVD8iPOwAfw6Lopg6sAYpMe-0gw6sA6n91mCAB3BbFH7EUZeybx_VTKGOvLQwO1K0bhKINtE9rvaVVh__WPpGHxcX9fMmGOgrMi0S0DCgXD3AO1kVuRSoqJ7SVVlbgHhPOSwtODLP6ZIlzTjjuRZakiU9TD6eXFPngZzKpYbJfCfU2zyuuyqxSXgasoxgqUSpd5kUonFZTwkb4TBPTZZhRR_bTRLgNwm0i3FOSjRibv5bdgEX_z8iTcUkM7Ai85rB12HRbAyYKSR8Ysin5Etfqz1yAniopePrtze_9TnbxKer5DsmkfezCEfCS1h33H94xeXd-eb28fQZVmOJg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734fqzPCF7jpk2TtkcRZX1eVBAvIUlTWJHu4m4vHvztzjStIiiC1zSh4Usz803zzYSQI5UbFXlZMMULxxLjHOy5PGe2VFFWJCbnTfrYza0aPCSXj_Jxhpx2uTAoq2xtf7DpjbVuW_otmv3xcNi_4-BqFaaKSuQdOcTtc4mMU4zAjt-_dB4qC9I56M2we5c_14i8Kl9XHiWVsYSmVKHu-Wf_9Bv_bPzQ-TJZbAkkPQlzXCEzvlolS93lDLTdq2vk6Q7Qx7woOqo8GwNHpo14kOFZAHUvNVZIAL9F8U8sRR376HX45ovQawKDPbXDMWIx9bSpaz2hZY0_19bJw_nZ_emAtRcpMCciMWXAubiHQFjlmRGxKK1QJjFJCf4x4rww4MWwrE8aWWuF5U6kURy5OHYQvsRICDfIbAWT3SLUmSwruSzSUrrE40WKvhSFVEWW-9wq2SOsg0-PQ70M3QnJnnWAWyPcOsDdI2mHsf627hpM-h8jD7sl0bAl8JzDVH5UTzTYKGR9YMl6ZDOs1edcgJ_KRPB4-9_vPSDzg_uba319cXu1QxbwSRD37ZLZ6Wvt94CkTO1-8xF-AKoh4_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+one-pass+multi-view+clustering+with+tensorized+multiscale+bipartite+graphs+fusion&rft.jtitle=Neural+networks&rft.au=Wang%2C+Fei&rft.au=Lu%2C+Gui-Fu&rft.date=2025-10-01&rft.issn=0893-6080&rft.volume=190&rft.spage=107669&rft_id=info:doi/10.1016%2Fj.neunet.2025.107669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2025_107669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon