Understanding ART-based neural algorithms as statistical tools for manufacturing process quality control

Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a statistical perspective. The neural ne...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 18; no. 6; pp. 645 - 662
Main Authors Pacella, Massimo, Semeraro, Quirico
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2005
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2005.02.001

Cover

Abstract Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a statistical perspective. The neural network is based on Fuzzy ART, which is exploited for recognising any unnatural change in the state of a manufacturing process. Initially, the neural algorithm is analysed by means of geometrical arguments. Then, in order to evaluate control performances in terms of errors of Types I and II, the effects of three tuneable parameters are examined through a statistical model. Upper bound limits for the error rates are analytically computed, and then numerically illustrated for different combinations of the tuneable parameters. Finally, a criterion for the neural network designing is proposed and validated in a specific test case through simulation. The results demonstrate the effectiveness of the proposed neural-based procedure for manufacturing quality monitoring.
AbstractList Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a statistical perspective. The neural network is based on Fuzzy ART, which is exploited for recognising any unnatural change in the state of a manufacturing process. Initially, the neural algorithm is analysed by means of geometrical arguments. Then, in order to evaluate control performances in terms of errors of Types I and II, the effects of three tuneable parameters are examined through a statistical model. Upper bound limits for the error rates are analytically computed, and then numerically illustrated for different combinations of the tuneable parameters. Finally, a criterion for the neural network designing is proposed and validated in a specific test case through simulation. The results demonstrate the effectiveness of the proposed neural-based procedure for manufacturing quality monitoring.
Author Pacella, Massimo
Semeraro, Quirico
Author_xml – sequence: 1
  givenname: Massimo
  surname: Pacella
  fullname: Pacella, Massimo
  email: massimo.pacella@unile.it
  organization: Dipartimento di Ingegneria dell’Innovazione, Università degli Studi di Lecce,Via per Monteroni, Lecce 73100, Italy
– sequence: 2
  givenname: Quirico
  surname: Semeraro
  fullname: Semeraro, Quirico
  organization: Dipartimento di Meccanica, Politecnico di Milano, Via Bonardi, Milano 20133, Italy
BookMark eNqFkMtqwzAQRUVJoUnaXyj6AbsjP2QbumgIfUGhUJq1GMtSouBIqaQU8ve1SbvpJqtZzJzLnTMjE-usIuSWQcqA8bttquwa93s0aQZQppClAOyCTFld5QmveDMhU2jKLGFNxa_ILIQtAOR1wadks7Kd8iGi7Yxd08XHZ9JiUB216uCxp9ivnTdxswsUAx3uognRyGETnesD1c7THdqDRhkPfozYeydVCPTrgL2JRyqdjd711-RSYx_Uze-ck9XT4-fyJXl7f35dLt4SmbMsJjprgbesUFleA7RlU5S8liyvSg1tyzlWnGspUau6ZDrXDSKHAjrd5VCogudzcn_Kld6F4JUW0oytxxZoesFAjNbEVvxZE6M1AZkYrA04_4fvvdmhP54HH06gGp77NsqLII2yUnXGKxlF58y5iB_CrJCD
CitedBy_id crossref_primary_10_1243_09544062JMES508
crossref_primary_10_1016_j_cie_2010_12_024
crossref_primary_10_1016_j_cie_2013_11_014
crossref_primary_10_1002_qre_1708
crossref_primary_10_1016_S1405_7743_15_30011_1
crossref_primary_10_1016_j_procir_2015_12_054
crossref_primary_10_1016_j_cie_2012_03_002
crossref_primary_10_1016_j_eswa_2011_11_014
crossref_primary_10_1080_18756891_2012_718104
Cites_doi 10.1080/00224065.1984.11978921
10.1016/S0893-6080(96)00018-4
10.1016/S0360-8352(96)00310-5
10.1080/07408179308964288
10.1111/j.2517-6161.1994.tb01990.x
10.1016/0360-8352(94)00024-H
10.1016/j.engappai.2003.11.005
10.1080/00207540410001715706
10.1016/S0893-6080(02)00063-1
10.1080/00207549508904783
10.1080/07408179808966453
10.1080/002075499191148
10.1016/S0360-8352(99)00004-2
10.1016/0893-6080(94)00073-U
10.1080/002075497195650
10.1023/A:1008818817588
10.2307/1270528
10.1080/01621459.1997.10474027
10.1080/00207540110061616
10.1080/00207540110071750
10.1016/0360-8352(93)90010-U
10.1080/00031305.1994.10476030
10.1016/S0893-6080(99)00031-3
10.1080/002075499190987
10.1080/00207549608905024
10.1080/00401706.1996.10484497
ContentType Journal Article
Copyright 2005 Elsevier Ltd
Copyright_xml – notice: 2005 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2005.02.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 662
ExternalDocumentID 10_1016_j_engappai_2005_02_001
S0952197605000205
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-f2b06b14e23800b594568c1375f0bb66a766fccafe851f3f9aa6040dfd304e463
IEDL.DBID AIKHN
ISSN 0952-1976
IngestDate Thu Apr 24 22:53:26 EDT 2025
Sat Oct 25 05:18:08 EDT 2025
Fri Feb 23 02:26:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cluster analysis
Statistical process control
Adaptive resonance theory
Neural network design
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-f2b06b14e23800b594568c1375f0bb66a766fccafe851f3f9aa6040dfd304e463
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2005_02_001
crossref_primary_10_1016_j_engappai_2005_02_001
elsevier_sciencedirect_doi_10_1016_j_engappai_2005_02_001
PublicationCentury 2000
PublicationDate 2005-09-01
PublicationDateYYYYMMDD 2005-09-01
PublicationDate_xml – month: 09
  year: 2005
  text: 2005-09-01
  day: 01
PublicationDecade 2000
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2005
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hwarng, Hubele (bib20) 1993; 24
Pukelsheim (bib27) 1994; 48
Hwang, Ding (bib18) 1997; 92
Cheng (bib7) 1997; 35
Hwarng, Chong (bib19) 1995; 33
Anagnostopoulos, Georgiopouolos (bib2) 2002; 15
Cook, Zobel, Nottingham (bib10) 2001; 39
Pacella, Semeraro, Anglani (bib26) 2004; 40
Georgiopoulos, Fernlund, Bebis, Heileman (bib12) 1996; 9
Stern (bib29) 1996; 38
Haykin (bib16) 1999
Pacella, Semeraro, Anglani (bib25) 2004; 17
Hwarng, Hubele (bib21) 1993; 25
Perry, Spoerre, Velasco (bib24) 2001; 39
Zorriassantine, Tannock (bib31) 1998; 9
Cheng (bib6) 1995; 28
Cheng, Titterington (bib8) 1994; 9
Georgiopoulos, Dagher, Heileman, Bebis (bib13) 1999; 12
Al-Ghanim (bib1) 1997; 32
(bib30) 1956
Bishop (bib3) 1995
Chang, Ho (bib5) 1999; 37
Guh, Hsieh (bib14) 1999; 36
Cook, Chiu (bib9) 1998; 30
Montgomery (bib22) 2000
Huang, Georgiopoulos, Heileman (bib17) 1995; 8
Ripley (bib28) 1994; 56
De Veaux, Schumi, Schweinsberg, Ungar (bib11) 1998; 40
Chang, Aw (bib4) 1996; 34
Guh, Tannock (bib15) 1999; 37
Nelson (bib23) 1984; 16
Georgiopoulos (10.1016/j.engappai.2005.02.001_bib12) 1996; 9
Bishop (10.1016/j.engappai.2005.02.001_bib3) 1995
Huang (10.1016/j.engappai.2005.02.001_bib17) 1995; 8
Zorriassantine (10.1016/j.engappai.2005.02.001_bib31) 1998; 9
(10.1016/j.engappai.2005.02.001_bib30) 1956
Pacella (10.1016/j.engappai.2005.02.001_bib26) 2004; 40
Anagnostopoulos (10.1016/j.engappai.2005.02.001_bib2) 2002; 15
Hwarng (10.1016/j.engappai.2005.02.001_bib19) 1995; 33
Nelson (10.1016/j.engappai.2005.02.001_bib23) 1984; 16
Hwarng (10.1016/j.engappai.2005.02.001_bib20) 1993; 24
Ripley (10.1016/j.engappai.2005.02.001_bib28) 1994; 56
Cheng (10.1016/j.engappai.2005.02.001_bib7) 1997; 35
Cook (10.1016/j.engappai.2005.02.001_bib10) 2001; 39
Hwang (10.1016/j.engappai.2005.02.001_bib18) 1997; 92
Perry (10.1016/j.engappai.2005.02.001_bib24) 2001; 39
Guh (10.1016/j.engappai.2005.02.001_bib14) 1999; 36
De Veaux (10.1016/j.engappai.2005.02.001_bib11) 1998; 40
Stern (10.1016/j.engappai.2005.02.001_bib29) 1996; 38
Chang (10.1016/j.engappai.2005.02.001_bib5) 1999; 37
Pacella (10.1016/j.engappai.2005.02.001_bib25) 2004; 17
Cook (10.1016/j.engappai.2005.02.001_bib9) 1998; 30
Pukelsheim (10.1016/j.engappai.2005.02.001_bib27) 1994; 48
Georgiopoulos (10.1016/j.engappai.2005.02.001_bib13) 1999; 12
Guh (10.1016/j.engappai.2005.02.001_bib15) 1999; 37
Cheng (10.1016/j.engappai.2005.02.001_bib8) 1994; 9
Al-Ghanim (10.1016/j.engappai.2005.02.001_bib1) 1997; 32
Chang (10.1016/j.engappai.2005.02.001_bib4) 1996; 34
Cheng (10.1016/j.engappai.2005.02.001_bib6) 1995; 28
Montgomery (10.1016/j.engappai.2005.02.001_bib22) 2000
Haykin (10.1016/j.engappai.2005.02.001_bib16) 1999
Hwarng (10.1016/j.engappai.2005.02.001_bib21) 1993; 25
References_xml – volume: 37
  start-page: 1581
  year: 1999
  end-page: 1599
  ident: bib5
  article-title: A two-stage neural network approach for process variance change detection and classification
  publication-title: International Journal of Production Research
– volume: 36
  start-page: 97
  year: 1999
  end-page: 108
  ident: bib14
  article-title: A neural network based model for abnormal pattern recognition of control charts
  publication-title: Computers and Industrial Engineering
– volume: 40
  start-page: 4581
  year: 2004
  end-page: 4607
  ident: bib26
  article-title: Adaptive resonance theory-based neural algorithms for manufacturing process quality control
  publication-title: International Journal of Production Research
– volume: 9
  start-page: 209
  year: 1998
  end-page: 224
  ident: bib31
  article-title: A review of neural networks for statistical process control
  publication-title: Journal of Intelligent Manufacturing
– volume: 28
  start-page: 51
  year: 1995
  end-page: 61
  ident: bib6
  article-title: A multi-layer neural network model for detecting changes in the process mean
  publication-title: Computers and Industrial Engineering
– volume: 39
  start-page: 3881
  year: 2001
  end-page: 3887
  ident: bib10
  article-title: Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
  publication-title: International Journal of Production Research
– volume: 24
  start-page: 219
  year: 1993
  end-page: 235
  ident: bib20
  article-title: Back-propagation pattern recognizers for X-bar control charts: methodology and performance
  publication-title: Computers and Industrial Engineering
– volume: 16
  start-page: 237
  year: 1984
  end-page: 239
  ident: bib23
  article-title: The Shewhart control chart-tests for special causes
  publication-title: Journal of Quality Technology
– volume: 12
  start-page: 837
  year: 1999
  end-page: 850
  ident: bib13
  article-title: Properties of learning of a Fuzzy ART variant
  publication-title: Neural Networks
– volume: 9
  start-page: 2
  year: 1994
  end-page: 30
  ident: bib8
  article-title: Neural networks: a review from a statistical perspective
  publication-title: Statistical Science
– year: 1956
  ident: bib30
  article-title: Statistical Quality Control Handbook
– volume: 40
  start-page: 273
  year: 1998
  end-page: 282
  ident: bib11
  article-title: Prediction intervals for neural networks via nonlinear regression
  publication-title: Technometrics
– volume: 48
  start-page: 88
  year: 1994
  end-page: 91
  ident: bib27
  article-title: The three sigma rule
  publication-title: The American Statistician
– volume: 56
  start-page: 409
  year: 1994
  end-page: 456
  ident: bib28
  article-title: Neural networks and related methods for classification
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 38
  start-page: 205
  year: 1996
  end-page: 214
  ident: bib29
  article-title: Neural networks in applied statistics
  publication-title: Technometrics
– volume: 8
  start-page: 203
  year: 1995
  end-page: 213
  ident: bib17
  article-title: Fuzzy ART proprieties
  publication-title: Neural Networks
– year: 1995
  ident: bib3
  article-title: Neural Networks for Pattern Recognition
– volume: 34
  start-page: 2265
  year: 1996
  end-page: 2278
  ident: bib4
  article-title: A neural fuzzy control chart for detecting and classifying process mean shifts
  publication-title: International Journal of Production Research
– volume: 37
  start-page: 1743
  year: 1999
  end-page: 1765
  ident: bib15
  article-title: Recognition of control chart concurrent patterns using a neural network approach
  publication-title: International Journal of Production Research
– volume: 32
  start-page: 627
  year: 1997
  end-page: 639
  ident: bib1
  article-title: An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches
  publication-title: Computers and Industrial Engineering
– volume: 17
  start-page: 83
  year: 2004
  end-page: 96
  ident: bib25
  article-title: Manufacturing quality control by means of a Fuzzy ART network trained on natural process data
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 35
  start-page: 667
  year: 1997
  end-page: 697
  ident: bib7
  article-title: A neural network approach for the analysis of control chart patterns
  publication-title: International Journal of Production Research
– volume: 25
  start-page: 27
  year: 1993
  end-page: 40
  ident: bib21
  article-title: X-bar control chart pattern identification through efficient off-line neural network training
  publication-title: IIE Transactions
– year: 2000
  ident: bib22
  article-title: Introduction to Statistical Quality Control
– volume: 15
  start-page: 1205
  year: 2002
  end-page: 1221
  ident: bib2
  article-title: Category regions as a new geometrical concepts in Fuzzy-ART and Fuzzy-ARTMAP
  publication-title: Neural Networks
– volume: 30
  start-page: 227
  year: 1998
  end-page: 234
  ident: bib9
  article-title: Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
  publication-title: IIE Transactions
– year: 1999
  ident: bib16
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 92
  start-page: 748
  year: 1997
  end-page: 757
  ident: bib18
  article-title: Prediction intervals for artificial neural networks
  publication-title: Journal of the American Statistical Association
– volume: 9
  start-page: 1541
  year: 1996
  end-page: 1559
  ident: bib12
  article-title: Order of search in Fuzzy ART and Fuzzy ARTMAP: effect of the choice parameter
  publication-title: Neural Networks
– volume: 33
  start-page: 1817
  year: 1995
  end-page: 1833
  ident: bib19
  article-title: Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer
  publication-title: International Journal of Production Research
– volume: 39
  start-page: 3399
  year: 2001
  end-page: 3418
  ident: bib24
  article-title: Control chart pattern recognition using back propagation artificial neural networks
  publication-title: International Journal of Production Research
– volume: 16
  start-page: 237
  issue: 4
  year: 1984
  ident: 10.1016/j.engappai.2005.02.001_bib23
  article-title: The Shewhart control chart-tests for special causes
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.1984.11978921
– volume: 9
  start-page: 1541
  issue: 9
  year: 1996
  ident: 10.1016/j.engappai.2005.02.001_bib12
  article-title: Order of search in Fuzzy ART and Fuzzy ARTMAP: effect of the choice parameter
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(96)00018-4
– year: 2000
  ident: 10.1016/j.engappai.2005.02.001_bib22
– volume: 32
  start-page: 627
  year: 1997
  ident: 10.1016/j.engappai.2005.02.001_bib1
  article-title: An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/S0360-8352(96)00310-5
– volume: 25
  start-page: 27
  issue: 3
  year: 1993
  ident: 10.1016/j.engappai.2005.02.001_bib21
  article-title: X-bar control chart pattern identification through efficient off-line neural network training
  publication-title: IIE Transactions
  doi: 10.1080/07408179308964288
– volume: 56
  start-page: 409
  issue: 3
  year: 1994
  ident: 10.1016/j.engappai.2005.02.001_bib28
  article-title: Neural networks and related methods for classification
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1994.tb01990.x
– volume: 28
  start-page: 51
  issue: 1
  year: 1995
  ident: 10.1016/j.engappai.2005.02.001_bib6
  article-title: A multi-layer neural network model for detecting changes in the process mean
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/0360-8352(94)00024-H
– volume: 17
  start-page: 83
  issue: 1
  year: 2004
  ident: 10.1016/j.engappai.2005.02.001_bib25
  article-title: Manufacturing quality control by means of a Fuzzy ART network trained on natural process data
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2003.11.005
– year: 1999
  ident: 10.1016/j.engappai.2005.02.001_bib16
– volume: 40
  start-page: 4581
  issue: 21
  year: 2004
  ident: 10.1016/j.engappai.2005.02.001_bib26
  article-title: Adaptive resonance theory-based neural algorithms for manufacturing process quality control
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540410001715706
– volume: 15
  start-page: 1205
  year: 2002
  ident: 10.1016/j.engappai.2005.02.001_bib2
  article-title: Category regions as a new geometrical concepts in Fuzzy-ART and Fuzzy-ARTMAP
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(02)00063-1
– year: 1995
  ident: 10.1016/j.engappai.2005.02.001_bib3
– volume: 33
  start-page: 1817
  issue: 7
  year: 1995
  ident: 10.1016/j.engappai.2005.02.001_bib19
  article-title: Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549508904783
– volume: 30
  start-page: 227
  year: 1998
  ident: 10.1016/j.engappai.2005.02.001_bib9
  article-title: Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
  publication-title: IIE Transactions
  doi: 10.1080/07408179808966453
– volume: 37
  start-page: 1581
  issue: 7
  year: 1999
  ident: 10.1016/j.engappai.2005.02.001_bib5
  article-title: A two-stage neural network approach for process variance change detection and classification
  publication-title: International Journal of Production Research
  doi: 10.1080/002075499191148
– volume: 36
  start-page: 97
  year: 1999
  ident: 10.1016/j.engappai.2005.02.001_bib14
  article-title: A neural network based model for abnormal pattern recognition of control charts
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/S0360-8352(99)00004-2
– volume: 8
  start-page: 203
  issue: 2
  year: 1995
  ident: 10.1016/j.engappai.2005.02.001_bib17
  article-title: Fuzzy ART proprieties
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)00073-U
– volume: 9
  start-page: 2
  issue: 1
  year: 1994
  ident: 10.1016/j.engappai.2005.02.001_bib8
  article-title: Neural networks: a review from a statistical perspective
  publication-title: Statistical Science
– volume: 35
  start-page: 667
  issue: 3
  year: 1997
  ident: 10.1016/j.engappai.2005.02.001_bib7
  article-title: A neural network approach for the analysis of control chart patterns
  publication-title: International Journal of Production Research
  doi: 10.1080/002075497195650
– volume: 9
  start-page: 209
  year: 1998
  ident: 10.1016/j.engappai.2005.02.001_bib31
  article-title: A review of neural networks for statistical process control
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1023/A:1008818817588
– volume: 40
  start-page: 273
  issue: 4
  year: 1998
  ident: 10.1016/j.engappai.2005.02.001_bib11
  article-title: Prediction intervals for neural networks via nonlinear regression
  publication-title: Technometrics
  doi: 10.2307/1270528
– volume: 92
  start-page: 748
  issue: 438
  year: 1997
  ident: 10.1016/j.engappai.2005.02.001_bib18
  article-title: Prediction intervals for artificial neural networks
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10474027
– volume: 39
  start-page: 3399
  issue: 15
  year: 2001
  ident: 10.1016/j.engappai.2005.02.001_bib24
  article-title: Control chart pattern recognition using back propagation artificial neural networks
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540110061616
– volume: 39
  start-page: 3881
  issue: 17
  year: 2001
  ident: 10.1016/j.engappai.2005.02.001_bib10
  article-title: Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540110071750
– volume: 24
  start-page: 219
  issue: 2
  year: 1993
  ident: 10.1016/j.engappai.2005.02.001_bib20
  article-title: Back-propagation pattern recognizers for X-bar control charts: methodology and performance
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/0360-8352(93)90010-U
– volume: 48
  start-page: 88
  issue: 2
  year: 1994
  ident: 10.1016/j.engappai.2005.02.001_bib27
  article-title: The three sigma rule
  publication-title: The American Statistician
  doi: 10.1080/00031305.1994.10476030
– year: 1956
  ident: 10.1016/j.engappai.2005.02.001_bib30
– volume: 12
  start-page: 837
  year: 1999
  ident: 10.1016/j.engappai.2005.02.001_bib13
  article-title: Properties of learning of a Fuzzy ART variant
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(99)00031-3
– volume: 37
  start-page: 1743
  issue: 8
  year: 1999
  ident: 10.1016/j.engappai.2005.02.001_bib15
  article-title: Recognition of control chart concurrent patterns using a neural network approach
  publication-title: International Journal of Production Research
  doi: 10.1080/002075499190987
– volume: 34
  start-page: 2265
  issue: 8
  year: 1996
  ident: 10.1016/j.engappai.2005.02.001_bib4
  article-title: A neural fuzzy control chart for detecting and classifying process mean shifts
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549608905024
– volume: 38
  start-page: 205
  issue: 3
  year: 1996
  ident: 10.1016/j.engappai.2005.02.001_bib29
  article-title: Neural networks in applied statistics
  publication-title: Technometrics
  doi: 10.1080/00401706.1996.10484497
SSID ssj0003846
Score 1.823773
Snippet Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 645
SubjectTerms Adaptive resonance theory
Artificial intelligence
Cluster analysis
Neural network design
Statistical process control
Title Understanding ART-based neural algorithms as statistical tools for manufacturing process quality control
URI https://dx.doi.org/10.1016/j.engappai.2005.02.001
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED4BXbr0XfUtD10DzsMmjAgV0aJ2aIvKFtnE5iEaIghDl_72nhMHUakSQ6dITi6KbN_dF999dwD3ooW4eETxt0Rw6QSMMSdkSjl-rJWg3Is9YcjJzy-8NwiehmxYgU7JhTFpldb2FzY9t9Z2pGFns5FOp403BAeobk3E43k8jVVhD_1PGNZgr_3Y771sDLIfFnwdfN4xAltE4VldJWORpmJqj1dM-U73bx-15Xe6R3BgASNpF990DBWVnMChBY_EquYKh8r-DOXYKUwG28wVgtDVMU4rJqaIJb5TzMeL5TSbfK6IWBFDLcqrNuOdbLGYrwjiWfIpkrUhP-RsRpIWtAJSUDG_iE10P4NB9-G903NsZwVn5Lte5mhPUi7dQOGEUSpZC2FUOHL9JtNUSs5Fk3ONa6sVAjLt65YQHLU91rFPAxVw_xxqySJRF0C40IgwNRdMiUBRT8rQBH9NdJT6QtNLYOVcRiNbdtx0v5hHZX7ZLCrXwPTEZBH1TKLdJTQ2cmlReGOnRKtcqujXForQO-yQvfqH7DXs5_Vc88SzG6hly7W6RaSSyTuo1r_dO7sfzbX_-tH_AZxU7H8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYoHdql76r06aFriPOwIWOFimgLLAWJLbKJzUOQRBCGLv3tPSdOS6VKDF0vvijy4-5z7r47hB55ALh4TOBawpmwfEqp1aRSWl6kJCfMjVyuycm9PusM_dcRHVVQq-TC6LRKY_sLm55bayOxzWza6WxmvwM4gOPWADyex9PoHtr3qdvQN7D650-eh9cs2Dow2tLDt2jC87qMJzxN-cz8XNHFO52_PdSW12mfoCMDF_FT8UWnqCLjM3RsoCM2B3MNorI7Qyk7R9PhNm8FA3C1tMuKsC5hCe_ki0mymmXT5RrzNdbEorxmMzzJkmSxxoBm8ZLHG019yLmMOC1IBbggYn5gk-Z-gYbt50GrY5m-CtbYc9zMUq4gTDi-BHdNiKABgKjm2PEaVBEhGOMNxhSsrJIAx5SnAs4ZnPVIRR7xpc-8S1SNk1heIcy4AnypGKeS-5K4QjR16FfHRonHFakhWs5lODZFx3Xvi0VYZpfNw3INdEdMGhJXp9nVkP2tlxZlN3ZqBOVShb82UAi-YYfu9T90H9BBZ9Drht2X_tsNOswru-YpaLeomq028g4wSybu8z35BTeL66Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+ART-based+neural+algorithms+as+statistical+tools+for+manufacturing+process+quality+control&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Pacella%2C+Massimo&rft.au=Semeraro%2C+Quirico&rft.date=2005-09-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=18&rft.issue=6&rft.spage=645&rft.epage=662&rft_id=info:doi/10.1016%2Fj.engappai.2005.02.001&rft.externalDocID=S0952197605000205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon