Do we Need to Perform Bone Marrow Examination in all Subjects Suspected of MDS? Evaluation and Validation of Non‐Invasive (Web‐Based) Diagnostic Algorithm
ABSTRACT Background Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasiv...
Saved in:
Published in | European journal of haematology Vol. 114; no. 4; pp. 672 - 678 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0902-4441 1600-0609 1600-0609 |
DOI | 10.1111/ejh.14379 |
Cover
Abstract | ABSTRACT
Background
Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.
Methods
From the TASMC BM registry (2019–22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.
Results
The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss‐classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.
Conclusions
The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR‐MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model. |
---|---|
AbstractList | Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS).
it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter-observer interpretation discordance). We developed non-invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.
From the TASMC BM registry (2019-22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.
The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss-classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.
The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR-MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model. ABSTRACT Background Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model. Methods From the TASMC BM registry (2019–22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building. Results The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss‐classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar. Conclusions The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR‐MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model. Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS).BACKGROUNDBone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS).it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter-observer interpretation discordance). We developed non-invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.PROBLEMSit is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter-observer interpretation discordance). We developed non-invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.From the TASMC BM registry (2019-22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.METHODSFrom the TASMC BM registry (2019-22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss-classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.RESULTSThe model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss-classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR-MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model.CONCLUSIONSThe MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR-MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model. BackgroundBone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.MethodsFrom the TASMC BM registry (2019–22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.ResultsThe model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss‐classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.ConclusionsThe MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR‐MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model. |
Author | Oster, Howard S. Mittelman, Moshe Polakow, Ariel M. Gat, Roi Ben‐Ezra, Jonathan Goldschmidt, Noa |
Author_xml | – sequence: 1 givenname: Howard S. orcidid: 0000-0003-1936-4675 surname: Oster fullname: Oster, Howard S. organization: Tel Aviv University – sequence: 2 givenname: Ariel M. surname: Polakow fullname: Polakow, Ariel M. organization: Tel Aviv Sourasky Medical Center – sequence: 3 givenname: Roi surname: Gat fullname: Gat, Roi organization: Tel Aviv Sourasky Medical Center – sequence: 4 givenname: Noa surname: Goldschmidt fullname: Goldschmidt, Noa organization: Tel Aviv Sourasky Medical Center – sequence: 5 givenname: Jonathan surname: Ben‐Ezra fullname: Ben‐Ezra, Jonathan organization: Tel Aviv Sourasky Medical Center – sequence: 6 givenname: Moshe surname: Mittelman fullname: Mittelman, Moshe email: moshemt@gmail.com organization: Tel Aviv Sourasky Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39754481$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c1O3DAQAGCrApWF9tAXqCz1AoeAvXYS51QBuxQqoJXozzEaJxPwKrG3drJbbjxCn4CH65PUNLQHJHzxjPSNx_Zskw3rLBLyhrN9HtcBLm72uRR58YJMeMZYwjJWbJAJK9g0kVLyLbIdwoIxNi14_pJsiSJPpVR8Qu5njq6RXiLWtHf0M_rG-Y4exQb0Arx3azr_CZ2x0BtnqbEU2pZeDXqBVR9iEJYxiMWuoRezq_d0voJ2GDHYmn6D1tRjGsWls7_vfp3ZFQSzQrr7HXXMjyBgvUdnBq6tC72p6GF77bzpb7pXZLOBNuDrx32HfD2Zfzk-Tc4_fTg7PjxPKsFFkYhMQR5fpzRmoLHSqBqlVCZSwRsFnIPQTdpgMVWyqXPUNaiUoSy0nFYgc7FDdsdzl979GDD0ZWdChW0LFt0QSsFTniqZsizSd0_owg3exttFlQuVKVY8qLePatAd1uXSmw78bfnv5yPYG0HlXQgem_-Es_JhqmWcavl3qtEejHZtWrx9Hpbzj6djxR9sGaSJ |
Cites_doi | 10.3324/haematol.2022.281595 10.1038/s41375‐022‐01613‐1 10.1111/bjh.18889 10.1111/bjh.13450 10.1111/j.1365-2141.1982.tb02771.x 10.1182/hem.V21.4.202445 10.1056/NEJMp2311015 10.1182/bloodadvances.2023010061 10.1182/blood‐2013‐03‐492884 10.1111/bjh.19474 10.1038/s41375‐023‐01855‐7 10.1182/bloodadvances.2020004055 10.1182/blood‐2021‐147750 10.1182/hem.V21.3.2024313 10.1111/bjh.19447 10.3390/cancers15082305 10.1182/blood.V79.1.198.198 10.1182/blood‐2013‐08‐518886 10.1182/blood.2023023727 10.1111/ijlh.13681 10.1182/blood.V126.23.907.907 10.1097/01.HS9.0000967320.61157.24 10.1111/j.1365‐2141.1990.tb02612.x 10.1007/s00277‐014‐2252‐4 10.1182/blood‐2020‐139412 10.1056/NEJMoa2024534 10.1182/blood.2023022540 10.1111/j.1600‐0609.1992.tb00039.x 10.1182/blood.2022015850 10.1182/blood.V89.6.2079 10.1016/S0167-9473(01)00065-2 10.1002/ajh.24732 10.1111/ejh.13134 10.1016/j.leukres.2022.106996 10.1056/NEJMms1817674 10.1056/NEJMra0902908 10.1056/NEJMp1707537 10.1111/ijlh.14234 10.1056/NEJMra1904794 10.1080/10428194.2017.1416363 10.1111/j.1365‐2141.1984.tb06079.x 10.1182/blood‐2016‐03‐643544 10.1182/bloodadvances.2020002306 10.1002/ajh.25595 10.1182/blood.2018834044 10.1159/000490727 10.1182/bloodadvances.2021004621 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7T5 7TM 7TO H94 K9. 7X8 |
DOI | 10.1111/ejh.14379 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Oncogenes and Growth Factors Abstracts Animal Behavior Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1600-0609 |
EndPage | 678 |
ExternalDocumentID | 39754481 10_1111_ejh_14379 EJH14379 |
Genre | researchArticle Validation Study Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AAQQT AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS EGARE EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 Y6R YFH YUY ZCG ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QG 7T5 7TM 7TO H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3139-368a70028be6abecbe8f88863531f8a11a3bf5fe9284fd7ebda850e49b42ca473 |
IEDL.DBID | DR2 |
ISSN | 0902-4441 1600-0609 |
IngestDate | Fri Sep 05 06:49:54 EDT 2025 Wed Aug 13 07:08:28 EDT 2025 Thu May 01 02:19:45 EDT 2025 Wed Sep 10 05:58:05 EDT 2025 Wed Mar 05 09:40:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | diagnostic model gradient boosted model validation myelodysplastic syndromes |
Language | English |
License | 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3139-368a70028be6abecbe8f88863531f8a11a3bf5fe9284fd7ebda850e49b42ca473 |
Notes | The authors received no specific funding for this work. Funding Howard S. Oster and Ariel M. Polakow contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1936-4675 |
PMID | 39754481 |
PQID | 3173868096 |
PQPubID | 2045159 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3151584506 proquest_journals_3173868096 pubmed_primary_39754481 crossref_primary_10_1111_ejh_14379 wiley_primary_10_1111_ejh_14379_EJH14379 |
PublicationCentury | 2000 |
PublicationDate | April 2025 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | European journal of haematology |
PublicationTitleAlternate | Eur J Haematol |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 38 1990; 75 2021; 5 2021; 43 2019; 94 2020; 383 2015; 126 2024; 204 2023; 15 2023; 37 1982; 51 2015; 94 2023; 7 2023; 124 2018; 101 1997; 89 2013; 122 2024; 143 2023; 202 1992; 79 2021; 384 2024; 144 2016; 127 2023; 108 2017; 377 2019; 381 1994; 86 2022; 140 2020; 4 2015; 170 2017; 92 1990; 26 1984; 58 2019; 86 2021; 138 2006; 47 2022; 36 2024; 21 2009; 361 2024; 46 1992; 49 2020; 136 2018; 59 2024; 390 2019; 134 e_1_2_10_23_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 Agool A. (e_1_2_10_46_1) 2006; 47 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Mittelman M. (e_1_2_10_2_1) 1990; 26 Saad S. T. (e_1_2_10_18_1) 1994; 86 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Administration S. S. (e_1_2_10_27_1) e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 86 start-page: 47 issue: 1 year: 1994 end-page: 51 article-title: The Role of Bone Marrow Study in Diagnosis and Prognosis of Myelodysplastic Syndrome publication-title: Pathologica – volume: 21 issue: 3 year: 2024 article-title: Perspective: Procedure Skills in Hematology Training: Lost Cause or Worth Fighting for? publication-title: Hematologist – volume: 122 start-page: 3616 issue: 22 year: 2013 end-page: 3627 article-title: Clinical and Biological Implications of Driver Mutations in Myelodysplastic Syndromes publication-title: Blood – volume: 383 start-page: 1358 issue: 14 year: 2020 end-page: 1374 article-title: Myelodysplastic Syndromes publication-title: New England Journal of Medicine – volume: 15 issue: 8 year: 2023 article-title: Myeloid NGS Analyses of Paired Samples From Bone Marrow and Peripheral Blood Yield Concordant Results: A Prospective Cohort Analysis of the AGMT Study Group publication-title: Cancers (Basel) – volume: 79 start-page: 198 issue: 1 year: 1992 end-page: 205 article-title: Primary Myelodysplastic Syndromes: Diagnostic and Prognostic Significance of Immunohistochemical Assessment of Bone Marrow Biopsies publication-title: Blood – volume: 101 start-page: 502 issue: 4 year: 2018 end-page: 507 article-title: Can Bone Marrow Cellularity Help in Predicting Prognosis in Myelodysplastic Syndromes? publication-title: European Journal of Haematology – volume: 143 start-page: 2401 issue: 23 year: 2024 end-page: 2413 article-title: ctDNA Improves Prognostic Prediction for Patients With Relapsed/Refractory MM Receiving Ixazomib, Lenalidomide, and Dexamethasone publication-title: Blood – volume: 170 start-page: 372 issue: 3 year: 2015 end-page: 383 article-title: Validation of the Revised International Prognostic Scoring System (IPSS‐R) in Patients With Lower‐Risk Myelodysplastic Syndromes: A Report From the Prospective European LeukaemiaNet MDS (EUMDS) Registry publication-title: British Journal of Haematology – volume: 140 start-page: 1200 issue: 11 year: 2022 end-page: 1228 article-title: International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data publication-title: Blood – volume: 49 start-page: 105 issue: 2 year: 1992 end-page: 107 article-title: Evaluation of Bone Marrow Cellularity by Magnetic Resonance Imaging in Patients With Myelodysplastic Syndrome publication-title: European Journal of Haematology – volume: 92 start-page: 614 issue: 7 year: 2017 end-page: 621 article-title: Enumerating Bone Marrow Blasts From Nonerythroid Cellularity Improves Outcome Prediction in Myelodysplastic Syndromes and Permits a Better Definition of the Intermediate Risk Category of the Revised International Prognostic Scoring System (IPSS‐R) publication-title: American Journal of Hematology – volume: 127 start-page: 2391 issue: 20 year: 2016 end-page: 2405 article-title: The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia publication-title: Blood – volume: 51 start-page: 189 issue: 2 year: 1982 end-page: 199 article-title: Proposals for the Classification of the Myelodysplastic Syndromes publication-title: British Journal of Haematology – volume: 26 start-page: 468 issue: 8 year: 1990 end-page: 478 article-title: The Myelodysplastic Syndromes publication-title: Israel Journal of Medical Sciences – volume: 94 start-page: 565 issue: 4 year: 2015 end-page: 573 article-title: Interobserver Variance in Myelodysplastic Syndromes With Less Than 5% Bone Marrow Blasts: Unilineage vs. Multilineage Dysplasia and Reproducibility of the Threshold of 2% Blasts publication-title: Annals of Hematology – volume: 377 start-page: 1309 issue: 14 year: 2017 end-page: 1312 article-title: Making Patients and Doctors Happier—The Potential of Patient‐Reported Outcomes publication-title: New England Journal of Medicine – volume: 7 start-page: 6120 issue: 20 year: 2023 end-page: 6129 article-title: Discordant Pathologic Diagnoses of Myelodysplastic Neoplasms and Their Implications for Registries and Therapies publication-title: Blood Advances – volume: 7 issue: S3 year: 2023 article-title: Natural and Age‐Related Variation in Circulating Human Hematopoietic Stem Cells publication-title: European Hematology Association, HemaSphere – volume: 134 start-page: 341 issue: 4 year: 2019 end-page: 352 article-title: How I Treat Polycythemia Vera publication-title: Blood – volume: 86 start-page: 14 issue: 1 year: 2019 end-page: 23 article-title: Clinical Implication of Multi‐Parameter Flow Cytometry in Myelodysplastic Syndromes publication-title: Pathobiology – volume: 361 start-page: 1872 issue: 19 year: 2009 end-page: 1885 article-title: Myelodysplastic Syndromes publication-title: New England Journal of Medicine – volume: 122 start-page: 2943 issue: 17 year: 2013 end-page: 2964 article-title: Diagnosis and Treatment of Primary Myelodysplastic Syndromes in Adults: Recommendations From the European LeukemiaNet publication-title: Blood – volume: 204 start-page: 1856 issue: 5 year: 2024 end-page: 1861 article-title: Prevalence of Massively Diluted Bone Marrow Cell Samples Aspirated From Patients With Myelodysplastic Syndromes (MDS) or Suspected of MDS: A Retrospective Analysis of Nationwide Samples in Japan publication-title: British Journal of Haematology – volume: 58 start-page: 217 issue: 2 year: 1984 end-page: 225 article-title: Bone Marrow Histology in Myelodysplastic Syndromes. II. Prognostic Value of Abnormal Localization of Immature Precursors in MDS publication-title: British Journal of Haematology – volume: 46 start-page: 510 issue: 3 year: 2024 end-page: 514 article-title: Validation of a Novel Algorithm With a High Specificity in Ruling Out MDS publication-title: International Journal of Laboratory Hematology – volume: 75 start-page: 26 issue: 1 year: 1990 end-page: 33 article-title: Bone Marrow Biopsy in Myelodysplastic Syndromes: Morphological Characteristics and Contribution to the Study of Prognostic Factors publication-title: British Journal of Haematology – volume: 138 start-page: 3999 issue: 1 year: 2021 article-title: Automated Digital Morphometry of Peripheral Blood Smears Detects Both Infrequent Events and Cellular Population Patterns in Myelodysplastic Syndrome publication-title: Blood – volume: 136 start-page: 33 issue: 1 year: 2020 end-page: 35 article-title: A Personalized Clinical‐Decision Tool to Improve the Diagnostic Accuracy of Myelodysplastic Syndromes publication-title: Blood – volume: 47 start-page: 1592 issue: 10 year: 2006 end-page: 1598 article-title: 18F‐FLT PET in Hematologic Disorders: A Novel Technique to Analyze the Bone Marrow Compartment publication-title: Journal of Nuclear Medicine – volume: 390 start-page: 293 issue: 4 year: 2024 end-page: 295 article-title: Mind the Gap ‐ Machine Learning, Dataset Shift, and History in the Age of Clinical Algorithms publication-title: New England Journal of Medicine – volume: 381 start-page: 480 issue: 5 year: 2019 end-page: 485 article-title: Digital Futures Past—The Long Arc of Big Data in Medicine publication-title: New England Journal of Medicine – volume: 384 start-page: 924 issue: 10 year: 2021 end-page: 935 article-title: Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers publication-title: New England Journal of Medicine – volume: 144 start-page: 1617 year: 2024 end-page: 1632 article-title: Molecular Taxonomy of Myelodysplastic Syndromes and Its Clinical Implications publication-title: Blood – volume: 43 start-page: 1408 issue: 6 year: 2021 end-page: 1416 article-title: Evaluation of Scopio Labs X100 Full Field PBS: The First High‐Resolution Full Field Viewing of Peripheral Blood Specimens Combined With Artificial Intelligence‐Based Morphological Analysis publication-title: International Journal of Laboratory Hematology – volume: 4 start-page: 4362 issue: 18 year: 2020 end-page: 4365 article-title: Mutational Analysis of Hematologic Neoplasms in 164 Paired Peripheral Blood and Bone Marrow Samples by Next‐Generation Sequencing publication-title: Blood Advances – volume: 204 start-page: 1593 issue: 5 year: 2024 end-page: 1594 article-title: Revisiting the Most Often Used Item in the Haematological Tool Box‐The Extent of Haemodilution in Bone Marrow Aspirates publication-title: British Journal of Haematology – volume: 108 start-page: 1951 issue: 7 year: 2023 end-page: 1956 article-title: Clonal Dynamics Using Droplet Digital Polymerase Chain Reaction in Peripheral Blood Predicts Treatment Responses in Myelodysplastic Syndrome publication-title: Haematologica – volume: 36 start-page: 1703 issue: 7 year: 2022 end-page: 1719 article-title: The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms publication-title: Leukemia – volume: 59 start-page: 2227 issue: 9 year: 2018 end-page: 2232 article-title: Is Bone Marrow Examination Always Necessary to Establish the Diagnosis of Myelodysplastic Syndromes? A Proposed Non‐Invasive Diagnostic Model publication-title: Leukemia & Lymphoma – volume: 94 start-page: 1266 issue: 11 year: 2019 end-page: 1287 article-title: Chronic Lymphocytic Leukemia: 2020 Update on Diagnosis, Risk Stratification and Treatment publication-title: American Journal of Hematology – volume: 5 start-page: 3066 issue: 16 year: 2021 end-page: 3075 article-title: A Predictive Algorithm Using Clinical and Laboratory Parameters May Assist in Ruling out and in Diagnosing MDS publication-title: Blood Advances – volume: 37 start-page: 942 issue: 4 year: 2023 end-page: 945 article-title: MDS Subclassification‐Do We Still Have to Count Blasts? publication-title: Leukemia – volume: 5 start-page: 4515 issue: 21 year: 2021 end-page: 4520 article-title: Rational Biomarker Development for the Early and Minimally Invasive Monitoring of AML publication-title: Blood Advances – volume: 21 issue: 4 year: 2024 article-title: An Australian Perspective on Bone Marrow Examination as a Standard Requirement for Hematology Trainees publication-title: Hematologist – volume: 126 start-page: 907 issue: 23 year: 2015 article-title: Somatic Mutations in MDS Patients Are Associated With Clinical Features and Predict Prognosis Independent of the IPSS‐R: Analysis of Combined Datasets From the International Working Group for Prognosis in MDS‐Molecular Committee publication-title: Blood – volume: 89 start-page: 2079 issue: 6 year: 1997 end-page: 2088 article-title: International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes publication-title: Blood – volume: 38 start-page: 367 issue: 4 year: 2002 end-page: 378 article-title: Stochastic Gradient Boosting publication-title: Computational Statistics & Data Analysis – volume: 124 year: 2023 article-title: Cytogenetic Peripheral Blood Monitoring in Azacitidine Treated Patients With High‐Risk MDS/sAML: A Monocentric Real‐World Experience publication-title: Leukemia Research – volume: 202 start-page: e16 issue: 3 year: 2023 end-page: e19 article-title: High Concordance of Clone Detection Between Peripheral Blood and Bone Marrow by Targeted Next‐Generation Sequencing‐A Pilot Study in Patients With MDS publication-title: British Journal of Haematology – ident: e_1_2_10_38_1 doi: 10.3324/haematol.2022.281595 – ident: e_1_2_10_11_1 doi: 10.1038/s41375‐022‐01613‐1 – ident: e_1_2_10_40_1 doi: 10.1111/bjh.18889 – ident: e_1_2_10_6_1 doi: 10.1111/bjh.13450 – ident: e_1_2_10_7_1 doi: 10.1111/j.1365-2141.1982.tb02771.x – ident: e_1_2_10_28_1 – ident: e_1_2_10_24_1 doi: 10.1182/hem.V21.4.202445 – ident: e_1_2_10_16_1 doi: 10.1056/NEJMp2311015 – ident: e_1_2_10_26_1 doi: 10.1182/bloodadvances.2023010061 – ident: e_1_2_10_4_1 doi: 10.1182/blood‐2013‐03‐492884 – ident: e_1_2_10_22_1 doi: 10.1111/bjh.19474 – ident: e_1_2_10_44_1 doi: 10.1038/s41375‐023‐01855‐7 – volume: 47 start-page: 1592 issue: 10 year: 2006 ident: e_1_2_10_46_1 article-title: 18F‐FLT PET in Hematologic Disorders: A Novel Technique to Analyze the Bone Marrow Compartment publication-title: Journal of Nuclear Medicine – ident: e_1_2_10_13_1 doi: 10.1182/bloodadvances.2020004055 – ident: e_1_2_10_34_1 doi: 10.1182/blood‐2021‐147750 – ident: e_1_2_10_23_1 doi: 10.1182/hem.V21.3.2024313 – ident: e_1_2_10_21_1 doi: 10.1111/bjh.19447 – ident: e_1_2_10_39_1 doi: 10.3390/cancers15082305 – ident: e_1_2_10_17_1 doi: 10.1182/blood.V79.1.198.198 – ident: e_1_2_10_50_1 doi: 10.1182/blood‐2013‐08‐518886 – ident: e_1_2_10_45_1 doi: 10.1182/blood.2023023727 – ident: e_1_2_10_33_1 doi: 10.1111/ijlh.13681 – ident: e_1_2_10_49_1 doi: 10.1182/blood.V126.23.907.907 – volume: 26 start-page: 468 issue: 8 year: 1990 ident: e_1_2_10_2_1 article-title: The Myelodysplastic Syndromes publication-title: Israel Journal of Medical Sciences – ident: e_1_2_10_43_1 doi: 10.1097/01.HS9.0000967320.61157.24 – ident: e_1_2_10_19_1 doi: 10.1111/j.1365‐2141.1990.tb02612.x – ident: e_1_2_10_25_1 doi: 10.1007/s00277‐014‐2252‐4 – ident: e_1_2_10_51_1 doi: 10.1182/blood‐2020‐139412 – ident: e_1_2_10_35_1 doi: 10.1056/NEJMoa2024534 – ident: e_1_2_10_37_1 doi: 10.1182/blood.2023022540 – ident: e_1_2_10_47_1 doi: 10.1111/j.1600‐0609.1992.tb00039.x – ident: e_1_2_10_10_1 doi: 10.1182/blood.2022015850 – ident: e_1_2_10_8_1 doi: 10.1182/blood.V89.6.2079 – ident: e_1_2_10_29_1 doi: 10.1016/S0167-9473(01)00065-2 – ident: e_1_2_10_31_1 doi: 10.1002/ajh.24732 – ident: e_1_2_10_32_1 doi: 10.1111/ejh.13134 – ident: e_1_2_10_42_1 doi: 10.1016/j.leukres.2022.106996 – ident: e_1_2_10_15_1 doi: 10.1056/NEJMms1817674 – ident: e_1_2_10_3_1 doi: 10.1056/NEJMra0902908 – volume-title: Social Security Administration ident: e_1_2_10_27_1 – ident: e_1_2_10_14_1 doi: 10.1056/NEJMp1707537 – ident: e_1_2_10_30_1 doi: 10.1111/ijlh.14234 – ident: e_1_2_10_5_1 doi: 10.1056/NEJMra1904794 – ident: e_1_2_10_12_1 doi: 10.1080/10428194.2017.1416363 – ident: e_1_2_10_20_1 doi: 10.1111/j.1365‐2141.1984.tb06079.x – ident: e_1_2_10_9_1 doi: 10.1182/blood‐2016‐03‐643544 – ident: e_1_2_10_41_1 doi: 10.1182/bloodadvances.2020002306 – ident: e_1_2_10_52_1 doi: 10.1002/ajh.25595 – ident: e_1_2_10_53_1 doi: 10.1182/blood.2018834044 – volume: 86 start-page: 47 issue: 1 year: 1994 ident: e_1_2_10_18_1 article-title: The Role of Bone Marrow Study in Diagnosis and Prognosis of Myelodysplastic Syndrome publication-title: Pathologica – ident: e_1_2_10_48_1 doi: 10.1159/000490727 – ident: e_1_2_10_36_1 doi: 10.1182/bloodadvances.2021004621 |
SSID | ssj0002917 |
Score | 2.4214664 |
Snippet | ABSTRACT
Background
Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful,... Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). it is invasive, painful, causing possible bleeding,... BackgroundBone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible... Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS).BACKGROUNDBone marrow examination (BME) is the gold standard... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 672 |
SubjectTerms | Aged Aged, 80 and over Algorithms Bone marrow Bone Marrow - pathology Bone Marrow Examination - methods Creatinine diagnostic model Discordance Female gradient boosted model Humans Internet Male Middle Aged Monocytes Morphometry Myelodysplastic syndrome myelodysplastic syndromes Myelodysplastic Syndromes - blood Myelodysplastic Syndromes - diagnosis Myelodysplastic Syndromes - etiology Peripheral blood Registries validation |
Title | Do we Need to Perform Bone Marrow Examination in all Subjects Suspected of MDS? Evaluation and Validation of Non‐Invasive (Web‐Based) Diagnostic Algorithm |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejh.14379 https://www.ncbi.nlm.nih.gov/pubmed/39754481 https://www.proquest.com/docview/3173868096 https://www.proquest.com/docview/3151584506 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXKO-lBQ2IQzmkWsdO4ogDatmtlkq7QkChB6TIjh362CZVNwuIEz-BX8CP45cw4zygICTEzVFs-Tmeb-xvxow9ctxyG6dxQF6YgeQ5ipSzmjgNEVrPzihHjsLTWTzZl3sH0cEKe9L5wjTxIfoDN5IMv1-TgGuz-EXI3fEhirlIyHmPi5ji5o9e_gwdFab-tV2iHQYSdX4bVYhYPH3Ji7roD4B5Ea96hbN7lb3rmtrwTE62lrXZyj__FsXxP_uyxq60QBS2m5Vzja248jq7NG2v2m-wb6MKPjqYoXaDuoIXjYMB7FSlg6mP3AjjT5qINDS1cFSCns8B9yE62FlgwvtwYuGqgOno1VMY93HFQZcW3qAB0LznRDlmVfn9y9fn5QdNdHrYfOsMfu-girWPYdTQAbGhsD1_X50f1YenN9n-7vj1s0nQPuYQ5AJRZiBipROy8IyLNS4c41SB1jfiHcELpTnXwhTEfEN9WdjEGatVNHQyNTLMtUzELbZaYhfvMIicLdI01KFJhRSiUEnBhTVDiVAoTHI-YA-7ac3OmpgdWWfr4EhnfqQHbKOb8KwV20WGYEqoWKFZN2AP-t8ocHSLoktXLSkPQkAloyHmud0slL4WBHcR2rvYgk0_3X-vPhvvTXzi7r9nXWeXQ3p92POGNthqfb509xAS1ea-X_s_AKIZCFc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKkaAv3C8LBQbEQ3lItYmdxJGQUMtutS3NCkFb-oIiO3bawpKgNguIJz6BL-Dj-BJmnAsUhIR4cxRbvo7njH1mzNhD6xvfREnkkRemJ_wcRcoaRZyGEK1nq6UlR-F0Gk12xdZ-uL_AHne-ME18iP7AjSTD7dck4HQg_YuU2zeHKOc8Ts6ws-5-jiDRi5_Bo4LEvbdLxENPoNZv4woRj6cvelob_QExTyNWp3I2LrLXXWMbpsnb1XmtV_PPv8Vx_N_eXGIXWiwKa83iucwWbHmFnUvb2_ar7Nuogo8WpqjgoK7geeNjAOtVaSF1wRth_EkRl4ZmF45KULMZ4FZEZzsnmHBunFi4KiAdvXwC4z60OKjSwB7aAM2TTpRjWpXfv3zdLD8oYtTDyiur8Xsdtax5BKOGEYgNhbXZQXV8VB--u8Z2N8Y7Tyde-56Dl3MEmh6PpIrJyNM2Urh2tJUFGuAIebhfSOX7iuuCyG-oMgsTW22UDIdWJFoEuRIxv84WS-ziTQahNUWSBCrQCRecFzIufG70UCAaCuLcH7AH3bxm75uwHVln7uBIZ26kB2y5m_GsldyTDPEUl5FEy27A7ve_UeboIkWVtppTHkSBUoRDzHOjWSl9LYjvQjR5sQUrbr7_Xn023pq4xK1_z3qPnZ_spNvZ9ub02W22FNBjxI5GtMwW6-O5vYMIqdZ3nSD8AB1KDHU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSouvB9LCwyIQzmk2sRO4qgH1LK72hZ2VQGlPSBFduzQwpJUbRYQJ35Cf0F_HL-EGecBBSEhbo5iy8_xfGN_M2bssfWNb6Ik8sgL0xN-hiJljSJOQ4jWs9XSkqPwZBqNd8X2fri_wNZbX5g6PkR34EaS4fZrEvAjk_8i5Pb9AYo5j5ML7KKIUE0SInr5M3ZUkLjndol36AlU-k1YIaLxdEXPK6M_EOZ5wOo0zugKe9u2tSaafFibV3ot-_pbGMf_7MxVdrlBorBRL51rbMEW19nSpLlrv8HOBiV8tjBF9QZVCTu1hwFsloWFiQvdCMMvipg0NLdwWICazQA3IjrZOcGEc-LEwmUOk8GrpzDsAouDKgy8QQugftCJckzL4vu3063ikyI-PazuWY3fm6hjzRMY1HxAbChszN6Vx4fVwcebbHc0fP1s7DWvOXgZR5jp8UiqmEw8bSOFK0dbmaP5jYCH-7lUvq-4zon6hgozN7HVRsmwb0WiRZApEfNbbLHALt5hEFqTJ0mgAp1wwXku49znRvcFYqEgzvwee9ROa3pUB-1IW2MHRzp1I91jK-2Ep43cnqSIpriMJNp1Pfaw-40SR9coqrDlnPIgBpQi7GOe2_VC6WpBdBeiwYstWHXT_ffq0-H22CXu_nvWB2xpZzBKX2xNny-zSwG9ROw4RCtssTqe23sIjyp934nBD_Z8CyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+we+Need+to+Perform+Bone+Marrow+Examination+in+all+Subjects+Suspected+of+MDS%3F+Evaluation+and+Validation+of+Non%E2%80%90Invasive+%28Web%E2%80%90Based%29+Diagnostic+Algorithm&rft.jtitle=European+journal+of+haematology&rft.au=Oster%2C+Howard+S.&rft.au=Polakow%2C+Ariel+M.&rft.au=Gat%2C+Roi&rft.au=Goldschmidt%2C+Noa&rft.date=2025-04-01&rft.issn=0902-4441&rft.eissn=1600-0609&rft.volume=114&rft.issue=4&rft.spage=672&rft.epage=678&rft_id=info:doi/10.1111%2Fejh.14379&rft.externalDBID=10.1111%252Fejh.14379&rft.externalDocID=EJH14379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0902-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0902-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0902-4441&client=summon |