Endoscopy report mining for intelligent gastric cancer screening
Endoscopy is an important tool for gastric cancer screening. Due to the lack of effective decision support system for endoscopy, the detection of gastric cancer in the clinic is usually with low sensitivity. In this paper, we propose a Genetic Algorithm optimized Neural Network (GAoNN) approach for...
Saved in:
| Published in | Expert systems Vol. 37; no. 3 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Blackwell Publishing Ltd
01.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0266-4720 1468-0394 |
| DOI | 10.1111/exsy.12504 |
Cover
| Abstract | Endoscopy is an important tool for gastric cancer screening. Due to the lack of effective decision support system for endoscopy, the detection of gastric cancer in the clinic is usually with low sensitivity. In this paper, we propose a Genetic Algorithm optimized Neural Network (GAoNN) approach for gastric cancer detection based on endoscopy reports mining. Considering the fact that gastric cancer sensitivity can significantly improve the 5‐year survival rate of patients, both the prediction accuracy and the sensitivity are employed to construct a multiobjective optimization model for enhancing the classification performance of GAoNN. In particular, we extended an effective genetic algorithm Nondominated Sorting Genetic Algorithm II (NSGA‐II) to train a neural network and reduced the complexity in training hyperparameters and improved the efficiency by substituting the computationally intensive stochastic gradient descent (SGD) algorithm in a neural network. Specifically, we designed the novel crossover and mutation operators and modified the nondominated ranking and crowding distance sorting procedures in NSGA‐II for GAoNN. Through testing on 8,546 real‐world endoscopy reports, we show that GAoNN achieves a prediction accuracy up to 83.74%, which is better than several competitors by significantly increasing sensitivity to 83.14%. GAoNN also reduces the training time by 30.94% when compared with conventional SGD‐based training, which indicates the feasibility of GAoNN in clinical practice. |
|---|---|
| AbstractList | Endoscopy is an important tool for gastric cancer screening. Due to the lack of effective decision support system for endoscopy, the detection of gastric cancer in the clinic is usually with low sensitivity. In this paper, we propose a Genetic Algorithm optimized Neural Network (GAoNN) approach for gastric cancer detection based on endoscopy reports mining. Considering the fact that gastric cancer sensitivity can significantly improve the 5‐year survival rate of patients, both the prediction accuracy and the sensitivity are employed to construct a multiobjective optimization model for enhancing the classification performance of GAoNN. In particular, we extended an effective genetic algorithm Nondominated Sorting Genetic Algorithm II (NSGA‐II) to train a neural network and reduced the complexity in training hyperparameters and improved the efficiency by substituting the computationally intensive stochastic gradient descent (SGD) algorithm in a neural network. Specifically, we designed the novel crossover and mutation operators and modified the nondominated ranking and crowding distance sorting procedures in NSGA‐II for GAoNN. Through testing on 8,546 real‐world endoscopy reports, we show that GAoNN achieves a prediction accuracy up to 83.74%, which is better than several competitors by significantly increasing sensitivity to 83.14%. GAoNN also reduces the training time by 30.94% when compared with conventional SGD‐based training, which indicates the feasibility of GAoNN in clinical practice. |
| Author | Ding, Shuai Yang, Shanlin Liu, Xiao Li, Gang Pan, Jinxin |
| Author_xml | – sequence: 1 givenname: Jinxin surname: Pan fullname: Pan, Jinxin organization: Hefei University of Technology – sequence: 2 givenname: Shuai orcidid: 0000-0002-8384-1950 surname: Ding fullname: Ding, Shuai email: dingshuai@hfut.edu.cn organization: Hefei University of Technology – sequence: 3 givenname: Shanlin surname: Yang fullname: Yang, Shanlin email: yangsl@hfut.edu.cn organization: Hefei University of Technology – sequence: 4 givenname: Gang orcidid: 0000-0003-1583-641X surname: Li fullname: Li, Gang organization: Deakin University – sequence: 5 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Deakin University |
| BookMark | eNp9kE1LAzEQhoNUsK1e_AUL3oSt-dpk96aU-gEFDyroKaTppKRskzXZovvv3XU9O5eZwzMzvM8MTXzwgNAlwQvS1w18p25BaIH5CZoSLsocs4pP0BRTIXIuKT5Ds5T2GGMipZii25XfhmRC02URmhDb7OC887vMhpg530Jdux34Ntvp1EZnMqO9gZglEwEG8BydWl0nuPjrc_R2v3pdPubr54en5d06N4wwnldiY7nlDBeUW6KphLKywvQTK5jV2kJR0mLTZ5BMUMYwr5jRxJiy2G6JFmyOrsa7TQyfR0it2odj9P1LRTlhUlAhy566HikTQ0oRrGqiO-jYKYLVYEgNhtSvoR4mI_zlauj-IdXq_eVj3PkBOPJqMA |
| Cites_doi | 10.1016/j.eswa.2015.03.018 10.1136/gutjnl-2015-310249 10.1053/j.gastro.2018.04.026 10.1109/ICIP.2017.8296643 10.1016/j.cmpb.2017.01.004 10.1016/j.amc.2018.12.045 10.1016/j.ins.2018.08.050 10.1109/4235.996017 10.1016/j.gie.2017.11.029 10.1016/j.dss.2017.10.001 10.1016/j.patcog.2017.07.008 10.1016/j.asoc.2018.05.035 10.1016/j.mpsur.2017.01.002 10.1016/j.dss.2017.12.007 10.1055/s-0034-1365524 10.1016/j.dss.2016.10.005 10.1111/exsy.12274 10.1007/s10479-010-0751-9 10.1016/j.ejor.2016.11.007 10.1287/opre.2015.1405 10.1109/TVLSI.2018.2791442 10.1109/TCBB.2015.2485226 10.1111/exsy.12388 10.1016/j.eswa.2014.06.034 10.1111/exsy.12214 10.1016/j.patcog.2017.10.013 10.1016/j.jgo.2019.01.003 10.1109/TNNLS.2016.2539366 10.1016/j.ejor.2017.09.034 10.1016/j.gie.2017.03.011 10.1109/TMI.2017.2789181 10.1145/2644865.2541967 10.1007/s10916-017-0841-1 10.1287/educ.2017.0173 10.1109/TPAMI.2012.231 10.1001/jama.2016.17216 10.1016/j.eswa.2015.01.065 10.1016/j.dss.2014.01.005 10.1111/cas.13100 10.1016/j.ejor.2018.05.071 10.1016/j.eswa.2014.07.039 10.1111/exsy.12409 10.1109/TMI.2016.2521442 10.1007/s10916-019-1356-8 10.1111/exsy.12413 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons Australia, Ltd 2020 John Wiley & Sons, Ltd |
| Copyright_xml | – notice: 2019 John Wiley & Sons Australia, Ltd – notice: 2020 John Wiley & Sons, Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1111/exsy.12504 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1468-0394 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_exsy_12504 EXSY12504 |
| Genre | article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: PA2019GDQT0021; PA2019GDZC0100 – fundername: Anhui Provincial Science and Technology Major Project funderid: 18030801137; 17030801001 – fundername: National Natural Science Foundation of China funderid: 91846107; 71571058; 71771077; 61903115 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT 77I AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3134-96bf4f430524f1a27e89f6c1a2353faafe5825b1117362330493ca1cc85dd1a63 |
| IEDL.DBID | DR2 |
| ISSN | 0266-4720 |
| IngestDate | Fri Jul 25 07:53:14 EDT 2025 Wed Oct 01 02:56:00 EDT 2025 Wed Jan 22 16:33:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3134-96bf4f430524f1a27e89f6c1a2353faafe5825b1117362330493ca1cc85dd1a63 |
| Notes | Funding information Anhui Provincial Science and Technology Major Project, Grant/Award Numbers: 18030801137, 17030801001; Fundamental Research Funds for the Central Universities, Grant/Award Numbers: PA2019GDQT0021, PA2019GDZC0100; National Natural Science Foundation of China, Grant/Award Numbers: 91846107, 71571058, 71771077, 61903115 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1583-641X 0000-0002-8384-1950 |
| PQID | 2413762678 |
| PQPubID | 32130 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2413762678 crossref_primary_10_1111_exsy_12504 wiley_primary_10_1111_exsy_12504_EXSY12504 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Expert systems |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2017; 86 2017; 41 2018; 106 2017; 28 2019; 10 2017; 66 2002; 6 2018; 266 2019; 36 2014; 49 2014; 02 2017; 29 2010; 181 2019; 349 2014; 41 2018; 87 2017; 258 2016; 35 2016; 13 2018; 26 2017; 108 2017; 94 2018; 3127 2018; 155 2018; 271 2013; 35 2018; 1 2016; 316 2019; 43 2015; 42 2017; 77 2015; 63 2017; 35 2017; 34 2018; 70 2014; 59 2019 2017 2017; 141 2019; 471 2018; 75 2017; 104 2018; 37 2018; 35 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 Liu J. (e_1_2_9_26_1) 2017; 29 e_1_2_9_32_1 e_1_2_9_12_1 Raza S. A. (e_1_2_9_33_1) 2019; 36 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Sun Y. (e_1_2_9_38_1) 2018; 1 e_1_2_9_9_1 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 Newgard C. D. (e_1_2_9_28_1) 2018; 3127 e_1_2_9_29_1 |
| References_xml | – volume: 34 issue: 6 year: 2017 article-title: Comparative assessment of statistical and machine learning techniques towards estimating the risk of developing type 2 diabetes and cardiovascular complications publication-title: Expert Systems – volume: 35 start-page: 1915 issue: 8 year: 2013 end-page: 1929 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 181 start-page: 745 issue: 1 year: 2010 end-page: 765 article-title: A memetic algorithm based on a NSGA‐II scheme for the flexible job‐shop scheduling problem publication-title: Annals of Operations Research – volume: 3127 start-page: 1 issue: 3 year: 2018 end-page: 12 article-title: Out‐of‐hospital research in the era of electronic health records publication-title: Prehospital Emergency Care – volume: 42 start-page: 146 issue: 1 year: 2015 end-page: 155 article-title: A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm publication-title: Expert Systems with Applications – volume: 155 start-page: 347 issue: 2 year: 2018 end-page: 354 article-title: Endoscopic screening in Asian countries is associated with reduced gastric cancer mortality: A meta‐analysis and systematic review publication-title: Gastroenterology – volume: 36 year: 2019 article-title: Prediction of postpartum depression using machine learning techniques from social media text publication-title: Expert Systems – year: 2019 article-title: A hybrid knowledge and ensemble classification approach for prediction of venous thromboembolism publication-title: Expert Systems – volume: 87 start-page: 1339 issue: 5 year: 2018 end-page: 1344 article-title: Computer‐aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow‐band imaging publication-title: Gastrointestinal Endoscopy – volume: 266 start-page: 639 issue: 2 year: 2018 end-page: 651 article-title: A decision analytic approach to predicting quality of life for lung transplant recipients: A hybrid genetic algorithms‐based methodology publication-title: European Journal of Operational Research – volume: 141 start-page: 19 year: 2017 end-page: 26 article-title: Computer aided decision making for heart disease detection using hybrid neural network‐genetic algorithm publication-title: Computer Methods and Programs in Biomedicine – volume: 13 start-page: 778 issue: 4 year: 2016 end-page: 791 article-title: Robust multiobjective controllability of complex neuronal networks publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 349 start-page: 134 year: 2019 end-page: 147 article-title: The impact of awareness diffusion on SIR‐like epidemics in multiplex networks publication-title: Applied Mathematics and Computation – volume: 43 issue: 8 year: 2019 article-title: Improved deep learning network based in combination with cost‐sensitive learning for early detection of ovarian cancer in color ultrasound detecting system publication-title: Journal of Medical Systems – volume: 37 start-page: 1127 issue: 5 year: 2018 end-page: 1139 article-title: Automated detection of clinically significant prostate cancer in mp‐MRI images based on an end‐to‐end deep neural network publication-title: IEEE Transactions on Medical Imaging – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II publication-title: IEEE Transactions on Evolutionary Computation – volume: 1 start-page: 1 year: 2018 end-page: 15 article-title: Evolving unsupervised deep neural networks for learning meaningful representations publication-title: IEEE Transactions on Evolutionary Computation – volume: 471 start-page: 185 year: 2019 end-page: 200 article-title: A new coupled disease‐awareness spreading model with mass media on multiplex networks publication-title: Information Sciences – volume: 41 start-page: 7466 issue: 16 year: 2014 end-page: 7477 article-title: Gait modification and optimization using neural network–genetic algorithm approach: Application to knee rehabilitation publication-title: Expert Systems with Applications – volume: 63 start-page: 979 issue: 5 year: 2015 end-page: 999 article-title: Dynamic forecasting and control algorithms of glaucoma progression for clinician decision support publication-title: Operations Research – volume: 36 issue: September 2018 year: 2019 article-title: Identifying mortality risk factors amongst acute coronary syndrome patients admitted to Arabian Gulf hospitals using machine‐learning methods publication-title: Expert Systems – volume: 258 start-page: 877 issue: 3 year: 2017 end-page: 886 article-title: New genetic algorithm approach for the min‐degree constrained minimum spanning tree publication-title: European Journal of Operational Research – volume: 02 start-page: E46 issue: 02 year: 2014 end-page: E50 article-title: How commonly is upper gastrointestinal cancer missed at endoscopy? A meta‐analysis publication-title: Endoscopy International Open – volume: 42 start-page: 4611 issue: 10 year: 2015 end-page: 4620 article-title: Breast cancer diagnosis using genetically optimized neural network model publication-title: Expert Systems with Applications – volume: 104 start-page: 38 year: 2017 end-page: 48 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decision Support Systems – volume: 66 start-page: 644 issue: 4 year: 2017 end-page: 653 article-title: Endoscopic mucosal resection for large serrated lesions in comparison with adenomas: A prospective multicentre study of 2000 lesions publication-title: Gut – volume: 316 start-page: 2402 issue: 22 year: 2016 end-page: 2410 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Journal of the American Medical Association – volume: 70 start-page: 347 year: 2018 end-page: 358 article-title: Efficient fog prediction with multi‐objective evolutionary neural networks publication-title: Applied Soft Computing – volume: 35 start-page: 210 issue: 4 year: 2017 end-page: 215 article-title: Principles of gastrointestinal endoscopy publication-title: Surgery (Oxford) – volume: 35 start-page: 1604 issue: 7 year: 2016 end-page: 1614 article-title: Multiple‐instance learning for anomaly detection in digital mammography publication-title: IEEE Transactions on Medical Imaging – volume: 28 start-page: 639 issue: 3 year: 2017 end-page: 652 article-title: Approximate optimal control of affine nonlinear continuous‐time systems using event‐sampled neurodynamic programming publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 29 start-page: 1 issue: 6 year: 2017 end-page: 14 article-title: Structure learning for deep neural networks based on multiobjective optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 59 start-page: 341 issue: 1 year: 2014 end-page: 350 article-title: An intelligent mobile based decision support system for retinal disease diagnosis publication-title: Decision Support Systems – volume: 106 start-page: 110 year: 2018 end-page: 118 article-title: Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks publication-title: Decision Support Systems – volume: 108 start-page: 101 issue: 1 year: 2017 end-page: 107 article-title: Potential capacity of endoscopic screening for gastric cancer in Japan publication-title: Cancer Science – volume: 41 issue: 12 year: 2017 article-title: A knowledge‐modeling approach to integrate multiple clinical practice guidelines to provide evidence‐based clinical decision support for managing comorbid conditions publication-title: Journal of Medical Systems – volume: 271 start-page: 849 year: 2018 end-page: 865 article-title: A biased random‐key genetic algorithm for the maximum quasi‐clique problem publication-title: European Journal of Operational Research – volume: 94 start-page: 42 year: 2017 end-page: 52 article-title: Predicting heart transplantation outcomes through data analytics publication-title: Decision Support Systems – start-page: 152 year: 2017 end-page: 175 – volume: 42 start-page: 6177 issue: 15–16 year: 2015 end-page: 6183 article-title: Development of a decision support system based on neural networks and a genetic algorithm publication-title: Expert Systems with Applications – volume: 77 start-page: 354 year: 2017 end-page: 377 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognition – year: 2017 – volume: 35 issue: 4 year: 2018 article-title: Neuromuscular disease detection by neural networks and fuzzy entropy on time‐frequency analysis of electromyography signals publication-title: Expert Systems – volume: 86 start-page: 839 issue: 5 year: 2017 end-page: 846 article-title: Computer‐aided detection of early Barrett's neoplasia using volumetric laser endomicroscopy publication-title: Gastrointestinal Endoscopy – volume: 26 start-page: 831 issue: 5 year: 2018 end-page: 840 article-title: Performance evaluation and optimization of HBM‐enabled GPU for data‐intensive applications publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – volume: 75 start-page: 292 year: 2018 end-page: 301 article-title: A parasitic metric learning net for breast mass classification based on mammography publication-title: Pattern Recognition – volume: 10 start-page: 604 issue: 4 year: 2019 end-page: 609 article-title: Long‐term survival estimates in older patients with pathological stage I gastric cancer undergoing gastrectomy: Duocentric analysis of simplified scoring system publication-title: Journal of Geriatric Oncology – volume: 49 start-page: 269 issue: 4 year: 2014 end-page: 284 article-title: Diannao: A small‐footprint high‐throughput accelerator for ubiquitous machine‐learning publication-title: ACM SIGPLAN Notices – ident: e_1_2_9_7_1 doi: 10.1016/j.eswa.2015.03.018 – ident: e_1_2_9_30_1 doi: 10.1136/gutjnl-2015-310249 – ident: e_1_2_9_48_1 doi: 10.1053/j.gastro.2018.04.026 – ident: e_1_2_9_21_1 doi: 10.1109/ICIP.2017.8296643 – ident: e_1_2_9_3_1 doi: 10.1016/j.cmpb.2017.01.004 – ident: e_1_2_9_43_1 doi: 10.1016/j.amc.2018.12.045 – ident: e_1_2_9_46_1 doi: 10.1016/j.ins.2018.08.050 – ident: e_1_2_9_11_1 doi: 10.1109/4235.996017 – ident: e_1_2_9_23_1 doi: 10.1016/j.gie.2017.11.029 – ident: e_1_2_9_25_1 doi: 10.1016/j.dss.2017.10.001 – ident: e_1_2_9_22_1 doi: 10.1016/j.patcog.2017.07.008 – ident: e_1_2_9_12_1 doi: 10.1016/j.asoc.2018.05.035 – ident: e_1_2_9_24_1 doi: 10.1016/j.mpsur.2017.01.002 – ident: e_1_2_9_42_1 doi: 10.1016/j.dss.2017.12.007 – ident: e_1_2_9_27_1 doi: 10.1055/s-0034-1365524 – ident: e_1_2_9_9_1 doi: 10.1016/j.dss.2016.10.005 – ident: e_1_2_9_41_1 doi: 10.1111/exsy.12274 – ident: e_1_2_9_15_1 doi: 10.1007/s10479-010-0751-9 – ident: e_1_2_9_37_1 doi: 10.1016/j.ejor.2016.11.007 – ident: e_1_2_9_19_1 doi: 10.1287/opre.2015.1405 – volume: 3127 start-page: 1 issue: 3 year: 2018 ident: e_1_2_9_28_1 article-title: Out‐of‐hospital research in the era of electronic health records publication-title: Prehospital Emergency Care – ident: e_1_2_9_49_1 doi: 10.1109/TVLSI.2018.2791442 – ident: e_1_2_9_40_1 doi: 10.1109/TCBB.2015.2485226 – ident: e_1_2_9_34_1 doi: 10.1111/exsy.12388 – ident: e_1_2_9_4_1 doi: 10.1016/j.eswa.2014.06.034 – ident: e_1_2_9_10_1 doi: 10.1111/exsy.12214 – ident: e_1_2_9_16_1 doi: 10.1016/j.patcog.2017.10.013 – ident: e_1_2_9_36_1 doi: 10.1016/j.jgo.2019.01.003 – ident: e_1_2_9_35_1 doi: 10.1109/TNNLS.2016.2539366 – volume: 1 start-page: 1 year: 2018 ident: e_1_2_9_38_1 article-title: Evolving unsupervised deep neural networks for learning meaningful representations publication-title: IEEE Transactions on Evolutionary Computation – ident: e_1_2_9_29_1 doi: 10.1016/j.ejor.2017.09.034 – ident: e_1_2_9_39_1 doi: 10.1016/j.gie.2017.03.011 – ident: e_1_2_9_44_1 doi: 10.1109/TMI.2017.2789181 – ident: e_1_2_9_8_1 doi: 10.1145/2644865.2541967 – ident: e_1_2_9_2_1 doi: 10.1007/s10916-017-0841-1 – ident: e_1_2_9_45_1 doi: 10.1287/educ.2017.0173 – ident: e_1_2_9_13_1 doi: 10.1109/TPAMI.2012.231 – ident: e_1_2_9_17_1 doi: 10.1001/jama.2016.17216 – volume: 29 start-page: 1 issue: 6 year: 2017 ident: e_1_2_9_26_1 article-title: Structure learning for deep neural networks based on multiobjective optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: e_1_2_9_5_1 doi: 10.1016/j.eswa.2015.01.065 – ident: e_1_2_9_6_1 doi: 10.1016/j.dss.2014.01.005 – ident: e_1_2_9_18_1 doi: 10.1111/cas.13100 – ident: e_1_2_9_31_1 doi: 10.1016/j.ejor.2018.05.071 – ident: e_1_2_9_20_1 doi: 10.1016/j.eswa.2014.07.039 – ident: e_1_2_9_14_1 doi: 10.1111/exsy.12409 – ident: e_1_2_9_32_1 doi: 10.1109/TMI.2016.2521442 – ident: e_1_2_9_47_1 doi: 10.1007/s10916-019-1356-8 – volume: 36 start-page: e12413 issue: 2018 year: 2019 ident: e_1_2_9_33_1 article-title: Identifying mortality risk factors amongst acute coronary syndrome patients admitted to Arabian Gulf hospitals using machine‐learning methods publication-title: Expert Systems doi: 10.1111/exsy.12413 |
| SSID | ssj0001776 |
| Score | 2.1806362 |
| Snippet | Endoscopy is an important tool for gastric cancer screening. Due to the lack of effective decision support system for endoscopy, the detection of gastric... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Accuracy Cancer Crossovers Decision support systems Endoscopy Gastric cancer gastric cancer screening Genetic algorithms hyperparameters Medical screening multiobjective optimization Multiple objective analysis Neural networks NSGA‐II Optimization Sensitivity Sorting algorithms Training |
| Title | Endoscopy report mining for intelligent gastric cancer screening |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12504 https://www.proquest.com/docview/2413762678 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1468-0394 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1468-0394 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0266-4720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-0394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001776 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-Mnbw4P3E6JaAnoaNpPtqBB0U2RNCDOpgHKWnaiIidbB04_3pf0nabHgTtoeSQluQl773fy8fvAZzQtGckAhG0fvjimRKeigLlcXx8gy6CO8r8m1t5NeTXIzFqwFl9F6bkh1gsuFnNcPbaKrhKpitKnn1M511qGbjQAFMmXTx1t-SOoqHLLIcxhvR4GPgVN6k9xrP89Ls3WkLMVaDqPM2gBU91G8sDJq_dWZF09ecP-sb_dmID1isISi7KObMJjSzfglad3oFU2r4N5_08HdtbK3NS7iyQN5dNgiDOJS8LKs-CPCub_EMTbWfQhKAhwuAYK-7AcNB_uLzyqoQLnmaUca8nE8ONJQELuKEqCLMIR1JjiQlmlDKZwIAywaaH6PfsSkiPaUW1jkSaUiXZLjTzcZ7tARG-UjJSAlGxZdhjifEN5SIV6DUNp7wNx7Xg4_eSVyOu4xErlNgJpQ2dekziSremsd0JRBOOXrYNp064v_wh7o_uH11p_y-VD2AtsIG1W27pQLOYzLJDRB9FcuRm2RdYrtR9 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46D3px_sTp1ICehI6mTdrupsjG1G0H3WCeSpo2ImInWwfOv9730nZTD4L2UHJIS_uS9973XpLvEXLO4qb2AIiA9YMbT6SwZOBIi8Nla3AR3FDm9_peZ8hvR2JU7M3BszA5P8Qi4YaaYew1KjgmpL9oefI-nTcYUnCtkjXuQaCCmOh-yR7FfFNbDqIMz-K-YxfspLiRZ_nsd3-0BJlfoarxNe1qXlB1aigKcYvJS2OWRQ318YPA8d-_sUU2CxRKr_Jps01WknSHVMsKD7RQ-F1y2UrjMR5cmdN8cYG-moISFKAufV6weWb0SWL9D0UVTqIJBVsE8TF03CPDdmtw3bGKmguWcpnLraYXaa6RB8zhmknHTwIYTAUtV7haSp0IiCkj-HQfXB8mQ5qukkypQMQxk567TyrpOE0OCBW2lF4gBQBjJNlzI21rxkUswHFqzniNnJWSD99yao2wDElQKKERSo3Uy0EJC_WahrgYCFYcHG2NXBjp_vKGsDV6eDStw790PiXrnUGvG3Zv-ndHZMPBONtkX-qkkk1myTGAkSw6MVPuE7oe2J4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86QXxxfuJ0akCfhI6mTfrxpriN-TVEHcynkqaJiNiNrQPnX-8lbbfpg6B9KHlIS3vJ3f0uufwOoVOShMoDIALWD25UcmbxwOEWhctW4CKoocy_63qdHr3us36Rm6PPwuT8ELMFN60Zxl5rBZfDRC1oufwYTxtEU3AtoxXKwkBn9DUf5uxRxDe15SDK8CzqO3bBTqoTeebPfvdHc5C5CFWNr2lX84KqY0NRqFNM3hqTLG6Izx8Ejv_-jQ20XqBQfJFPm020JNMtVC0rPOBC4bfReStNBvrgyhTnmwv43RSUwAB18euMzTPDL1zX_xBY6Ek0wmCLID6Gjjuo1249XXasouaCJVziUiv0YkWV5gFzqCLc8WUAgymg5TJXca4kg5gyhk_3wfXpxZDQFZwIEbAkIdxzd1ElHaRyD2Fmc-4FnAEw1iR7bqxsRShLGDhORQmtoZNS8tEwp9aIypBECyUyQqmhejkoUaFe40hvBoIVB0dbQ2dGur-8IWr1H59Na_8vnY_R6n2zHd1edW8O0Jqjw2yz-FJHlWw0kYeARbL4yMy4L5em2CI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoscopy+report+mining+for+intelligent+gastric+cancer+screening&rft.jtitle=Expert+systems&rft.au=Pan%2C+Jinxin&rft.au=Ding%2C+Shuai&rft.au=Yang%2C+Shanlin&rft.au=Li%2C+Gang&rft.date=2020-06-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=37&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.12504&rft.externalDBID=10.1111%252Fexsy.12504&rft.externalDocID=EXSY12504 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |