Do we Need to Perform Bone Marrow Examination in all Subjects Suspected of MDS? Evaluation and Validation of Non‐Invasive (Web‐Based) Diagnostic Algorithm

ABSTRACT Background Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasiv...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of haematology Vol. 114; no. 4; pp. 672 - 678
Main Authors Oster, Howard S., Polakow, Ariel M., Gat, Roi, Goldschmidt, Noa, Ben‐Ezra, Jonathan, Mittelman, Moshe
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2025
Subjects
Online AccessGet full text
ISSN0902-4441
1600-0609
1600-0609
DOI10.1111/ejh.14379

Cover

Abstract ABSTRACT Background Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model. Methods From the TASMC BM registry (2019–22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building. Results The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss‐classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar. Conclusions The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR‐MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model.
AbstractList Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter-observer interpretation discordance). We developed non-invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model. From the TASMC BM registry (2019-22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building. The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss-classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar. The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR-MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model.
ABSTRACT Background Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model. Methods From the TASMC BM registry (2019–22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building. Results The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss‐classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar. Conclusions The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR‐MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model.
Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS).BACKGROUNDBone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS).it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter-observer interpretation discordance). We developed non-invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.PROBLEMSit is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter-observer interpretation discordance). We developed non-invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.From the TASMC BM registry (2019-22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.METHODSFrom the TASMC BM registry (2019-22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.The model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss-classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.RESULTSThe model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss-classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.The MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR-MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model.CONCLUSIONSThe MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR-MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model.
BackgroundBone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible bleeding, inaccurate (aspirate hemodilution), and subjective (inter‐observer interpretation discordance). We developed non‐invasive diagnostic tools: A logistic regression formula [LeukRes 2018], then a web algorithm using 10 variables (age, gender, Hb, MCV, WBC, ANC, monocytes, PLT, glucose, creatinine) to diagnose/exclude MDS [BldAdv 2021]. Here, we perform external validation of the model.MethodsFrom the TASMC BM registry (2019–22) we identified and compared the model performance between MDS patients and controls (> 50 year with unexplained anemia, not MDS), all BME diagnosed, and not used in model building.ResultsThe model was accurate and predicted MDS in 63% of 103 patients, and excluded (correctly) in 83% of 101 controls. It miss‐classified in 11%/7% respectively, and was indeterminate in 26%/10% respectively. The positive predictive value (PPV), NPV, sensitivity, and specificity (excluding the indeterminate group) were 90%, 88%, 86%, and 92%, respectively. Subgroup (Lower/higher risk, LR/HR) analysis results were similar.ConclusionsThe MDS diagnostic model was validated and can be used, mainly for MDS exclusion, especially in suspected LR‐MDS, avoiding BME in some patients. In the future incorporating peripheral blood genetics and morphometry can further improve the model.
Author Oster, Howard S.
Mittelman, Moshe
Polakow, Ariel M.
Gat, Roi
Ben‐Ezra, Jonathan
Goldschmidt, Noa
Author_xml – sequence: 1
  givenname: Howard S.
  orcidid: 0000-0003-1936-4675
  surname: Oster
  fullname: Oster, Howard S.
  organization: Tel Aviv University
– sequence: 2
  givenname: Ariel M.
  surname: Polakow
  fullname: Polakow, Ariel M.
  organization: Tel Aviv Sourasky Medical Center
– sequence: 3
  givenname: Roi
  surname: Gat
  fullname: Gat, Roi
  organization: Tel Aviv Sourasky Medical Center
– sequence: 4
  givenname: Noa
  surname: Goldschmidt
  fullname: Goldschmidt, Noa
  organization: Tel Aviv Sourasky Medical Center
– sequence: 5
  givenname: Jonathan
  surname: Ben‐Ezra
  fullname: Ben‐Ezra, Jonathan
  organization: Tel Aviv Sourasky Medical Center
– sequence: 6
  givenname: Moshe
  surname: Mittelman
  fullname: Mittelman, Moshe
  email: moshemt@gmail.com
  organization: Tel Aviv Sourasky Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39754481$$D View this record in MEDLINE/PubMed
BookMark eNp10c1O3DAQAGCrApWF9tAXqCz1AoeAvXYS51QBuxQqoJXozzEaJxPwKrG3drJbbjxCn4CH65PUNLQHJHzxjPSNx_Zskw3rLBLyhrN9HtcBLm72uRR58YJMeMZYwjJWbJAJK9g0kVLyLbIdwoIxNi14_pJsiSJPpVR8Qu5njq6RXiLWtHf0M_rG-Y4exQb0Arx3azr_CZ2x0BtnqbEU2pZeDXqBVR9iEJYxiMWuoRezq_d0voJ2GDHYmn6D1tRjGsWls7_vfp3ZFQSzQrr7HXXMjyBgvUdnBq6tC72p6GF77bzpb7pXZLOBNuDrx32HfD2Zfzk-Tc4_fTg7PjxPKsFFkYhMQR5fpzRmoLHSqBqlVCZSwRsFnIPQTdpgMVWyqXPUNaiUoSy0nFYgc7FDdsdzl979GDD0ZWdChW0LFt0QSsFTniqZsizSd0_owg3exttFlQuVKVY8qLePatAd1uXSmw78bfnv5yPYG0HlXQgem_-Es_JhqmWcavl3qtEejHZtWrx9Hpbzj6djxR9sGaSJ
Cites_doi 10.3324/haematol.2022.281595
10.1038/s41375‐022‐01613‐1
10.1111/bjh.18889
10.1111/bjh.13450
10.1111/j.1365-2141.1982.tb02771.x
10.1182/hem.V21.4.202445
10.1056/NEJMp2311015
10.1182/bloodadvances.2023010061
10.1182/blood‐2013‐03‐492884
10.1111/bjh.19474
10.1038/s41375‐023‐01855‐7
10.1182/bloodadvances.2020004055
10.1182/blood‐2021‐147750
10.1182/hem.V21.3.2024313
10.1111/bjh.19447
10.3390/cancers15082305
10.1182/blood.V79.1.198.198
10.1182/blood‐2013‐08‐518886
10.1182/blood.2023023727
10.1111/ijlh.13681
10.1182/blood.V126.23.907.907
10.1097/01.HS9.0000967320.61157.24
10.1111/j.1365‐2141.1990.tb02612.x
10.1007/s00277‐014‐2252‐4
10.1182/blood‐2020‐139412
10.1056/NEJMoa2024534
10.1182/blood.2023022540
10.1111/j.1600‐0609.1992.tb00039.x
10.1182/blood.2022015850
10.1182/blood.V89.6.2079
10.1016/S0167-9473(01)00065-2
10.1002/ajh.24732
10.1111/ejh.13134
10.1016/j.leukres.2022.106996
10.1056/NEJMms1817674
10.1056/NEJMra0902908
10.1056/NEJMp1707537
10.1111/ijlh.14234
10.1056/NEJMra1904794
10.1080/10428194.2017.1416363
10.1111/j.1365‐2141.1984.tb06079.x
10.1182/blood‐2016‐03‐643544
10.1182/bloodadvances.2020002306
10.1002/ajh.25595
10.1182/blood.2018834044
10.1159/000490727
10.1182/bloodadvances.2021004621
ContentType Journal Article
Copyright 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7T5
7TM
7TO
H94
K9.
7X8
DOI 10.1111/ejh.14379
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Animal Behavior Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1600-0609
EndPage 678
ExternalDocumentID 39754481
10_1111_ejh_14379
EJH14379
Genre researchArticle
Validation Study
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
EGARE
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
Y6R
YFH
YUY
ZCG
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7T5
7TM
7TO
H94
K9.
7X8
ID FETCH-LOGICAL-c3139-368a70028be6abecbe8f88863531f8a11a3bf5fe9284fd7ebda850e49b42ca473
IEDL.DBID DR2
ISSN 0902-4441
1600-0609
IngestDate Fri Sep 05 06:49:54 EDT 2025
Wed Aug 13 07:08:28 EDT 2025
Thu May 01 02:19:45 EDT 2025
Wed Sep 10 05:58:05 EDT 2025
Wed Mar 05 09:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords diagnostic model
gradient boosted model
validation
myelodysplastic syndromes
Language English
License 2025 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3139-368a70028be6abecbe8f88863531f8a11a3bf5fe9284fd7ebda850e49b42ca473
Notes The authors received no specific funding for this work.
Funding
Howard S. Oster and Ariel M. Polakow contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1936-4675
PMID 39754481
PQID 3173868096
PQPubID 2045159
PageCount 7
ParticipantIDs proquest_miscellaneous_3151584506
proquest_journals_3173868096
pubmed_primary_39754481
crossref_primary_10_1111_ejh_14379
wiley_primary_10_1111_ejh_14379_EJH14379
PublicationCentury 2000
PublicationDate April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle European journal of haematology
PublicationTitleAlternate Eur J Haematol
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 38
1990; 75
2021; 5
2021; 43
2019; 94
2020; 383
2015; 126
2024; 204
2023; 15
2023; 37
1982; 51
2015; 94
2023; 7
2023; 124
2018; 101
1997; 89
2013; 122
2024; 143
2023; 202
1992; 79
2021; 384
2024; 144
2016; 127
2023; 108
2017; 377
2019; 381
1994; 86
2022; 140
2020; 4
2015; 170
2017; 92
1990; 26
1984; 58
2019; 86
2021; 138
2006; 47
2022; 36
2024; 21
2009; 361
2024; 46
1992; 49
2020; 136
2018; 59
2024; 390
2019; 134
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
Agool A. (e_1_2_10_46_1) 2006; 47
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Mittelman M. (e_1_2_10_2_1) 1990; 26
Saad S. T. (e_1_2_10_18_1) 1994; 86
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Administration S. S. (e_1_2_10_27_1)
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 86
  start-page: 47
  issue: 1
  year: 1994
  end-page: 51
  article-title: The Role of Bone Marrow Study in Diagnosis and Prognosis of Myelodysplastic Syndrome
  publication-title: Pathologica
– volume: 21
  issue: 3
  year: 2024
  article-title: Perspective: Procedure Skills in Hematology Training: Lost Cause or Worth Fighting for?
  publication-title: Hematologist
– volume: 122
  start-page: 3616
  issue: 22
  year: 2013
  end-page: 3627
  article-title: Clinical and Biological Implications of Driver Mutations in Myelodysplastic Syndromes
  publication-title: Blood
– volume: 383
  start-page: 1358
  issue: 14
  year: 2020
  end-page: 1374
  article-title: Myelodysplastic Syndromes
  publication-title: New England Journal of Medicine
– volume: 15
  issue: 8
  year: 2023
  article-title: Myeloid NGS Analyses of Paired Samples From Bone Marrow and Peripheral Blood Yield Concordant Results: A Prospective Cohort Analysis of the AGMT Study Group
  publication-title: Cancers (Basel)
– volume: 79
  start-page: 198
  issue: 1
  year: 1992
  end-page: 205
  article-title: Primary Myelodysplastic Syndromes: Diagnostic and Prognostic Significance of Immunohistochemical Assessment of Bone Marrow Biopsies
  publication-title: Blood
– volume: 101
  start-page: 502
  issue: 4
  year: 2018
  end-page: 507
  article-title: Can Bone Marrow Cellularity Help in Predicting Prognosis in Myelodysplastic Syndromes?
  publication-title: European Journal of Haematology
– volume: 143
  start-page: 2401
  issue: 23
  year: 2024
  end-page: 2413
  article-title: ctDNA Improves Prognostic Prediction for Patients With Relapsed/Refractory MM Receiving Ixazomib, Lenalidomide, and Dexamethasone
  publication-title: Blood
– volume: 170
  start-page: 372
  issue: 3
  year: 2015
  end-page: 383
  article-title: Validation of the Revised International Prognostic Scoring System (IPSS‐R) in Patients With Lower‐Risk Myelodysplastic Syndromes: A Report From the Prospective European LeukaemiaNet MDS (EUMDS) Registry
  publication-title: British Journal of Haematology
– volume: 140
  start-page: 1200
  issue: 11
  year: 2022
  end-page: 1228
  article-title: International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data
  publication-title: Blood
– volume: 49
  start-page: 105
  issue: 2
  year: 1992
  end-page: 107
  article-title: Evaluation of Bone Marrow Cellularity by Magnetic Resonance Imaging in Patients With Myelodysplastic Syndrome
  publication-title: European Journal of Haematology
– volume: 92
  start-page: 614
  issue: 7
  year: 2017
  end-page: 621
  article-title: Enumerating Bone Marrow Blasts From Nonerythroid Cellularity Improves Outcome Prediction in Myelodysplastic Syndromes and Permits a Better Definition of the Intermediate Risk Category of the Revised International Prognostic Scoring System (IPSS‐R)
  publication-title: American Journal of Hematology
– volume: 127
  start-page: 2391
  issue: 20
  year: 2016
  end-page: 2405
  article-title: The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia
  publication-title: Blood
– volume: 51
  start-page: 189
  issue: 2
  year: 1982
  end-page: 199
  article-title: Proposals for the Classification of the Myelodysplastic Syndromes
  publication-title: British Journal of Haematology
– volume: 26
  start-page: 468
  issue: 8
  year: 1990
  end-page: 478
  article-title: The Myelodysplastic Syndromes
  publication-title: Israel Journal of Medical Sciences
– volume: 94
  start-page: 565
  issue: 4
  year: 2015
  end-page: 573
  article-title: Interobserver Variance in Myelodysplastic Syndromes With Less Than 5% Bone Marrow Blasts: Unilineage vs. Multilineage Dysplasia and Reproducibility of the Threshold of 2% Blasts
  publication-title: Annals of Hematology
– volume: 377
  start-page: 1309
  issue: 14
  year: 2017
  end-page: 1312
  article-title: Making Patients and Doctors Happier—The Potential of Patient‐Reported Outcomes
  publication-title: New England Journal of Medicine
– volume: 7
  start-page: 6120
  issue: 20
  year: 2023
  end-page: 6129
  article-title: Discordant Pathologic Diagnoses of Myelodysplastic Neoplasms and Their Implications for Registries and Therapies
  publication-title: Blood Advances
– volume: 7
  issue: S3
  year: 2023
  article-title: Natural and Age‐Related Variation in Circulating Human Hematopoietic Stem Cells
  publication-title: European Hematology Association, HemaSphere
– volume: 134
  start-page: 341
  issue: 4
  year: 2019
  end-page: 352
  article-title: How I Treat Polycythemia Vera
  publication-title: Blood
– volume: 86
  start-page: 14
  issue: 1
  year: 2019
  end-page: 23
  article-title: Clinical Implication of Multi‐Parameter Flow Cytometry in Myelodysplastic Syndromes
  publication-title: Pathobiology
– volume: 361
  start-page: 1872
  issue: 19
  year: 2009
  end-page: 1885
  article-title: Myelodysplastic Syndromes
  publication-title: New England Journal of Medicine
– volume: 122
  start-page: 2943
  issue: 17
  year: 2013
  end-page: 2964
  article-title: Diagnosis and Treatment of Primary Myelodysplastic Syndromes in Adults: Recommendations From the European LeukemiaNet
  publication-title: Blood
– volume: 204
  start-page: 1856
  issue: 5
  year: 2024
  end-page: 1861
  article-title: Prevalence of Massively Diluted Bone Marrow Cell Samples Aspirated From Patients With Myelodysplastic Syndromes (MDS) or Suspected of MDS: A Retrospective Analysis of Nationwide Samples in Japan
  publication-title: British Journal of Haematology
– volume: 58
  start-page: 217
  issue: 2
  year: 1984
  end-page: 225
  article-title: Bone Marrow Histology in Myelodysplastic Syndromes. II. Prognostic Value of Abnormal Localization of Immature Precursors in MDS
  publication-title: British Journal of Haematology
– volume: 46
  start-page: 510
  issue: 3
  year: 2024
  end-page: 514
  article-title: Validation of a Novel Algorithm With a High Specificity in Ruling Out MDS
  publication-title: International Journal of Laboratory Hematology
– volume: 75
  start-page: 26
  issue: 1
  year: 1990
  end-page: 33
  article-title: Bone Marrow Biopsy in Myelodysplastic Syndromes: Morphological Characteristics and Contribution to the Study of Prognostic Factors
  publication-title: British Journal of Haematology
– volume: 138
  start-page: 3999
  issue: 1
  year: 2021
  article-title: Automated Digital Morphometry of Peripheral Blood Smears Detects Both Infrequent Events and Cellular Population Patterns in Myelodysplastic Syndrome
  publication-title: Blood
– volume: 136
  start-page: 33
  issue: 1
  year: 2020
  end-page: 35
  article-title: A Personalized Clinical‐Decision Tool to Improve the Diagnostic Accuracy of Myelodysplastic Syndromes
  publication-title: Blood
– volume: 47
  start-page: 1592
  issue: 10
  year: 2006
  end-page: 1598
  article-title: 18F‐FLT PET in Hematologic Disorders: A Novel Technique to Analyze the Bone Marrow Compartment
  publication-title: Journal of Nuclear Medicine
– volume: 390
  start-page: 293
  issue: 4
  year: 2024
  end-page: 295
  article-title: Mind the Gap ‐ Machine Learning, Dataset Shift, and History in the Age of Clinical Algorithms
  publication-title: New England Journal of Medicine
– volume: 381
  start-page: 480
  issue: 5
  year: 2019
  end-page: 485
  article-title: Digital Futures Past—The Long Arc of Big Data in Medicine
  publication-title: New England Journal of Medicine
– volume: 384
  start-page: 924
  issue: 10
  year: 2021
  end-page: 935
  article-title: Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers
  publication-title: New England Journal of Medicine
– volume: 144
  start-page: 1617
  year: 2024
  end-page: 1632
  article-title: Molecular Taxonomy of Myelodysplastic Syndromes and Its Clinical Implications
  publication-title: Blood
– volume: 43
  start-page: 1408
  issue: 6
  year: 2021
  end-page: 1416
  article-title: Evaluation of Scopio Labs X100 Full Field PBS: The First High‐Resolution Full Field Viewing of Peripheral Blood Specimens Combined With Artificial Intelligence‐Based Morphological Analysis
  publication-title: International Journal of Laboratory Hematology
– volume: 4
  start-page: 4362
  issue: 18
  year: 2020
  end-page: 4365
  article-title: Mutational Analysis of Hematologic Neoplasms in 164 Paired Peripheral Blood and Bone Marrow Samples by Next‐Generation Sequencing
  publication-title: Blood Advances
– volume: 204
  start-page: 1593
  issue: 5
  year: 2024
  end-page: 1594
  article-title: Revisiting the Most Often Used Item in the Haematological Tool Box‐The Extent of Haemodilution in Bone Marrow Aspirates
  publication-title: British Journal of Haematology
– volume: 108
  start-page: 1951
  issue: 7
  year: 2023
  end-page: 1956
  article-title: Clonal Dynamics Using Droplet Digital Polymerase Chain Reaction in Peripheral Blood Predicts Treatment Responses in Myelodysplastic Syndrome
  publication-title: Haematologica
– volume: 36
  start-page: 1703
  issue: 7
  year: 2022
  end-page: 1719
  article-title: The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms
  publication-title: Leukemia
– volume: 59
  start-page: 2227
  issue: 9
  year: 2018
  end-page: 2232
  article-title: Is Bone Marrow Examination Always Necessary to Establish the Diagnosis of Myelodysplastic Syndromes? A Proposed Non‐Invasive Diagnostic Model
  publication-title: Leukemia & Lymphoma
– volume: 94
  start-page: 1266
  issue: 11
  year: 2019
  end-page: 1287
  article-title: Chronic Lymphocytic Leukemia: 2020 Update on Diagnosis, Risk Stratification and Treatment
  publication-title: American Journal of Hematology
– volume: 5
  start-page: 3066
  issue: 16
  year: 2021
  end-page: 3075
  article-title: A Predictive Algorithm Using Clinical and Laboratory Parameters May Assist in Ruling out and in Diagnosing MDS
  publication-title: Blood Advances
– volume: 37
  start-page: 942
  issue: 4
  year: 2023
  end-page: 945
  article-title: MDS Subclassification‐Do We Still Have to Count Blasts?
  publication-title: Leukemia
– volume: 5
  start-page: 4515
  issue: 21
  year: 2021
  end-page: 4520
  article-title: Rational Biomarker Development for the Early and Minimally Invasive Monitoring of AML
  publication-title: Blood Advances
– volume: 21
  issue: 4
  year: 2024
  article-title: An Australian Perspective on Bone Marrow Examination as a Standard Requirement for Hematology Trainees
  publication-title: Hematologist
– volume: 126
  start-page: 907
  issue: 23
  year: 2015
  article-title: Somatic Mutations in MDS Patients Are Associated With Clinical Features and Predict Prognosis Independent of the IPSS‐R: Analysis of Combined Datasets From the International Working Group for Prognosis in MDS‐Molecular Committee
  publication-title: Blood
– volume: 89
  start-page: 2079
  issue: 6
  year: 1997
  end-page: 2088
  article-title: International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes
  publication-title: Blood
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  end-page: 378
  article-title: Stochastic Gradient Boosting
  publication-title: Computational Statistics & Data Analysis
– volume: 124
  year: 2023
  article-title: Cytogenetic Peripheral Blood Monitoring in Azacitidine Treated Patients With High‐Risk MDS/sAML: A Monocentric Real‐World Experience
  publication-title: Leukemia Research
– volume: 202
  start-page: e16
  issue: 3
  year: 2023
  end-page: e19
  article-title: High Concordance of Clone Detection Between Peripheral Blood and Bone Marrow by Targeted Next‐Generation Sequencing‐A Pilot Study in Patients With MDS
  publication-title: British Journal of Haematology
– ident: e_1_2_10_38_1
  doi: 10.3324/haematol.2022.281595
– ident: e_1_2_10_11_1
  doi: 10.1038/s41375‐022‐01613‐1
– ident: e_1_2_10_40_1
  doi: 10.1111/bjh.18889
– ident: e_1_2_10_6_1
  doi: 10.1111/bjh.13450
– ident: e_1_2_10_7_1
  doi: 10.1111/j.1365-2141.1982.tb02771.x
– ident: e_1_2_10_28_1
– ident: e_1_2_10_24_1
  doi: 10.1182/hem.V21.4.202445
– ident: e_1_2_10_16_1
  doi: 10.1056/NEJMp2311015
– ident: e_1_2_10_26_1
  doi: 10.1182/bloodadvances.2023010061
– ident: e_1_2_10_4_1
  doi: 10.1182/blood‐2013‐03‐492884
– ident: e_1_2_10_22_1
  doi: 10.1111/bjh.19474
– ident: e_1_2_10_44_1
  doi: 10.1038/s41375‐023‐01855‐7
– volume: 47
  start-page: 1592
  issue: 10
  year: 2006
  ident: e_1_2_10_46_1
  article-title: 18F‐FLT PET in Hematologic Disorders: A Novel Technique to Analyze the Bone Marrow Compartment
  publication-title: Journal of Nuclear Medicine
– ident: e_1_2_10_13_1
  doi: 10.1182/bloodadvances.2020004055
– ident: e_1_2_10_34_1
  doi: 10.1182/blood‐2021‐147750
– ident: e_1_2_10_23_1
  doi: 10.1182/hem.V21.3.2024313
– ident: e_1_2_10_21_1
  doi: 10.1111/bjh.19447
– ident: e_1_2_10_39_1
  doi: 10.3390/cancers15082305
– ident: e_1_2_10_17_1
  doi: 10.1182/blood.V79.1.198.198
– ident: e_1_2_10_50_1
  doi: 10.1182/blood‐2013‐08‐518886
– ident: e_1_2_10_45_1
  doi: 10.1182/blood.2023023727
– ident: e_1_2_10_33_1
  doi: 10.1111/ijlh.13681
– ident: e_1_2_10_49_1
  doi: 10.1182/blood.V126.23.907.907
– volume: 26
  start-page: 468
  issue: 8
  year: 1990
  ident: e_1_2_10_2_1
  article-title: The Myelodysplastic Syndromes
  publication-title: Israel Journal of Medical Sciences
– ident: e_1_2_10_43_1
  doi: 10.1097/01.HS9.0000967320.61157.24
– ident: e_1_2_10_19_1
  doi: 10.1111/j.1365‐2141.1990.tb02612.x
– ident: e_1_2_10_25_1
  doi: 10.1007/s00277‐014‐2252‐4
– ident: e_1_2_10_51_1
  doi: 10.1182/blood‐2020‐139412
– ident: e_1_2_10_35_1
  doi: 10.1056/NEJMoa2024534
– ident: e_1_2_10_37_1
  doi: 10.1182/blood.2023022540
– ident: e_1_2_10_47_1
  doi: 10.1111/j.1600‐0609.1992.tb00039.x
– ident: e_1_2_10_10_1
  doi: 10.1182/blood.2022015850
– ident: e_1_2_10_8_1
  doi: 10.1182/blood.V89.6.2079
– ident: e_1_2_10_29_1
  doi: 10.1016/S0167-9473(01)00065-2
– ident: e_1_2_10_31_1
  doi: 10.1002/ajh.24732
– ident: e_1_2_10_32_1
  doi: 10.1111/ejh.13134
– ident: e_1_2_10_42_1
  doi: 10.1016/j.leukres.2022.106996
– ident: e_1_2_10_15_1
  doi: 10.1056/NEJMms1817674
– ident: e_1_2_10_3_1
  doi: 10.1056/NEJMra0902908
– volume-title: Social Security Administration
  ident: e_1_2_10_27_1
– ident: e_1_2_10_14_1
  doi: 10.1056/NEJMp1707537
– ident: e_1_2_10_30_1
  doi: 10.1111/ijlh.14234
– ident: e_1_2_10_5_1
  doi: 10.1056/NEJMra1904794
– ident: e_1_2_10_12_1
  doi: 10.1080/10428194.2017.1416363
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1365‐2141.1984.tb06079.x
– ident: e_1_2_10_9_1
  doi: 10.1182/blood‐2016‐03‐643544
– ident: e_1_2_10_41_1
  doi: 10.1182/bloodadvances.2020002306
– ident: e_1_2_10_52_1
  doi: 10.1002/ajh.25595
– ident: e_1_2_10_53_1
  doi: 10.1182/blood.2018834044
– volume: 86
  start-page: 47
  issue: 1
  year: 1994
  ident: e_1_2_10_18_1
  article-title: The Role of Bone Marrow Study in Diagnosis and Prognosis of Myelodysplastic Syndrome
  publication-title: Pathologica
– ident: e_1_2_10_48_1
  doi: 10.1159/000490727
– ident: e_1_2_10_36_1
  doi: 10.1182/bloodadvances.2021004621
SSID ssj0002917
Score 2.4214664
Snippet ABSTRACT Background Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful,...
Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). it is invasive, painful, causing possible bleeding,...
BackgroundBone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS). Problems: it is invasive, painful, causing possible...
Bone marrow examination (BME) is the gold standard of diagnosing myelodysplastic syndromes (MDS).BACKGROUNDBone marrow examination (BME) is the gold standard...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 672
SubjectTerms Aged
Aged, 80 and over
Algorithms
Bone marrow
Bone Marrow - pathology
Bone Marrow Examination - methods
Creatinine
diagnostic model
Discordance
Female
gradient boosted model
Humans
Internet
Male
Middle Aged
Monocytes
Morphometry
Myelodysplastic syndrome
myelodysplastic syndromes
Myelodysplastic Syndromes - blood
Myelodysplastic Syndromes - diagnosis
Myelodysplastic Syndromes - etiology
Peripheral blood
Registries
validation
Title Do we Need to Perform Bone Marrow Examination in all Subjects Suspected of MDS? Evaluation and Validation of Non‐Invasive (Web‐Based) Diagnostic Algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejh.14379
https://www.ncbi.nlm.nih.gov/pubmed/39754481
https://www.proquest.com/docview/3173868096
https://www.proquest.com/docview/3151584506
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXKO-lBQ2IQzmkWsdO4ogDatmtlkq7QkChB6TIjh362CZVNwuIEz-BX8CP45cw4zygICTEzVFs-Tmeb-xvxow9ctxyG6dxQF6YgeQ5ipSzmjgNEVrPzihHjsLTWTzZl3sH0cEKe9L5wjTxIfoDN5IMv1-TgGuz-EXI3fEhirlIyHmPi5ji5o9e_gwdFab-tV2iHQYSdX4bVYhYPH3Ji7roD4B5Ea96hbN7lb3rmtrwTE62lrXZyj__FsXxP_uyxq60QBS2m5Vzja248jq7NG2v2m-wb6MKPjqYoXaDuoIXjYMB7FSlg6mP3AjjT5qINDS1cFSCns8B9yE62FlgwvtwYuGqgOno1VMY93HFQZcW3qAB0LznRDlmVfn9y9fn5QdNdHrYfOsMfu-girWPYdTQAbGhsD1_X50f1YenN9n-7vj1s0nQPuYQ5AJRZiBipROy8IyLNS4c41SB1jfiHcELpTnXwhTEfEN9WdjEGatVNHQyNTLMtUzELbZaYhfvMIicLdI01KFJhRSiUEnBhTVDiVAoTHI-YA-7ac3OmpgdWWfr4EhnfqQHbKOb8KwV20WGYEqoWKFZN2AP-t8ocHSLoktXLSkPQkAloyHmud0slL4WBHcR2rvYgk0_3X-vPhvvTXzi7r9nXWeXQ3p92POGNthqfb509xAS1ea-X_s_AKIZCFc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVKkaAv3C8LBQbEQ3lItYmdxJGQUMtutS3NCkFb-oIiO3bawpKgNguIJz6BL-Dj-BJmnAsUhIR4cxRbvo7njH1mzNhD6xvfREnkkRemJ_wcRcoaRZyGEK1nq6UlR-F0Gk12xdZ-uL_AHne-ME18iP7AjSTD7dck4HQg_YuU2zeHKOc8Ts6ws-5-jiDRi5_Bo4LEvbdLxENPoNZv4woRj6cvelob_QExTyNWp3I2LrLXXWMbpsnb1XmtV_PPv8Vx_N_eXGIXWiwKa83iucwWbHmFnUvb2_ar7Nuogo8WpqjgoK7geeNjAOtVaSF1wRth_EkRl4ZmF45KULMZ4FZEZzsnmHBunFi4KiAdvXwC4z60OKjSwB7aAM2TTpRjWpXfv3zdLD8oYtTDyiur8Xsdtax5BKOGEYgNhbXZQXV8VB--u8Z2N8Y7Tyde-56Dl3MEmh6PpIrJyNM2Urh2tJUFGuAIebhfSOX7iuuCyG-oMgsTW22UDIdWJFoEuRIxv84WS-ziTQahNUWSBCrQCRecFzIufG70UCAaCuLcH7AH3bxm75uwHVln7uBIZ26kB2y5m_GsldyTDPEUl5FEy27A7ve_UeboIkWVtppTHkSBUoRDzHOjWSl9LYjvQjR5sQUrbr7_Xn023pq4xK1_z3qPnZ_spNvZ9ub02W22FNBjxI5GtMwW6-O5vYMIqdZ3nSD8AB1KDHU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSouvB9LCwyIQzmk2sRO4qgH1LK72hZ2VQGlPSBFduzQwpJUbRYQJ35Cf0F_HL-EGecBBSEhbo5iy8_xfGN_M2bssfWNb6Ik8sgL0xN-hiJljSJOQ4jWs9XSkqPwZBqNd8X2fri_wNZbX5g6PkR34EaS4fZrEvAjk_8i5Pb9AYo5j5ML7KKIUE0SInr5M3ZUkLjndol36AlU-k1YIaLxdEXPK6M_EOZ5wOo0zugKe9u2tSaafFibV3ot-_pbGMf_7MxVdrlBorBRL51rbMEW19nSpLlrv8HOBiV8tjBF9QZVCTu1hwFsloWFiQvdCMMvipg0NLdwWICazQA3IjrZOcGEc-LEwmUOk8GrpzDsAouDKgy8QQugftCJckzL4vu3063ikyI-PazuWY3fm6hjzRMY1HxAbChszN6Vx4fVwcebbHc0fP1s7DWvOXgZR5jp8UiqmEw8bSOFK0dbmaP5jYCH-7lUvq-4zon6hgozN7HVRsmwb0WiRZApEfNbbLHALt5hEFqTJ0mgAp1wwXku49znRvcFYqEgzvwee9ROa3pUB-1IW2MHRzp1I91jK-2Ep43cnqSIpriMJNp1Pfaw-40SR9coqrDlnPIgBpQi7GOe2_VC6WpBdBeiwYstWHXT_ffq0-H22CXu_nvWB2xpZzBKX2xNny-zSwG9ROw4RCtssTqe23sIjyp934nBD_Z8CyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+we+Need+to+Perform+Bone+Marrow+Examination+in+all+Subjects+Suspected+of+MDS%3F+Evaluation+and+Validation+of+Non%E2%80%90Invasive+%28Web%E2%80%90Based%29+Diagnostic+Algorithm&rft.jtitle=European+journal+of+haematology&rft.au=Oster%2C+Howard+S.&rft.au=Polakow%2C+Ariel+M.&rft.au=Gat%2C+Roi&rft.au=Goldschmidt%2C+Noa&rft.date=2025-04-01&rft.issn=0902-4441&rft.eissn=1600-0609&rft.volume=114&rft.issue=4&rft.spage=672&rft.epage=678&rft_id=info:doi/10.1111%2Fejh.14379&rft.externalDBID=10.1111%252Fejh.14379&rft.externalDocID=EJH14379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0902-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0902-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0902-4441&client=summon