Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review
The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of conventional models. In recent years, artificial intelligence (AI)-based methods have been recognized significantly powerful for this purpose. In th...
Saved in:
| Published in | Chemometrics and intelligent laboratory systems Vol. 200; p. 103978 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.05.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-7439 1873-3239 |
| DOI | 10.1016/j.chemolab.2020.103978 |
Cover
| Abstract | The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of conventional models. In recent years, artificial intelligence (AI)-based methods have been recognized significantly powerful for this purpose. In this study, the performance of the various types of single and hybrid AI models including artificial neural networks (ANNs), genetic programming (GP), fuzzy logic (FL), support vector machine (SVM), hybrid neuro-fuzzy (NF), hybrid ANN-ARIMA, hybrid genetic algorithm-neural networks (GA-NN), and wavelet-based hybrid models such as wavelet-neural networks (WANN), wavelet-neuro fuzzy (WNF), wavelet-support vector regression (WSVR), and wavelet-linear genetic programming (WLGP) models were investigated for the prediction of water quality in rivers. In this review paper, for each of the models, firstly, a brief introduction is provided. Then some recently published papers are presented to review the performance of the model for modeling water quality in rivers. For this purpose, 51 journal papers that were published from 2000 to 2016 and dealing with the use of the single and hybrid AI models for river water quality prediction were selected. The review of these papers is undertaken in terms of the predictor selection, data normalization, train, and test data division, modeling approaches, prediction time steps, and modeling performance evaluation procedures. The effect of using integrated models to improve the prediction accuracy of the single models was investigated as well. Out of the 51 selected papers, 31 papers (~60% of the entire papers) were published in the past five years. The selected papers have been cited up to 1716 times before 20th February 2016. Among the various modeling techniques, the ANN and WANN models (17 and 7 papers, respectively) were the most widely used single and hybrid models. In the reviewed papers, more attention is given to the modeling of dissolved oxygen (DO) and suspended sediment in rivers. In 23 papers, data with daily time intervals were used for water quality modeling. The present paper covers 13 different single and hybrid AI models. It presents a comprehensive investigation into the application of AI methods for modeling river water quality and offers a critical insight into the use and reliability of the various modeling approaches for modeling diverse water quality measurements.
•Review on recent studies about river water quality modeling and predicting.•Recent studies on the modeling of almost every type of river water quality variables are evaluated.•Various conventional and artificial intelligence-based single and hybrid models are reviewed.•Data normalization, data division, modeling performance evaluation measures, and recommendations for future works are discussed. |
|---|---|
| AbstractList | The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of conventional models. In recent years, artificial intelligence (AI)-based methods have been recognized significantly powerful for this purpose. In this study, the performance of the various types of single and hybrid AI models including artificial neural networks (ANNs), genetic programming (GP), fuzzy logic (FL), support vector machine (SVM), hybrid neuro-fuzzy (NF), hybrid ANN-ARIMA, hybrid genetic algorithm-neural networks (GA-NN), and wavelet-based hybrid models such as wavelet-neural networks (WANN), wavelet-neuro fuzzy (WNF), wavelet-support vector regression (WSVR), and wavelet-linear genetic programming (WLGP) models were investigated for the prediction of water quality in rivers. In this review paper, for each of the models, firstly, a brief introduction is provided. Then some recently published papers are presented to review the performance of the model for modeling water quality in rivers. For this purpose, 51 journal papers that were published from 2000 to 2016 and dealing with the use of the single and hybrid AI models for river water quality prediction were selected. The review of these papers is undertaken in terms of the predictor selection, data normalization, train, and test data division, modeling approaches, prediction time steps, and modeling performance evaluation procedures. The effect of using integrated models to improve the prediction accuracy of the single models was investigated as well. Out of the 51 selected papers, 31 papers (~60% of the entire papers) were published in the past five years. The selected papers have been cited up to 1716 times before 20th February 2016. Among the various modeling techniques, the ANN and WANN models (17 and 7 papers, respectively) were the most widely used single and hybrid models. In the reviewed papers, more attention is given to the modeling of dissolved oxygen (DO) and suspended sediment in rivers. In 23 papers, data with daily time intervals were used for water quality modeling. The present paper covers 13 different single and hybrid AI models. It presents a comprehensive investigation into the application of AI methods for modeling river water quality and offers a critical insight into the use and reliability of the various modeling approaches for modeling diverse water quality measurements.
•Review on recent studies about river water quality modeling and predicting.•Recent studies on the modeling of almost every type of river water quality variables are evaluated.•Various conventional and artificial intelligence-based single and hybrid models are reviewed.•Data normalization, data division, modeling performance evaluation measures, and recommendations for future works are discussed. |
| ArticleNumber | 103978 |
| Author | Rajaee, Taher Khani, Salar Ravansalar, Masoud |
| Author_xml | – sequence: 1 givenname: Taher surname: Rajaee fullname: Rajaee, Taher email: taher_rajaee@yahoo.com, trajaee@qom.ac.ir – sequence: 2 givenname: Salar surname: Khani fullname: Khani, Salar email: salar.khani@gmail.com – sequence: 3 givenname: Masoud surname: Ravansalar fullname: Ravansalar, Masoud email: m.ravansalar@gmail.com, m.ravansalar@stu.qom.ac.ir |
| BookMark | eNqFkM9OwzAMhyM0JLbBK6C8QEfTtGmDODBN_JMmcYFzlKbO5ilrRxI27e1pNbhw2cmy5e8n-5uQUdu1QMgtS2csZeJuMzNr2HZO17MszYYhl2V1QcasKnnCMy5HZNwvyqTMubwikxA26dDnbEw2cx_RokHtKLYRnMMVtAaSWgdoaMB25YDqtqHrY-2xoduuAReo7TzdeWjQROxa2ll60BE8_frWDuOxz6Ie9-DDPZ1TD3uEwzW5tNoFuPmtU_L5_PSxeE2W7y9vi_kyMZxlMbEZr8oy5ZBmJUhTybIWNq-tFmWTGiEFZ4UWsqrqwrKMF3mu-94KUTBd53nGp-ThlGt8F4IHqwxGPZwZvUanWKoGb2qj_rypwZs6eetx8Q_fedxqfzwPPp7A3s_wsFfB4OCyQQ8mqqbDcxE_7mCO4A |
| CitedBy_id | crossref_primary_10_3390_agronomy15030703 crossref_primary_10_3390_agriculture13061162 crossref_primary_10_1007_s11356_021_18221_8 crossref_primary_10_1016_j_jenvman_2024_121378 crossref_primary_10_1038_s41467_024_48545_1 crossref_primary_10_3390_geographies4020021 crossref_primary_10_1016_j_ecolind_2023_109882 crossref_primary_10_7717_peerj_cs_591 crossref_primary_10_1016_j_jhydrol_2020_125011 crossref_primary_10_1016_j_ecoinf_2024_102655 crossref_primary_10_1007_s40808_021_01253_x crossref_primary_10_3390_app132011217 crossref_primary_10_3390_s21216971 crossref_primary_10_3390_w14050741 crossref_primary_10_1016_j_jclepro_2022_131285 crossref_primary_10_1016_j_jhydrol_2024_132181 crossref_primary_10_1016_j_scitotenv_2021_147171 crossref_primary_10_3390_rs14184505 crossref_primary_10_3390_w14192939 crossref_primary_10_1038_s41598_024_76147_w crossref_primary_10_1016_j_eti_2022_102419 crossref_primary_10_1007_s12145_024_01547_5 crossref_primary_10_1016_j_jwpe_2024_105410 crossref_primary_10_1007_s00382_023_06787_7 crossref_primary_10_1016_j_scitotenv_2020_144459 crossref_primary_10_1007_s00477_024_02770_8 crossref_primary_10_1016_j_jenvman_2024_121097 crossref_primary_10_1007_s00477_022_02332_w crossref_primary_10_3390_s22124398 crossref_primary_10_1016_j_eswa_2024_125499 crossref_primary_10_1007_s00521_023_08761_0 crossref_primary_10_3390_infrastructures7100137 crossref_primary_10_1016_j_chemolab_2023_104830 crossref_primary_10_1109_JIOT_2021_3081772 crossref_primary_10_1016_j_measurement_2020_108043 crossref_primary_10_1016_j_heliyon_2021_e07950 crossref_primary_10_1002_hyp_14565 crossref_primary_10_3390_w16162253 crossref_primary_10_1109_ACCESS_2024_3509744 crossref_primary_10_1007_s10668_022_02331_5 crossref_primary_10_1007_s11356_024_35173_x crossref_primary_10_1007_s10661_023_11489_y crossref_primary_10_3390_atmos15010122 crossref_primary_10_1016_j_jhydrol_2021_127320 crossref_primary_10_2166_ws_2021_303 crossref_primary_10_3390_rs17040731 crossref_primary_10_1007_s11356_024_33350_6 crossref_primary_10_1016_j_jenvman_2025_124832 crossref_primary_10_3390_w12092568 crossref_primary_10_3390_w14172592 crossref_primary_10_1007_s12145_022_00785_9 crossref_primary_10_1007_s11783_023_1688_y crossref_primary_10_1007_s11053_020_09702_7 crossref_primary_10_3390_su14127154 crossref_primary_10_1016_j_jksuci_2021_06_003 crossref_primary_10_3390_environments9070085 crossref_primary_10_1016_j_jhydrol_2021_126358 crossref_primary_10_3390_w14142211 crossref_primary_10_1016_j_jhydrol_2021_126879 crossref_primary_10_2166_wst_2024_259 crossref_primary_10_1080_10643389_2023_2285691 crossref_primary_10_1016_j_cherd_2023_09_027 crossref_primary_10_1016_j_jhydrol_2021_126266 crossref_primary_10_1016_j_scitotenv_2023_169289 crossref_primary_10_1016_j_watres_2024_122663 crossref_primary_10_1080_10934529_2021_1933325 crossref_primary_10_1155_2022_3397972 crossref_primary_10_1186_s12302_024_00897_7 crossref_primary_10_1007_s40808_020_01041_z crossref_primary_10_1016_j_envint_2025_109389 crossref_primary_10_1061__ASCE_NH_1527_6996_0000593 crossref_primary_10_1080_21622515_2022_2118084 crossref_primary_10_3390_w13020239 crossref_primary_10_46300_9106_2020_14_127 crossref_primary_10_3390_math11040795 crossref_primary_10_3390_w16202944 crossref_primary_10_3390_w16111485 crossref_primary_10_1007_s12665_022_10380_2 crossref_primary_10_3390_s23031520 crossref_primary_10_1016_j_jmrt_2023_07_034 crossref_primary_10_1155_2023_6644681 crossref_primary_10_1080_23311916_2022_2150121 crossref_primary_10_1007_s41324_023_00528_y crossref_primary_10_1016_j_rsase_2024_101236 crossref_primary_10_1007_s40808_024_02079_z crossref_primary_10_1007_s11356_023_31584_4 crossref_primary_10_3390_su13179898 crossref_primary_10_1002_cpe_7377 crossref_primary_10_1016_j_jhydrol_2022_128332 crossref_primary_10_1080_10106049_2022_2032388 crossref_primary_10_2478_aoas_2024_0075 crossref_primary_10_3390_hydrology9070117 crossref_primary_10_1016_j_jhydrol_2021_126253 crossref_primary_10_1007_s10661_023_11276_9 crossref_primary_10_1016_j_ecoinf_2024_102463 crossref_primary_10_1016_j_scs_2023_104541 crossref_primary_10_3390_w17010012 crossref_primary_10_1007_s11356_022_19300_0 crossref_primary_10_2166_wst_2023_357 crossref_primary_10_1016_j_jclepro_2022_130687 crossref_primary_10_1007_s12145_024_01338_y crossref_primary_10_1016_j_gsd_2021_100643 crossref_primary_10_1007_s10661_024_13423_2 crossref_primary_10_1016_j_catena_2024_107848 crossref_primary_10_1007_s11270_024_06913_z crossref_primary_10_1109_ACCESS_2021_3100490 crossref_primary_10_2166_hydro_2023_028 crossref_primary_10_1016_j_ejrh_2023_101435 crossref_primary_10_1016_j_jwpe_2024_105940 crossref_primary_10_2166_aqua_2021_150 crossref_primary_10_1016_j_chemolab_2024_105244 crossref_primary_10_1111_jfs_12903 crossref_primary_10_1080_19475705_2024_2353144 crossref_primary_10_3390_w16243547 crossref_primary_10_3390_agriculture10110529 crossref_primary_10_1007_s00477_024_02694_3 crossref_primary_10_3390_w15142631 crossref_primary_10_1007_s12205_024_2613_z crossref_primary_10_1007_s11269_023_03666_y crossref_primary_10_3389_fmars_2023_1126556 crossref_primary_10_1364_JOSAB_482644 crossref_primary_10_1016_j_reactfunctpolym_2022_105219 crossref_primary_10_2166_ws_2021_224 crossref_primary_10_1016_j_jhydrol_2024_130637 crossref_primary_10_1007_s00500_021_05628_1 crossref_primary_10_1016_j_engappai_2022_105166 crossref_primary_10_1016_j_jenvman_2024_123522 crossref_primary_10_1016_j_ufug_2021_127032 crossref_primary_10_1142_S1793962324300024 crossref_primary_10_2166_nh_2024_032 crossref_primary_10_1080_02626667_2024_2321332 crossref_primary_10_1016_j_chemolab_2021_104329 crossref_primary_10_1016_j_jwpe_2022_103296 crossref_primary_10_1021_acs_est_4c05004 crossref_primary_10_1007_s11356_024_32984_w crossref_primary_10_1007_s11269_023_03674_y crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1016_j_psep_2024_10_054 crossref_primary_10_1007_s11356_022_20385_w crossref_primary_10_1016_j_watres_2021_117666 crossref_primary_10_2166_hydro_2023_122 crossref_primary_10_5004_dwt_2021_26813 crossref_primary_10_1016_j_envres_2022_114723 crossref_primary_10_1016_j_scitotenv_2022_159714 crossref_primary_10_3390_w15091750 crossref_primary_10_1080_10106049_2022_2087758 crossref_primary_10_3390_su16229848 crossref_primary_10_1016_j_scitotenv_2023_167591 |
| Cites_doi | 10.1061/(ASCE)HE.1943-5584.0000245 10.1016/j.scitotenv.2014.06.133 10.1061/(ASCE)EE.1943-7870.0000706 10.1007/BF03326121 10.1002/clen.200900191 10.1061/(ASCE)EE.1943-7870.0000780 10.1029/2007WR006155 10.1061/(ASCE)0733-9496(2003)129:6(505) 10.1016/S0925-2312(01)00702-0 10.1016/j.jhydrol.2012.06.019 10.1080/02626667.2010.508871 10.1016/j.advengsoft.2011.05.018 10.1016/j.scitotenv.2009.05.016 10.1016/j.envsoft.2013.12.016 10.1623/hysj.48.3.349.45288 10.1007/s10661-012-2874-8 10.1016/j.chemolab.2006.03.006 10.1007/s11356-014-2842-7 10.1016/S1364-8152(99)00007-9 10.1007/s00521-012-0940-3 10.1016/j.jhydrol.2005.04.004 10.1007/s11356-013-1876-6 10.1007/s10201-013-0412-1 10.1016/j.jhydrol.2015.07.044 10.1016/0954-1810(94)00011-S 10.1016/j.envsoft.2005.09.009 10.1016/S0019-9958(65)90241-X 10.1016/j.chemolab.2010.08.005 10.1080/09593330.2013.878396 10.1016/j.jhydrol.2014.03.057 10.1016/j.advwatres.2003.10.003 10.1007/s13369-014-1243-z 10.1007/s10661-011-2269-2 10.1623/hysj.49.1.183.54001 10.1007/s12517-015-2220-x 10.1016/j.eswa.2010.01.002 10.1016/j.chemolab.2016.11.012 10.1016/j.ecolmodel.2005.03.007 10.1007/s10661-015-4381-1 10.1029/1998WR900018 10.1061/(ASCE)1084-0699(2006)11:1(71) 10.2307/1907187 10.1080/0952813X.2015.1042531 10.1007/s10661-015-4590-7 10.1007/s10661-013-3402-1 10.1007/s13201-014-0159-9 10.1007/s11356-015-4730-1 10.1061/(ASCE)HE.1943-5584.0000556 10.1623/hysj.52.4.793 10.1016/j.jhydrol.2007.12.005 10.1016/j.chemolab.2008.10.007 10.1016/j.engappai.2009.09.015 10.1016/j.ecolmodel.2009.01.004 10.1007/s11356-013-2048-4 10.1016/j.jhydrol.2014.03.005 10.1061/(ASCE)0733-9372(2003)129:3(267) 10.1016/j.advengsoft.2008.06.004 10.1007/s10661-013-3576-6 10.1016/j.aca.2011.07.027 10.1016/j.engappai.2013.09.019 10.1016/j.marpolbul.2008.05.021 10.1016/j.jhydrol.2005.04.003 10.1016/j.agwat.2010.12.012 10.1016/j.chemolab.2011.06.006 10.1061/(ASCE)EE.1943-7870.0000801 10.1016/j.eswa.2007.09.052 10.1061/(ASCE)HE.1943-5584.0000347 10.1016/j.jhydrol.2013.03.024 10.1007/s11356-016-6781-3 10.1016/j.apor.2015.09.001 10.1109/21.256541 10.1016/j.scitotenv.2010.11.028 10.1016/j.eswa.2008.05.024 10.1002/clen.201500395 10.1016/j.jhydrol.2008.06.013 10.1016/j.jhydrol.2014.01.054 10.1016/j.envsoft.2010.02.003 10.1016/S0022-1694(97)00125-X 10.1002/joc.4249 10.1016/j.jhydrol.2010.06.033 10.1016/j.jhydrol.2016.03.062 10.1061/(ASCE)EE.1943-7870.0000511 10.1007/s11269-006-9036-0 10.1007/s11269-014-0824-7 10.1080/02626669809492102 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 10.1007/s00521-010-0486-1 10.1016/j.jhydrol.2018.12.037 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chemolab.2020.103978 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3239 |
| ExternalDocumentID | 10_1016_j_chemolab_2020_103978 S0169743919304939 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c312t-f2387703e027e9c897b6f4bfa67d0c696315a6988b5f123544a5a6f6651ab4423 |
| IEDL.DBID | .~1 |
| ISSN | 0169-7439 |
| IngestDate | Thu Apr 24 23:12:44 EDT 2025 Thu Oct 02 04:30:31 EDT 2025 Fri Feb 23 02:50:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | River water quality Hybrid model Wavelet transform Review Artificial intelligence Prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-f2387703e027e9c897b6f4bfa67d0c696315a6988b5f123544a5a6f6651ab4423 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_chemolab_2020_103978 crossref_primary_10_1016_j_chemolab_2020_103978 elsevier_sciencedirect_doi_10_1016_j_chemolab_2020_103978 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-15 |
| PublicationDateYYYYMMDD | 2020-05-15 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemometrics and intelligent laboratory systems |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kendall (bib33) 1975 Donald, Coomans, Everingham (bib67) 2011; 108 Parmar, Bhardwaj (bib97) 2014; 4 McLeod (bib95) 2005 Parmar, Bhardwaj (bib76) 2015; 29 Basant, Gupta, Malik, Singh (bib93) 2010; 104 Kisi (bib52) 2004; 49 Zounemat-Kermani, Scholz (bib55) 2013; 140 Şen (bib35) 2011; 17 Aytek, Kişi (bib58) 2008; 351 Rajaee, Mirbagheri, Zounemat-Kermani, Nourani (bib3) 2009; 407 Wijaya, Sarno, Zulaika (bib68) 2017; 160 Cığızoğlu (bib89) 2003; 48 Alp, Cigizoglu (bib20) 2007; 22 Kisi, Ay (bib5) 2014; 513 Mirbagheri, Nourani, Rajaee, Alikhani (bib75) 2010; 55 Chang, Chung, Chen, Liu, Coynel, Vachaud (bib84) 2014; 494 Nourani, Baghanam, Adamowski, Kisi (bib18) 2014; 514 Daszykowski, Serneels, Kaczmarek, Van Espen, Croux, Walczak (bib94) 2007; 85 Ravansalar, Rajaee, Zounemat-Kermani (bib78) 2016; 537 Markus, Tsai, Demissie (bib40) 2003; 129 Adamowski, Sun (bib38) 2010; 390 Anmala, Meier, Meier, Grubbs (bib48) 2014; 141 Khani, Shiraz (bib103) 2016; 23 Najah, El-Shafie, Karim, Jaafar, El-Shafie (bib61) 2011; 6 Partal, Cigizoglu (bib69) 2008; 358 Khani, Rajaee (bib37) 2017; 45 Najah, El-Shafie, Karim, Jaafar (bib47) 2012; 21 Maier, Jain, Dandy, Sudheer (bib17) 2010; 25 Ravansalar, Rajaee (bib71) 2015; 187 Legates, McCabe (bib101) 1999; 35 Rajaee (bib105) 2019; 572 Rajaee, Shahabi (bib39) 2016; 9 Maier, Dandy (bib16) 2000; 15 Hyndman, Athanasopoulos (bib30) 2018 Mahapatra, Nanda, Panigrahy (bib54) 2011; 42 Li, Liang, Xu (bib27) 2009; 95 Poli, Langdon, McPhee, Koza (bib57) 2008 Rajaee (bib2) 2011; 409 Zhang (bib15) 2003; 50 Box, Jenkins (bib29) 1970 Goh (bib87) 1995; 9 Rajaee, Boroumand (bib63) 2015; 53 Areerachakul (bib88) 2012; 6 Lohani, Goel, Bhatia (bib53) 2007; 52 Ravansalar, Rajaee, Ergil (bib72) 2016; 28 Vapnik (bib59) 1995 Box, Jenkins, Reinsel (bib31) 1991 Dogan, Sasal, Isik (bib96) 2005 Diamantopoulou, Antonopoulos, Papamichail (bib7) 2007; 21 Najah, El-Shafie, Karim, El-Shafie (bib8) 2013; 22 Faruk (bib6) 2010; 23 Prasad, Beg (bib90) 2009; 36 Zadeh (bib51) 1965; 8 Rajaee, Mirbagheri, Nourani, Alikhani (bib74) 2010; 7 Koza (bib56) 1992; vol. 1 Adamowski, Karapataki (bib22) 2010; 15 Ay, Kisi (bib79) 2014; 511 Singh, Basant, Gupta (bib14) 2011; 703 Altunkaynak, Özger, Çakmakcı (bib50) 2005; 189 Shahwan, Odening (bib28) 2007 Yang, Zhang, Zhou (bib70) 2014; 39 Snedecor, Cochran (bib23) 1981 Singh, Gupta, Rai (bib26) 2014; 186 Bayram, Kankal, Önsoy (bib45) 2012; 184 Rajaee, Khani (bib102) 2015; 23 Luo, He, Chaffe, Nover, Takara, Rozainy (bib36) 2013; 15 Zhang, Dai, Tang (bib64) 2014; 2014 Ay, Kisi (bib24) 2011; 138 Melesse, Ahmad, McClain, Wang, Lim (bib1) 2011; 98 Wen, Fang, Diao, Zhang (bib46) 2013; 185 Rajaee (bib12) 2010; 38 Piotrowski, Napiorkowski, Napiorkowski, Osuch (bib49) 2015; 529 Antanasijevic, Pocajt, Povrenović, Perić-Grujić, Ristić (bib25) 2013; 20 Najah, El-Shafie, Karim, El-Shafie (bib81) 2014; 21 Liu, Xu, Jiang, Li, Chen, Li (bib77) 2014; 29 Heddam (bib83) 2014; 21 Hamed, Rao (bib34) 1998; 204 Raghuwanshi, Singh, Reddy (bib42) 2006; 11 Willmott (bib99) 1982; 63 Kisi, Sanikhani (bib60) 2015 Dawson, Wilby (bib92) 1998; 43 Mann (bib32) 1945 Heddam (bib104) 2014; 35 Wu, Dandy, Maier (bib11) 2014; 54 Olyaie, Banejad, Chau, Melesse (bib73) 2015; 187 Suen, Eheart (bib41) 2003; 129 Kisi (bib62) 2012; 456 Singh, Basant, Malik, Jain (bib9) 2009; 220 Jang (bib100) 1993; 23 Burchard-Levine, Liu, Vince, Li, Ostfeld (bib86) 2014; 143 Palani, Liong, Tkalich (bib98) 2008; 56 Rajaee, Nourani, Zounemat-Kermani, Kisi (bib4) 2010; 16 Nourani, Komasi (bib21) 2013; 490 Cigizoglu (bib19) 2004; 27 Dogan, Sengorur, Koklu (bib44) 2009; 90 Jolai, Ghanbari (bib91) 2010; 37 Labat, Ronchail, Guyot (bib66) 2005; 314 Wu, Huang, Schmalz, Fohrer (bib10) 2014; 15 Orouji, Haddad, Fallah-Mehdipour, Mariño (bib13) 2013; 139 Labat (bib65) 2005; 314 Heddam (bib82) 2014; 186 Kisi, Haktanir, Ardiclioglu, Ozturk, Yalcin, Uludag (bib80) 2009; 40 Sedki, Ouazar, El Mazoudi (bib85) 2009; 36 Kingston, Maier, Lambert (bib43) 2008; 44 Mann (10.1016/j.chemolab.2020.103978_bib32) 1945 McLeod (10.1016/j.chemolab.2020.103978_bib95) 2005 Wu (10.1016/j.chemolab.2020.103978_bib11) 2014; 54 Rajaee (10.1016/j.chemolab.2020.103978_bib3) 2009; 407 Li (10.1016/j.chemolab.2020.103978_bib27) 2009; 95 Singh (10.1016/j.chemolab.2020.103978_bib26) 2014; 186 Aytek (10.1016/j.chemolab.2020.103978_bib58) 2008; 351 Kisi (10.1016/j.chemolab.2020.103978_bib60) 2015 Najah (10.1016/j.chemolab.2020.103978_bib61) 2011; 6 Donald (10.1016/j.chemolab.2020.103978_bib67) 2011; 108 Kendall (10.1016/j.chemolab.2020.103978_bib33) 1975 Orouji (10.1016/j.chemolab.2020.103978_bib13) 2013; 139 Najah (10.1016/j.chemolab.2020.103978_bib47) 2012; 21 Shahwan (10.1016/j.chemolab.2020.103978_bib28) 2007 Palani (10.1016/j.chemolab.2020.103978_bib98) 2008; 56 Liu (10.1016/j.chemolab.2020.103978_bib77) 2014; 29 Yang (10.1016/j.chemolab.2020.103978_bib70) 2014; 39 Mirbagheri (10.1016/j.chemolab.2020.103978_bib75) 2010; 55 Rajaee (10.1016/j.chemolab.2020.103978_bib74) 2010; 7 Ay (10.1016/j.chemolab.2020.103978_bib24) 2011; 138 Zhang (10.1016/j.chemolab.2020.103978_bib15) 2003; 50 Parmar (10.1016/j.chemolab.2020.103978_bib76) 2015; 29 Faruk (10.1016/j.chemolab.2020.103978_bib6) 2010; 23 Heddam (10.1016/j.chemolab.2020.103978_bib104) 2014; 35 Kisi (10.1016/j.chemolab.2020.103978_bib5) 2014; 513 Suen (10.1016/j.chemolab.2020.103978_bib41) 2003; 129 Melesse (10.1016/j.chemolab.2020.103978_bib1) 2011; 98 Kisi (10.1016/j.chemolab.2020.103978_bib80) 2009; 40 Adamowski (10.1016/j.chemolab.2020.103978_bib22) 2010; 15 Rajaee (10.1016/j.chemolab.2020.103978_bib102) 2015; 23 Bayram (10.1016/j.chemolab.2020.103978_bib45) 2012; 184 Antanasijevic (10.1016/j.chemolab.2020.103978_bib25) 2013; 20 Najah (10.1016/j.chemolab.2020.103978_bib8) 2013; 22 Partal (10.1016/j.chemolab.2020.103978_bib69) 2008; 358 Poli (10.1016/j.chemolab.2020.103978_bib57) 2008 Labat (10.1016/j.chemolab.2020.103978_bib66) 2005; 314 Sedki (10.1016/j.chemolab.2020.103978_bib85) 2009; 36 Zhang (10.1016/j.chemolab.2020.103978_bib64) 2014; 2014 Ravansalar (10.1016/j.chemolab.2020.103978_bib71) 2015; 187 Altunkaynak (10.1016/j.chemolab.2020.103978_bib50) 2005; 189 Hyndman (10.1016/j.chemolab.2020.103978_bib30) 2018 Kisi (10.1016/j.chemolab.2020.103978_bib62) 2012; 456 Areerachakul (10.1016/j.chemolab.2020.103978_bib88) 2012; 6 Kingston (10.1016/j.chemolab.2020.103978_bib43) 2008; 44 Labat (10.1016/j.chemolab.2020.103978_bib65) 2005; 314 Şen (10.1016/j.chemolab.2020.103978_bib35) 2011; 17 Zounemat-Kermani (10.1016/j.chemolab.2020.103978_bib55) 2013; 140 Jolai (10.1016/j.chemolab.2020.103978_bib91) 2010; 37 Heddam (10.1016/j.chemolab.2020.103978_bib83) 2014; 21 Willmott (10.1016/j.chemolab.2020.103978_bib99) 1982; 63 Goh (10.1016/j.chemolab.2020.103978_bib87) 1995; 9 Rajaee (10.1016/j.chemolab.2020.103978_bib105) 2019; 572 Wu (10.1016/j.chemolab.2020.103978_bib10) 2014; 15 Prasad (10.1016/j.chemolab.2020.103978_bib90) 2009; 36 Hamed (10.1016/j.chemolab.2020.103978_bib34) 1998; 204 Jang (10.1016/j.chemolab.2020.103978_bib100) 1993; 23 Koza (10.1016/j.chemolab.2020.103978_bib56) 1992; vol. 1 Legates (10.1016/j.chemolab.2020.103978_bib101) 1999; 35 Heddam (10.1016/j.chemolab.2020.103978_bib82) 2014; 186 Ravansalar (10.1016/j.chemolab.2020.103978_bib78) 2016; 537 Cigizoglu (10.1016/j.chemolab.2020.103978_bib19) 2004; 27 Wijaya (10.1016/j.chemolab.2020.103978_bib68) 2017; 160 Dogan (10.1016/j.chemolab.2020.103978_bib96) 2005 Cığızoğlu (10.1016/j.chemolab.2020.103978_bib89) 2003; 48 Dawson (10.1016/j.chemolab.2020.103978_bib92) 1998; 43 Singh (10.1016/j.chemolab.2020.103978_bib14) 2011; 703 Piotrowski (10.1016/j.chemolab.2020.103978_bib49) 2015; 529 Khani (10.1016/j.chemolab.2020.103978_bib103) 2016; 23 Nourani (10.1016/j.chemolab.2020.103978_bib18) 2014; 514 Rajaee (10.1016/j.chemolab.2020.103978_bib2) 2011; 409 Dogan (10.1016/j.chemolab.2020.103978_bib44) 2009; 90 Rajaee (10.1016/j.chemolab.2020.103978_bib12) 2010; 38 Snedecor (10.1016/j.chemolab.2020.103978_bib23) 1981 Olyaie (10.1016/j.chemolab.2020.103978_bib73) 2015; 187 Mahapatra (10.1016/j.chemolab.2020.103978_bib54) 2011; 42 Rajaee (10.1016/j.chemolab.2020.103978_bib63) 2015; 53 Daszykowski (10.1016/j.chemolab.2020.103978_bib94) 2007; 85 Adamowski (10.1016/j.chemolab.2020.103978_bib38) 2010; 390 Najah (10.1016/j.chemolab.2020.103978_bib81) 2014; 21 Singh (10.1016/j.chemolab.2020.103978_bib9) 2009; 220 Box (10.1016/j.chemolab.2020.103978_bib29) 1970 Lohani (10.1016/j.chemolab.2020.103978_bib53) 2007; 52 Ay (10.1016/j.chemolab.2020.103978_bib79) 2014; 511 Kisi (10.1016/j.chemolab.2020.103978_bib52) 2004; 49 Burchard-Levine (10.1016/j.chemolab.2020.103978_bib86) 2014; 143 Vapnik (10.1016/j.chemolab.2020.103978_bib59) 1995 Rajaee (10.1016/j.chemolab.2020.103978_bib39) 2016; 9 Maier (10.1016/j.chemolab.2020.103978_bib16) 2000; 15 Luo (10.1016/j.chemolab.2020.103978_bib36) 2013; 15 Khani (10.1016/j.chemolab.2020.103978_bib37) 2017; 45 Zadeh (10.1016/j.chemolab.2020.103978_bib51) 1965; 8 Chang (10.1016/j.chemolab.2020.103978_bib84) 2014; 494 Wen (10.1016/j.chemolab.2020.103978_bib46) 2013; 185 Alp (10.1016/j.chemolab.2020.103978_bib20) 2007; 22 Ravansalar (10.1016/j.chemolab.2020.103978_bib72) 2016; 28 Rajaee (10.1016/j.chemolab.2020.103978_bib4) 2010; 16 Parmar (10.1016/j.chemolab.2020.103978_bib97) 2014; 4 Nourani (10.1016/j.chemolab.2020.103978_bib21) 2013; 490 Box (10.1016/j.chemolab.2020.103978_bib31) 1991 Anmala (10.1016/j.chemolab.2020.103978_bib48) 2014; 141 Raghuwanshi (10.1016/j.chemolab.2020.103978_bib42) 2006; 11 Diamantopoulou (10.1016/j.chemolab.2020.103978_bib7) 2007; 21 Maier (10.1016/j.chemolab.2020.103978_bib17) 2010; 25 Markus (10.1016/j.chemolab.2020.103978_bib40) 2003; 129 Basant (10.1016/j.chemolab.2020.103978_bib93) 2010; 104 |
| References_xml | – volume: 54 start-page: 108 year: 2014 end-page: 127 ident: bib11 article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling publication-title: Environ. Model. Software – year: 1975 ident: bib33 article-title: Rank Correlation Methods – volume: vol. 1 year: 1992 ident: bib56 publication-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: bib16 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ. Model. Software – volume: 22 start-page: 187 year: 2013 end-page: 201 ident: bib8 article-title: Application of artificial neural networks for water quality prediction publication-title: Neural Comput. Appl. – volume: 21 start-page: 649 year: 2007 end-page: 662 ident: bib7 article-title: Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers publication-title: Water Resour. Manag. – volume: 27 start-page: 185 year: 2004 end-page: 195 ident: bib19 article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons publication-title: Adv. Water Resour. – year: 1991 ident: bib31 article-title: Time Series Analysis, Forecasting and Control – volume: 314 start-page: 289 year: 2005 end-page: 311 ident: bib66 article-title: Recent advances in wavelet analyses: Part 2—amazon, Parana, Orinoco and Congo discharges time scale variability publication-title: J. Hydrol. – volume: 29 start-page: 114 year: 2014 end-page: 124 ident: bib77 article-title: A hybrid WA–CPSO-LSSVR model for dissolved oxygen content prediction in crab culture publication-title: Eng. Appl. Artif. Intell. – volume: 184 start-page: 4355 year: 2012 end-page: 4365 ident: bib45 article-title: Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks publication-title: Environ. Monit. Assess. – volume: 29 start-page: 17 year: 2015 end-page: 33 ident: bib76 article-title: river water prediction modeling using neural networks, fuzzy and wavelet coupled model publication-title: Water Resour. Manag. – volume: 358 start-page: 317 year: 2008 end-page: 331 ident: bib69 article-title: Estimation and forecasting of daily suspended sediment data using wavelet–neural networks publication-title: J. Hydrol. – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: bib15 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing – volume: 141 year: 2014 ident: bib48 article-title: GIS and artificial neural network–based water quality model for a stream network in the upper green River Basin, Kentucky, USA publication-title: J. Environ. Eng. – volume: 537 start-page: 398 year: 2016 end-page: 407 ident: bib78 article-title: A wavelet–linear genetic programming model for sodium (Na+) concentration forecasting in rivers publication-title: J. Hydrol. – volume: 85 start-page: 269 year: 2007 end-page: 277 ident: bib94 article-title: TOMCAT: a MATLAB toolbox for multivariate calibration techniques publication-title: Chemometr. Intell. Lab. Syst. – volume: 11 start-page: 71 year: 2006 end-page: 79 ident: bib42 article-title: Runoff and sediment yield modeling using artificial neural networks: upper Siwane River, India publication-title: J. Hydrol. Eng. – volume: 15 start-page: 1052 year: 2013 end-page: 1061 ident: bib36 article-title: Statistical analysis and estimation of annual suspended sediments of major rivers in Japan publication-title: Environ. Sci.: Process. Impacts – volume: 37 start-page: 5331 year: 2010 end-page: 5335 ident: bib91 article-title: Integrating data transformation techniques with Hopfield neural networks for solving travelling salesman problem publication-title: Expert Syst. Appl. – volume: 22 start-page: 2 year: 2007 end-page: 13 ident: bib20 article-title: Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data publication-title: Environ. Model. Software – volume: 95 start-page: 188 year: 2009 end-page: 198 ident: bib27 article-title: Support vector machines and its applications in chemistry publication-title: Chemometr. Intell. Lab. Syst. – volume: 4 start-page: 425 year: 2014 end-page: 434 ident: bib97 article-title: Water quality management using statistical analysis and time-series prediction model publication-title: Appl. Water Sci. – volume: 55 start-page: 1175 year: 2010 end-page: 1189 ident: bib75 article-title: Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers publication-title: Hydrol. Sci. J.–J. Sci. Hydrol. – volume: 314 start-page: 275 year: 2005 end-page: 288 ident: bib65 article-title: Recent advances in wavelet analyses: Part 1. A review of concepts publication-title: J. Hydrol. – volume: 28 start-page: 689 year: 2016 end-page: 706 ident: bib72 article-title: Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform publication-title: J. Exp. Theor. Artif. Intell. – volume: 25 start-page: 891 year: 2010 end-page: 909 ident: bib17 article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions publication-title: Environ. Model. Software – volume: 53 start-page: 208 year: 2015 end-page: 217 ident: bib63 article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models publication-title: Appl. Ocean Res. – volume: 40 start-page: 438 year: 2009 end-page: 444 ident: bib80 article-title: Adaptive neuro-fuzzy computing technique for suspended sediment estimation publication-title: Adv. Eng. Software – year: 1981 ident: bib23 article-title: Statistical Methods – volume: 42 start-page: 787 year: 2011 end-page: 796 ident: bib54 article-title: A Cascaded Fuzzy Inference System for Indian river water quality prediction publication-title: Adv. Eng. Software – volume: 52 start-page: 793 year: 2007 end-page: 807 ident: bib53 article-title: Deriving stage–discharge–sediment concentration relationships using fuzzy logic publication-title: Hydrol. Sci. J. – volume: 204 start-page: 182 year: 1998 end-page: 196 ident: bib34 article-title: A modified Mann-Kendall trend test for autocorrelated data publication-title: J. Hydrol. – volume: 7 start-page: 93 year: 2010 end-page: 110 ident: bib74 article-title: Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model publication-title: Int. J. Environ. Sci. Technol. – volume: 186 start-page: 597 year: 2014 end-page: 619 ident: bib82 article-title: Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study publication-title: Environ. Monit. Assess. – volume: 572 start-page: 336 year: 2019 end-page: 351 ident: bib105 article-title: A review of the artificial intelligence methods in groundwater level modeling publication-title: J. Hydrol. – volume: 36 start-page: 4523 year: 2009 end-page: 4527 ident: bib85 article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting publication-title: Expert Syst. Appl. – volume: 23 start-page: 586 year: 2010 end-page: 594 ident: bib6 article-title: A hybrid neural network and ARIMA model for water quality time series prediction publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib51 article-title: Fuzzy sets publication-title: Inf. Contr. – start-page: 63 year: 2007 end-page: 74 ident: bib28 article-title: Computational Intelligence in Economics and Finance – volume: 390 start-page: 85 year: 2010 end-page: 91 ident: bib38 article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds publication-title: J. Hydrol. – volume: 6 start-page: 286 year: 2012 end-page: 290 ident: bib88 article-title: Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water publication-title: Int. J. Chem. Biomol. Eng. – volume: 90 start-page: 1229 year: 2009 end-page: 1235 ident: bib44 article-title: Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique publication-title: J. Environ. Manag. – volume: 21 start-page: 9212 year: 2014 end-page: 9227 ident: bib83 article-title: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA publication-title: Environ. Sci. Pollut. Control Ser. – volume: 23 start-page: 13576 year: 2016 end-page: 13577 ident: bib103 article-title: Comment on “Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model H. Wang & Z. Wu & C. Hu & X. Du. Environ Sci Pollut Res, 22 (18), 14095-14103.” publication-title: Environ. Sci. Pollut. Res. – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: bib18 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review publication-title: J. Hydrol. – volume: 35 start-page: 233 year: 1999 end-page: 241 ident: bib101 article-title: Evaluating the use of" goodness-of-fit" measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. – volume: 186 start-page: 2749 year: 2014 end-page: 2765 ident: bib26 article-title: Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data publication-title: Environ. Monit. Assess. – volume: 23 start-page: 938 year: 2015 end-page: 940 ident: bib102 article-title: Comment on “Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670” publication-title: Environ. Sci. Pollut. Res. – volume: 703 start-page: 152 year: 2011 end-page: 162 ident: bib14 article-title: Support vector machines in water quality management publication-title: Anal. Chim. Acta – volume: 9 start-page: 143 year: 1995 end-page: 151 ident: bib87 article-title: Back-propagation neural networks for modeling complex systems publication-title: Artif. Intell. Eng. – volume: 104 start-page: 172 year: 2010 end-page: 180 ident: bib93 article-title: Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study publication-title: Chemometr. Intell. Lab. Syst. – volume: 56 start-page: 1586 year: 2008 end-page: 1597 ident: bib98 article-title: An ANN application for water quality forecasting publication-title: Mar. Pollut. Bull. – volume: 15 start-page: 729 year: 2010 end-page: 743 ident: bib22 article-title: Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms publication-title: J. Hydrol. Eng. – year: 1970 ident: bib29 article-title: Time Series Analysis: Forecasting and Control – volume: 21 start-page: 1658 year: 2014 end-page: 1670 ident: bib81 article-title: Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring publication-title: Environ. Sci. Pollut. Control Ser. – year: 1995 ident: bib59 article-title: The Nature of Statical Learning Theory – volume: 351 start-page: 288 year: 2008 end-page: 298 ident: bib58 article-title: A genetic programming approach to suspended sediment modelling publication-title: J. Hydrol. – volume: 48 start-page: 349 year: 2003 end-page: 361 ident: bib89 article-title: Estimation, forecasting and extrapolation of flow data by artificial neural networks publication-title: Hydrol. Sci. J. – volume: 2014 year: 2014 ident: bib64 article-title: A conjunction method of wavelet transform-particle swarm optimization-support vector machine for streamflow forecasting publication-title: J. Appl. Math. – volume: 39 start-page: 6895 year: 2014 end-page: 6905 ident: bib70 article-title: A hybrid methodology for salinity time series forecasting based on wavelet transform and NARX neural networks publication-title: Arabian J. Sci. Eng. – volume: 513 start-page: 362 year: 2014 end-page: 375 ident: bib5 article-title: Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey publication-title: J. Hydrol. – year: 2008 ident: bib57 article-title: A Field Guide to Genetic Programming – volume: 16 start-page: 613 year: 2010 end-page: 627 ident: bib4 article-title: River suspended sediment load prediction: application of ANN and wavelet conjunction model publication-title: J. Hydrol. Eng. – start-page: 395 year: 2005 end-page: 406 ident: bib96 article-title: June). Suspended sediment load estimation in lower Sakarya river by using soft computational methods publication-title: Proceeding of the International Conference on Computational and Mathematical Methods in Science and Engineering – volume: 139 start-page: 947 year: 2013 end-page: 957 ident: bib13 article-title: Modeling of water quality parameters using data-driven models publication-title: J. Environ. Eng. – volume: 21 start-page: 833 year: 2012 end-page: 841 ident: bib47 article-title: Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation publication-title: Neural Comput. Appl. – year: 2015 ident: bib60 article-title: Modelling long-term monthly temperatures by several data-driven methods using geographical inputs publication-title: Int. J. Climatol. – volume: 6 start-page: 5298 year: 2011 end-page: 5308 ident: bib61 article-title: An application of different artificial intelligences techniques for water quality prediction publication-title: Int. J. Phys. Sci. – volume: 108 start-page: 133 year: 2011 end-page: 141 ident: bib67 article-title: Joint multiple adaptive wavelet regression ensembles publication-title: Chemometr. Intell. Lab. Syst. – volume: 160 start-page: 59 year: 2017 end-page: 71 ident: bib68 article-title: Information Quality Ratio as a novel metric for mother wavelet selection publication-title: Chemometr. Intell. Lab. Syst. – volume: 43 start-page: 47 year: 1998 end-page: 66 ident: bib92 article-title: An artificial neural network approach to rainfall-runoff modelling publication-title: Hydrol. Sci. J. – volume: 529 start-page: 302 year: 2015 end-page: 315 ident: bib49 article-title: Comparing various artificial neural network types for water temperature prediction in rivers publication-title: J. Hydrol. – volume: 494 start-page: 202 year: 2014 end-page: 210 ident: bib84 article-title: Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis publication-title: Sci. Total Environ. – start-page: 384 year: 2018 ident: bib30 article-title: Forecasting: Principles and Practice – volume: 140 start-page: 69 year: 2013 end-page: 76 ident: bib55 article-title: Modeling of dissolved oxygen applying stepwise regression and a template-based fuzzy logic system publication-title: J. Environ. Eng. – volume: 143 start-page: 8 year: 2014 end-page: 16 ident: bib86 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J. Environ. Manag. – volume: 45 year: 2017 ident: bib37 article-title: Modeling of dissolved oxygen concentration and its hysteresis behavior in rivers using wavelet transform-based hybrid models publication-title: CLEAN–Soil, Air, Water – start-page: 245 year: 1945 end-page: 259 ident: bib32 article-title: Nonparametric tests against trend publication-title: Econometrica: J. Econom. Soc. – volume: 129 start-page: 267 year: 2003 end-page: 274 ident: bib40 article-title: Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks publication-title: J. Environ. Eng. – volume: 187 start-page: 1 year: 2015 end-page: 16 ident: bib71 article-title: Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model publication-title: Environ. Monit. Assess. – volume: 511 start-page: 279 year: 2014 end-page: 289 ident: bib79 article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques publication-title: J. Hydrol. – volume: 44 year: 2008 ident: bib43 article-title: Bayesian model selection applied to artificial neural networks used for water resources modeling publication-title: Water Resour. Res. – volume: 456 start-page: 110 year: 2012 end-page: 120 ident: bib62 article-title: Modeling discharge-suspended sediment relationship using least square support vector machine publication-title: J. Hydrol. – volume: 63 start-page: 1309 year: 1982 end-page: 1313 ident: bib99 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorol. Soc. – volume: 409 start-page: 2917 year: 2011 end-page: 2928 ident: bib2 article-title: Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers publication-title: Sci. Total Environ. – year: 2005 ident: bib95 article-title: Kendall Rank Correlation and Mann-Kendall Trend Test – volume: 38 start-page: 275 year: 2010 end-page: 286 ident: bib12 article-title: Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction publication-title: Clean–Soil, Air, Water – volume: 189 start-page: 436 year: 2005 end-page: 446 ident: bib50 article-title: Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn publication-title: Ecol. Model. – volume: 17 start-page: 1042 year: 2011 end-page: 1046 ident: bib35 article-title: Innovative trend analysis methodology publication-title: J. Hydrol. Eng. – volume: 20 start-page: 9006 year: 2013 end-page: 9013 ident: bib25 article-title: Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study publication-title: Environ. Sci. Pollut. Control Ser. – volume: 220 start-page: 888 year: 2009 end-page: 895 ident: bib9 article-title: Artificial neural network modeling of the river water quality—a case study publication-title: Ecol. Model. – volume: 35 start-page: 1650 year: 2014 end-page: 1657 ident: bib104 article-title: Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA publication-title: Environ. Technol. – volume: 185 start-page: 4361 year: 2013 end-page: 4371 ident: bib46 article-title: Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China publication-title: Environ. Monit. Assess. – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: bib100 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybern. – volume: 98 start-page: 855 year: 2011 end-page: 866 ident: bib1 article-title: Suspended sediment load prediction of river systems: an artificial neural network approach publication-title: Agric. Water Manag. – volume: 49 start-page: 183 year: 2004 end-page: 197 ident: bib52 article-title: Daily suspended sediment modelling using a fuzzy differential evolution approach/Modélisation journalière des matières en suspension par une approche d’évolution différentielle floue publication-title: Hydrol. Sci. J. – volume: 187 start-page: 1 year: 2015 end-page: 22 ident: bib73 article-title: A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States publication-title: Environ. Monit. Assess. – volume: 138 start-page: 654 year: 2011 end-page: 662 ident: bib24 article-title: Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado publication-title: J. Environ. Eng. – volume: 129 start-page: 505 year: 2003 end-page: 510 ident: bib41 article-title: Evaluation of neural networks for modeling nitrate concentrations in rivers publication-title: J. Water Resour. Plann. Manag. – volume: 407 start-page: 4916 year: 2009 end-page: 4927 ident: bib3 article-title: Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models publication-title: Sci. Total Environ. – volume: 9 start-page: 176 year: 2016 ident: bib39 article-title: Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters publication-title: Arabian J. Geosci. – volume: 490 start-page: 41 year: 2013 end-page: 55 ident: bib21 article-title: A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process publication-title: J. Hydrol. – volume: 36 start-page: 519 year: 2009 end-page: 526 ident: bib90 article-title: Investigating data preprocessing methods for circuit complexity models publication-title: Expert Syst. Appl. – volume: 15 start-page: 47 year: 2014 end-page: 56 ident: bib10 article-title: Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches publication-title: Limnology – volume: 15 start-page: 729 issue: 10 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib22 article-title: Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000245 – volume: 494 start-page: 202 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib84 article-title: Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.06.133 – volume: 139 start-page: 947 issue: 7 year: 2013 ident: 10.1016/j.chemolab.2020.103978_bib13 article-title: Modeling of water quality parameters using data-driven models publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000706 – volume: 7 start-page: 93 issue: 1 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib74 article-title: Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/BF03326121 – volume: 38 start-page: 275 issue: 3 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib12 article-title: Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction publication-title: Clean–Soil, Air, Water doi: 10.1002/clen.200900191 – volume: 140 start-page: 69 issue: 1 year: 2013 ident: 10.1016/j.chemolab.2020.103978_bib55 article-title: Modeling of dissolved oxygen applying stepwise regression and a template-based fuzzy logic system publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000780 – volume: 44 issue: 4 year: 2008 ident: 10.1016/j.chemolab.2020.103978_bib43 article-title: Bayesian model selection applied to artificial neural networks used for water resources modeling publication-title: Water Resour. Res. doi: 10.1029/2007WR006155 – volume: 129 start-page: 505 issue: 6 year: 2003 ident: 10.1016/j.chemolab.2020.103978_bib41 article-title: Evaluation of neural networks for modeling nitrate concentrations in rivers publication-title: J. Water Resour. Plann. Manag. doi: 10.1061/(ASCE)0733-9496(2003)129:6(505) – volume: 90 start-page: 1229 issue: 2 year: 2009 ident: 10.1016/j.chemolab.2020.103978_bib44 article-title: Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique publication-title: J. Environ. Manag. – volume: 50 start-page: 159 year: 2003 ident: 10.1016/j.chemolab.2020.103978_bib15 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 456 start-page: 110 year: 2012 ident: 10.1016/j.chemolab.2020.103978_bib62 article-title: Modeling discharge-suspended sediment relationship using least square support vector machine publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.06.019 – volume: 15 start-page: 1052 issue: 5 year: 2013 ident: 10.1016/j.chemolab.2020.103978_bib36 article-title: Statistical analysis and estimation of annual suspended sediments of major rivers in Japan publication-title: Environ. Sci.: Process. Impacts – volume: 55 start-page: 1175 issue: 7 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib75 article-title: Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers publication-title: Hydrol. Sci. J.–J. Sci. Hydrol. doi: 10.1080/02626667.2010.508871 – volume: 42 start-page: 787 issue: 10 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib54 article-title: A Cascaded Fuzzy Inference System for Indian river water quality prediction publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2011.05.018 – year: 1975 ident: 10.1016/j.chemolab.2020.103978_bib33 – volume: 407 start-page: 4916 issue: 17 year: 2009 ident: 10.1016/j.chemolab.2020.103978_bib3 article-title: Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.05.016 – volume: 54 start-page: 108 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib11 article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2013.12.016 – volume: 48 start-page: 349 issue: 3 year: 2003 ident: 10.1016/j.chemolab.2020.103978_bib89 article-title: Estimation, forecasting and extrapolation of flow data by artificial neural networks publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.48.3.349.45288 – volume: 185 start-page: 4361 issue: 5 year: 2013 ident: 10.1016/j.chemolab.2020.103978_bib46 article-title: Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-012-2874-8 – volume: 85 start-page: 269 issue: 2 year: 2007 ident: 10.1016/j.chemolab.2020.103978_bib94 article-title: TOMCAT: a MATLAB toolbox for multivariate calibration techniques publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2006.03.006 – volume: 21 start-page: 9212 issue: 15 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib83 article-title: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-014-2842-7 – volume: 15 start-page: 101 issue: 1 year: 2000 ident: 10.1016/j.chemolab.2020.103978_bib16 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ. Model. Software doi: 10.1016/S1364-8152(99)00007-9 – volume: 22 start-page: 187 issue: 1 year: 2013 ident: 10.1016/j.chemolab.2020.103978_bib8 article-title: Application of artificial neural networks for water quality prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0940-3 – volume: 314 start-page: 289 issue: 1 year: 2005 ident: 10.1016/j.chemolab.2020.103978_bib66 article-title: Recent advances in wavelet analyses: Part 2—amazon, Parana, Orinoco and Congo discharges time scale variability publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.04.004 – volume: 20 start-page: 9006 issue: 12 year: 2013 ident: 10.1016/j.chemolab.2020.103978_bib25 article-title: Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-013-1876-6 – volume: 6 start-page: 286 year: 2012 ident: 10.1016/j.chemolab.2020.103978_bib88 article-title: Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water publication-title: Int. J. Chem. Biomol. Eng. – volume: 15 start-page: 47 issue: 1 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib10 article-title: Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches publication-title: Limnology doi: 10.1007/s10201-013-0412-1 – volume: 529 start-page: 302 year: 2015 ident: 10.1016/j.chemolab.2020.103978_bib49 article-title: Comparing various artificial neural network types for water temperature prediction in rivers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.07.044 – volume: 143 start-page: 8 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib86 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J. Environ. Manag. – volume: 9 start-page: 143 issue: 3 year: 1995 ident: 10.1016/j.chemolab.2020.103978_bib87 article-title: Back-propagation neural networks for modeling complex systems publication-title: Artif. Intell. Eng. doi: 10.1016/0954-1810(94)00011-S – volume: 22 start-page: 2 issue: 1 year: 2007 ident: 10.1016/j.chemolab.2020.103978_bib20 article-title: Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2005.09.009 – year: 1970 ident: 10.1016/j.chemolab.2020.103978_bib29 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 10.1016/j.chemolab.2020.103978_bib51 article-title: Fuzzy sets publication-title: Inf. Contr. doi: 10.1016/S0019-9958(65)90241-X – start-page: 384 year: 2018 ident: 10.1016/j.chemolab.2020.103978_bib30 – volume: 104 start-page: 172 issue: 2 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib93 article-title: Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.08.005 – volume: 35 start-page: 1650 issue: 13 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib104 article-title: Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA publication-title: Environ. Technol. doi: 10.1080/09593330.2013.878396 – volume: 514 start-page: 358 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib18 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.057 – volume: 27 start-page: 185 issue: 2 year: 2004 ident: 10.1016/j.chemolab.2020.103978_bib19 article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2003.10.003 – volume: 39 start-page: 6895 issue: 10 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib70 article-title: A hybrid methodology for salinity time series forecasting based on wavelet transform and NARX neural networks publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-014-1243-z – volume: 184 start-page: 4355 issue: 7 year: 2012 ident: 10.1016/j.chemolab.2020.103978_bib45 article-title: Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-011-2269-2 – volume: 49 start-page: 183 issue: 1 year: 2004 ident: 10.1016/j.chemolab.2020.103978_bib52 article-title: Daily suspended sediment modelling using a fuzzy differential evolution approach/Modélisation journalière des matières en suspension par une approche d’évolution différentielle floue publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.49.1.183.54001 – volume: 9 start-page: 176 issue: 3 year: 2016 ident: 10.1016/j.chemolab.2020.103978_bib39 article-title: Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters publication-title: Arabian J. Geosci. doi: 10.1007/s12517-015-2220-x – volume: 37 start-page: 5331 issue: 7 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib91 article-title: Integrating data transformation techniques with Hopfield neural networks for solving travelling salesman problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.01.002 – volume: 160 start-page: 59 year: 2017 ident: 10.1016/j.chemolab.2020.103978_bib68 article-title: Information Quality Ratio as a novel metric for mother wavelet selection publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.11.012 – volume: 189 start-page: 436 issue: 3 year: 2005 ident: 10.1016/j.chemolab.2020.103978_bib50 article-title: Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2005.03.007 – year: 1995 ident: 10.1016/j.chemolab.2020.103978_bib59 – volume: 187 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.chemolab.2020.103978_bib73 article-title: A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4381-1 – volume: 35 start-page: 233 issue: 1 year: 1999 ident: 10.1016/j.chemolab.2020.103978_bib101 article-title: Evaluating the use of" goodness-of-fit" measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. doi: 10.1029/1998WR900018 – volume: 11 start-page: 71 issue: 1 year: 2006 ident: 10.1016/j.chemolab.2020.103978_bib42 article-title: Runoff and sediment yield modeling using artificial neural networks: upper Siwane River, India publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2006)11:1(71) – start-page: 245 year: 1945 ident: 10.1016/j.chemolab.2020.103978_bib32 article-title: Nonparametric tests against trend publication-title: Econometrica: J. Econom. Soc. doi: 10.2307/1907187 – volume: 28 start-page: 689 issue: 4 year: 2016 ident: 10.1016/j.chemolab.2020.103978_bib72 article-title: Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2015.1042531 – volume: 187 start-page: 1 issue: 6 year: 2015 ident: 10.1016/j.chemolab.2020.103978_bib71 article-title: Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4590-7 – year: 2005 ident: 10.1016/j.chemolab.2020.103978_bib95 – volume: 186 start-page: 597 issue: 1 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib82 article-title: Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3402-1 – volume: 4 start-page: 425 issue: 4 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib97 article-title: Water quality management using statistical analysis and time-series prediction model publication-title: Appl. Water Sci. doi: 10.1007/s13201-014-0159-9 – volume: 23 start-page: 938 issue: 1 year: 2015 ident: 10.1016/j.chemolab.2020.103978_bib102 article-title: Comment on “Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670” publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4730-1 – volume: 17 start-page: 1042 issue: 9 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib35 article-title: Innovative trend analysis methodology publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000556 – volume: vol. 1 year: 1992 ident: 10.1016/j.chemolab.2020.103978_bib56 – volume: 52 start-page: 793 issue: 4 year: 2007 ident: 10.1016/j.chemolab.2020.103978_bib53 article-title: Deriving stage–discharge–sediment concentration relationships using fuzzy logic publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.52.4.793 – volume: 6 start-page: 5298 issue: 22 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib61 article-title: An application of different artificial intelligences techniques for water quality prediction publication-title: Int. J. Phys. Sci. – volume: 351 start-page: 288 issue: 3 year: 2008 ident: 10.1016/j.chemolab.2020.103978_bib58 article-title: A genetic programming approach to suspended sediment modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.12.005 – volume: 95 start-page: 188 issue: 2 year: 2009 ident: 10.1016/j.chemolab.2020.103978_bib27 article-title: Support vector machines and its applications in chemistry publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2008.10.007 – volume: 23 start-page: 586 issue: 4 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib6 article-title: A hybrid neural network and ARIMA model for water quality time series prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2009.09.015 – volume: 220 start-page: 888 issue: 6 year: 2009 ident: 10.1016/j.chemolab.2020.103978_bib9 article-title: Artificial neural network modeling of the river water quality—a case study publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.01.004 – volume: 21 start-page: 1658 issue: 3 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib81 article-title: Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-013-2048-4 – volume: 513 start-page: 362 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib5 article-title: Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.005 – volume: 129 start-page: 267 issue: 3 year: 2003 ident: 10.1016/j.chemolab.2020.103978_bib40 article-title: Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2003)129:3(267) – volume: 40 start-page: 438 issue: 6 year: 2009 ident: 10.1016/j.chemolab.2020.103978_bib80 article-title: Adaptive neuro-fuzzy computing technique for suspended sediment estimation publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2008.06.004 – start-page: 63 year: 2007 ident: 10.1016/j.chemolab.2020.103978_bib28 – volume: 186 start-page: 2749 issue: 5 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib26 article-title: Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3576-6 – volume: 703 start-page: 152 issue: 2 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib14 article-title: Support vector machines in water quality management publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.07.027 – volume: 29 start-page: 114 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib77 article-title: A hybrid WA–CPSO-LSSVR model for dissolved oxygen content prediction in crab culture publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.09.019 – volume: 56 start-page: 1586 issue: 9 year: 2008 ident: 10.1016/j.chemolab.2020.103978_bib98 article-title: An ANN application for water quality forecasting publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2008.05.021 – volume: 314 start-page: 275 issue: 1 year: 2005 ident: 10.1016/j.chemolab.2020.103978_bib65 article-title: Recent advances in wavelet analyses: Part 1. A review of concepts publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.04.003 – volume: 98 start-page: 855 issue: 5 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib1 article-title: Suspended sediment load prediction of river systems: an artificial neural network approach publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2010.12.012 – volume: 108 start-page: 133 issue: 2 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib67 article-title: Joint multiple adaptive wavelet regression ensembles publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.06.006 – volume: 141 issue: 5 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib48 article-title: GIS and artificial neural network–based water quality model for a stream network in the upper green River Basin, Kentucky, USA publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000801 – volume: 36 start-page: 519 issue: 1 year: 2009 ident: 10.1016/j.chemolab.2020.103978_bib90 article-title: Investigating data preprocessing methods for circuit complexity models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.09.052 – volume: 16 start-page: 613 issue: 8 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib4 article-title: River suspended sediment load prediction: application of ANN and wavelet conjunction model publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000347 – volume: 490 start-page: 41 year: 2013 ident: 10.1016/j.chemolab.2020.103978_bib21 article-title: A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.03.024 – volume: 23 start-page: 13576 issue: 13 year: 2016 ident: 10.1016/j.chemolab.2020.103978_bib103 article-title: Comment on “Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model H. Wang & Z. Wu & C. Hu & X. Du. Environ Sci Pollut Res, 22 (18), 14095-14103.” publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6781-3 – year: 1981 ident: 10.1016/j.chemolab.2020.103978_bib23 – volume: 53 start-page: 208 year: 2015 ident: 10.1016/j.chemolab.2020.103978_bib63 article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.09.001 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 10.1016/j.chemolab.2020.103978_bib100 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.256541 – volume: 409 start-page: 2917 issue: 15 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib2 article-title: Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.11.028 – volume: 36 start-page: 4523 issue: 3 year: 2009 ident: 10.1016/j.chemolab.2020.103978_bib85 article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.05.024 – volume: 2014 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib64 article-title: A conjunction method of wavelet transform-particle swarm optimization-support vector machine for streamflow forecasting publication-title: J. Appl. Math. – volume: 45 issue: 2 year: 2017 ident: 10.1016/j.chemolab.2020.103978_bib37 article-title: Modeling of dissolved oxygen concentration and its hysteresis behavior in rivers using wavelet transform-based hybrid models publication-title: CLEAN–Soil, Air, Water doi: 10.1002/clen.201500395 – volume: 358 start-page: 317 issue: 3 year: 2008 ident: 10.1016/j.chemolab.2020.103978_bib69 article-title: Estimation and forecasting of daily suspended sediment data using wavelet–neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.06.013 – year: 1991 ident: 10.1016/j.chemolab.2020.103978_bib31 – volume: 511 start-page: 279 year: 2014 ident: 10.1016/j.chemolab.2020.103978_bib79 article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.01.054 – volume: 25 start-page: 891 issue: 8 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib17 article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2010.02.003 – volume: 204 start-page: 182 issue: 1 year: 1998 ident: 10.1016/j.chemolab.2020.103978_bib34 article-title: A modified Mann-Kendall trend test for autocorrelated data publication-title: J. Hydrol. doi: 10.1016/S0022-1694(97)00125-X – year: 2015 ident: 10.1016/j.chemolab.2020.103978_bib60 article-title: Modelling long-term monthly temperatures by several data-driven methods using geographical inputs publication-title: Int. J. Climatol. doi: 10.1002/joc.4249 – volume: 390 start-page: 85 issue: 1 year: 2010 ident: 10.1016/j.chemolab.2020.103978_bib38 article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.06.033 – volume: 537 start-page: 398 year: 2016 ident: 10.1016/j.chemolab.2020.103978_bib78 article-title: A wavelet–linear genetic programming model for sodium (Na+) concentration forecasting in rivers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.03.062 – start-page: 395 year: 2005 ident: 10.1016/j.chemolab.2020.103978_bib96 article-title: June). Suspended sediment load estimation in lower Sakarya river by using soft computational methods – volume: 138 start-page: 654 issue: 6 year: 2011 ident: 10.1016/j.chemolab.2020.103978_bib24 article-title: Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000511 – volume: 21 start-page: 649 issue: 3 year: 2007 ident: 10.1016/j.chemolab.2020.103978_bib7 article-title: Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers publication-title: Water Resour. Manag. doi: 10.1007/s11269-006-9036-0 – volume: 29 start-page: 17 issue: 1 year: 2015 ident: 10.1016/j.chemolab.2020.103978_bib76 article-title: river water prediction modeling using neural networks, fuzzy and wavelet coupled model publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0824-7 – year: 2008 ident: 10.1016/j.chemolab.2020.103978_bib57 – volume: 43 start-page: 47 issue: 1 year: 1998 ident: 10.1016/j.chemolab.2020.103978_bib92 article-title: An artificial neural network approach to rainfall-runoff modelling publication-title: Hydrol. Sci. J. doi: 10.1080/02626669809492102 – volume: 63 start-page: 1309 issue: 11 year: 1982 ident: 10.1016/j.chemolab.2020.103978_bib99 article-title: Some comments on the evaluation of model performance publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 – volume: 21 start-page: 833 issue: 5 year: 2012 ident: 10.1016/j.chemolab.2020.103978_bib47 article-title: Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0486-1 – volume: 572 start-page: 336 year: 2019 ident: 10.1016/j.chemolab.2020.103978_bib105 article-title: A review of the artificial intelligence methods in groundwater level modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.037 |
| SSID | ssj0016941 |
| Score | 2.630563 |
| SecondaryResourceType | review_article |
| Snippet | The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103978 |
| SubjectTerms | Artificial intelligence Hybrid model Prediction Review River water quality Wavelet transform |
| Title | Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review |
| URI | https://dx.doi.org/10.1016/j.chemolab.2020.103978 |
| Volume | 200 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMsCCeIryqDywumkS20nYqoqqgOgClbpFjmOLViWtQhHqwm_nLo-qSEgdGJ3kouhs333n3HdHyK1nAdP7XcW0MJJx4fos8YKU2SRSXCkb-AW36nkkh2P-OBGTBunXXBhMq6xsf2nTC2tdXXEqbTrL6dR5wToiCKcBggDM9ZHEx3mAXQw635s0DxeJmmV974jh01ss4VkH9PIOEWQCcaJX8M-Ldmt_OagtpzM4IocVWqS98oOOScNkJ2S_XzdpOyUzvFUWgaDTreqaDL1TSvEgYG6oylL6tkZuFi0633xQgKp0meNPGpwYurD0C0BnTkuO5RreRfMiY-OO9mhJbzkj48H9a3_IqvYJTPuut2IWvHEAG9pA5GkiHUZBIi1PrJJB2tUSdp4rlIzCMBEWGbOcKxhbKYWrEg4w65w0s0VmLggFjIRIUusU5s4IrUIBe1dpwBNWA8BsEVHrLNZVbXFscTGP6ySyWVzrOkZdx6WuW8TZyC3L6ho7JaJ6SuJf6yQGF7BD9vIfslfkAEeYN-CKa9Jc5Z_mBuDIKmkX661N9noPT8PRD_jt33w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4QD3gxPiM-e_BaYB_dhzdCJKjARUi4NW13GyG4kBVjuPjbndkHwcSEg8fd7mw2M23nm-58M4Tc2wYwvdOSTPPYYy63HKZsP2JGhdKV0vhOxq0aDL3e2H2e8EmFdEouDKZVFnt_vqdnu3Vxp1los7mcTpuvWEcE4TRAEIC5TrhH9l1u-xiBNb43eR4WMjXzAt8hw8e3aMKzBijmHUJIBYGinRHQs35rf3moLa_TPSKHBVyk7fyLjkklTk5IrVN2aTslMxzKq0DQ6VZ5TYbuKaJ4EjCPqUwi-rZGchbNWt98UMCqdJniXxq0DF0Y-gWoM6U5yXIN76JplrLxQNs057eckXH3cdTpsaJ_AtOOZa-YAXfsw4qOIfSMQx2EvvKMq4z0_KilPVh6FpdeGASKG6TMuq6Ea-N53JLKBZx1TqrJIokvCAWQhFBS6wiMF3MtAw6LV2oAFEYDwqwTXupM6KK4OPa4mIsyi2wmSl0L1LXIdV0nzY3cMi-vsVMiLE0ifk0UAT5gh-zlP2TvSK03GvRF_2n4ckUOcASTCCx-Taqr9DO-AWyyUrfZ3PsBP8LhEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-based+single+and+hybrid+models+for+prediction+of+water+quality+in+rivers%3A+A+review&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Rajaee%2C+Taher&rft.au=Khani%2C+Salar&rft.au=Ravansalar%2C+Masoud&rft.date=2020-05-15&rft.issn=0169-7439&rft.volume=200&rft.spage=103978&rft_id=info:doi/10.1016%2Fj.chemolab.2020.103978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2020_103978 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |