Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review

The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of conventional models. In recent years, artificial intelligence (AI)-based methods have been recognized significantly powerful for this purpose. In th...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 200; p. 103978
Main Authors Rajaee, Taher, Khani, Salar, Ravansalar, Masoud
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2020
Subjects
Online AccessGet full text
ISSN0169-7439
1873-3239
DOI10.1016/j.chemolab.2020.103978

Cover

Abstract The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of conventional models. In recent years, artificial intelligence (AI)-based methods have been recognized significantly powerful for this purpose. In this study, the performance of the various types of single and hybrid AI models including artificial neural networks (ANNs), genetic programming (GP), fuzzy logic (FL), support vector machine (SVM), hybrid neuro-fuzzy (NF), hybrid ANN-ARIMA, hybrid genetic algorithm-neural networks (GA-NN), and wavelet-based hybrid models such as wavelet-neural networks (WANN), wavelet-neuro fuzzy (WNF), wavelet-support vector regression (WSVR), and wavelet-linear genetic programming (WLGP) models were investigated for the prediction of water quality in rivers. In this review paper, for each of the models, firstly, a brief introduction is provided. Then some recently published papers are presented to review the performance of the model for modeling water quality in rivers. For this purpose, 51 journal papers that were published from 2000 to 2016 and dealing with the use of the single and hybrid AI models for river water quality prediction were selected. The review of these papers is undertaken in terms of the predictor selection, data normalization, train, and test data division, modeling approaches, prediction time steps, and modeling performance evaluation procedures. The effect of using integrated models to improve the prediction accuracy of the single models was investigated as well. Out of the 51 selected papers, 31 papers (~60% of the entire papers) were published in the past five years. The selected papers have been cited up to 1716 times before 20th February 2016. Among the various modeling techniques, the ANN and WANN models (17 and 7 papers, respectively) were the most widely used single and hybrid models. In the reviewed papers, more attention is given to the modeling of dissolved oxygen (DO) and suspended sediment in rivers. In 23 papers, data with daily time intervals were used for water quality modeling. The present paper covers 13 different single and hybrid AI models. It presents a comprehensive investigation into the application of AI methods for modeling river water quality and offers a critical insight into the use and reliability of the various modeling approaches for modeling diverse water quality measurements. •Review on recent studies about river water quality modeling and predicting.•Recent studies on the modeling of almost every type of river water quality variables are evaluated.•Various conventional and artificial intelligence-based single and hybrid models are reviewed.•Data normalization, data division, modeling performance evaluation measures, and recommendations for future works are discussed.
AbstractList The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of conventional models. In recent years, artificial intelligence (AI)-based methods have been recognized significantly powerful for this purpose. In this study, the performance of the various types of single and hybrid AI models including artificial neural networks (ANNs), genetic programming (GP), fuzzy logic (FL), support vector machine (SVM), hybrid neuro-fuzzy (NF), hybrid ANN-ARIMA, hybrid genetic algorithm-neural networks (GA-NN), and wavelet-based hybrid models such as wavelet-neural networks (WANN), wavelet-neuro fuzzy (WNF), wavelet-support vector regression (WSVR), and wavelet-linear genetic programming (WLGP) models were investigated for the prediction of water quality in rivers. In this review paper, for each of the models, firstly, a brief introduction is provided. Then some recently published papers are presented to review the performance of the model for modeling water quality in rivers. For this purpose, 51 journal papers that were published from 2000 to 2016 and dealing with the use of the single and hybrid AI models for river water quality prediction were selected. The review of these papers is undertaken in terms of the predictor selection, data normalization, train, and test data division, modeling approaches, prediction time steps, and modeling performance evaluation procedures. The effect of using integrated models to improve the prediction accuracy of the single models was investigated as well. Out of the 51 selected papers, 31 papers (~60% of the entire papers) were published in the past five years. The selected papers have been cited up to 1716 times before 20th February 2016. Among the various modeling techniques, the ANN and WANN models (17 and 7 papers, respectively) were the most widely used single and hybrid models. In the reviewed papers, more attention is given to the modeling of dissolved oxygen (DO) and suspended sediment in rivers. In 23 papers, data with daily time intervals were used for water quality modeling. The present paper covers 13 different single and hybrid AI models. It presents a comprehensive investigation into the application of AI methods for modeling river water quality and offers a critical insight into the use and reliability of the various modeling approaches for modeling diverse water quality measurements. •Review on recent studies about river water quality modeling and predicting.•Recent studies on the modeling of almost every type of river water quality variables are evaluated.•Various conventional and artificial intelligence-based single and hybrid models are reviewed.•Data normalization, data division, modeling performance evaluation measures, and recommendations for future works are discussed.
ArticleNumber 103978
Author Rajaee, Taher
Khani, Salar
Ravansalar, Masoud
Author_xml – sequence: 1
  givenname: Taher
  surname: Rajaee
  fullname: Rajaee, Taher
  email: taher_rajaee@yahoo.com, trajaee@qom.ac.ir
– sequence: 2
  givenname: Salar
  surname: Khani
  fullname: Khani, Salar
  email: salar.khani@gmail.com
– sequence: 3
  givenname: Masoud
  surname: Ravansalar
  fullname: Ravansalar, Masoud
  email: m.ravansalar@gmail.com, m.ravansalar@stu.qom.ac.ir
BookMark eNqFkM9OwzAMhyM0JLbBK6C8QEfTtGmDODBN_JMmcYFzlKbO5ilrRxI27e1pNbhw2cmy5e8n-5uQUdu1QMgtS2csZeJuMzNr2HZO17MszYYhl2V1QcasKnnCMy5HZNwvyqTMubwikxA26dDnbEw2cx_RokHtKLYRnMMVtAaSWgdoaMB25YDqtqHrY-2xoduuAReo7TzdeWjQROxa2ll60BE8_frWDuOxz6Ie9-DDPZ1TD3uEwzW5tNoFuPmtU_L5_PSxeE2W7y9vi_kyMZxlMbEZr8oy5ZBmJUhTybIWNq-tFmWTGiEFZ4UWsqrqwrKMF3mu-94KUTBd53nGp-ThlGt8F4IHqwxGPZwZvUanWKoGb2qj_rypwZs6eetx8Q_fedxqfzwPPp7A3s_wsFfB4OCyQQ8mqqbDcxE_7mCO4A
CitedBy_id crossref_primary_10_3390_agronomy15030703
crossref_primary_10_3390_agriculture13061162
crossref_primary_10_1007_s11356_021_18221_8
crossref_primary_10_1016_j_jenvman_2024_121378
crossref_primary_10_1038_s41467_024_48545_1
crossref_primary_10_3390_geographies4020021
crossref_primary_10_1016_j_ecolind_2023_109882
crossref_primary_10_7717_peerj_cs_591
crossref_primary_10_1016_j_jhydrol_2020_125011
crossref_primary_10_1016_j_ecoinf_2024_102655
crossref_primary_10_1007_s40808_021_01253_x
crossref_primary_10_3390_app132011217
crossref_primary_10_3390_s21216971
crossref_primary_10_3390_w14050741
crossref_primary_10_1016_j_jclepro_2022_131285
crossref_primary_10_1016_j_jhydrol_2024_132181
crossref_primary_10_1016_j_scitotenv_2021_147171
crossref_primary_10_3390_rs14184505
crossref_primary_10_3390_w14192939
crossref_primary_10_1038_s41598_024_76147_w
crossref_primary_10_1016_j_eti_2022_102419
crossref_primary_10_1007_s12145_024_01547_5
crossref_primary_10_1016_j_jwpe_2024_105410
crossref_primary_10_1007_s00382_023_06787_7
crossref_primary_10_1016_j_scitotenv_2020_144459
crossref_primary_10_1007_s00477_024_02770_8
crossref_primary_10_1016_j_jenvman_2024_121097
crossref_primary_10_1007_s00477_022_02332_w
crossref_primary_10_3390_s22124398
crossref_primary_10_1016_j_eswa_2024_125499
crossref_primary_10_1007_s00521_023_08761_0
crossref_primary_10_3390_infrastructures7100137
crossref_primary_10_1016_j_chemolab_2023_104830
crossref_primary_10_1109_JIOT_2021_3081772
crossref_primary_10_1016_j_measurement_2020_108043
crossref_primary_10_1016_j_heliyon_2021_e07950
crossref_primary_10_1002_hyp_14565
crossref_primary_10_3390_w16162253
crossref_primary_10_1109_ACCESS_2024_3509744
crossref_primary_10_1007_s10668_022_02331_5
crossref_primary_10_1007_s11356_024_35173_x
crossref_primary_10_1007_s10661_023_11489_y
crossref_primary_10_3390_atmos15010122
crossref_primary_10_1016_j_jhydrol_2021_127320
crossref_primary_10_2166_ws_2021_303
crossref_primary_10_3390_rs17040731
crossref_primary_10_1007_s11356_024_33350_6
crossref_primary_10_1016_j_jenvman_2025_124832
crossref_primary_10_3390_w12092568
crossref_primary_10_3390_w14172592
crossref_primary_10_1007_s12145_022_00785_9
crossref_primary_10_1007_s11783_023_1688_y
crossref_primary_10_1007_s11053_020_09702_7
crossref_primary_10_3390_su14127154
crossref_primary_10_1016_j_jksuci_2021_06_003
crossref_primary_10_3390_environments9070085
crossref_primary_10_1016_j_jhydrol_2021_126358
crossref_primary_10_3390_w14142211
crossref_primary_10_1016_j_jhydrol_2021_126879
crossref_primary_10_2166_wst_2024_259
crossref_primary_10_1080_10643389_2023_2285691
crossref_primary_10_1016_j_cherd_2023_09_027
crossref_primary_10_1016_j_jhydrol_2021_126266
crossref_primary_10_1016_j_scitotenv_2023_169289
crossref_primary_10_1016_j_watres_2024_122663
crossref_primary_10_1080_10934529_2021_1933325
crossref_primary_10_1155_2022_3397972
crossref_primary_10_1186_s12302_024_00897_7
crossref_primary_10_1007_s40808_020_01041_z
crossref_primary_10_1016_j_envint_2025_109389
crossref_primary_10_1061__ASCE_NH_1527_6996_0000593
crossref_primary_10_1080_21622515_2022_2118084
crossref_primary_10_3390_w13020239
crossref_primary_10_46300_9106_2020_14_127
crossref_primary_10_3390_math11040795
crossref_primary_10_3390_w16202944
crossref_primary_10_3390_w16111485
crossref_primary_10_1007_s12665_022_10380_2
crossref_primary_10_3390_s23031520
crossref_primary_10_1016_j_jmrt_2023_07_034
crossref_primary_10_1155_2023_6644681
crossref_primary_10_1080_23311916_2022_2150121
crossref_primary_10_1007_s41324_023_00528_y
crossref_primary_10_1016_j_rsase_2024_101236
crossref_primary_10_1007_s40808_024_02079_z
crossref_primary_10_1007_s11356_023_31584_4
crossref_primary_10_3390_su13179898
crossref_primary_10_1002_cpe_7377
crossref_primary_10_1016_j_jhydrol_2022_128332
crossref_primary_10_1080_10106049_2022_2032388
crossref_primary_10_2478_aoas_2024_0075
crossref_primary_10_3390_hydrology9070117
crossref_primary_10_1016_j_jhydrol_2021_126253
crossref_primary_10_1007_s10661_023_11276_9
crossref_primary_10_1016_j_ecoinf_2024_102463
crossref_primary_10_1016_j_scs_2023_104541
crossref_primary_10_3390_w17010012
crossref_primary_10_1007_s11356_022_19300_0
crossref_primary_10_2166_wst_2023_357
crossref_primary_10_1016_j_jclepro_2022_130687
crossref_primary_10_1007_s12145_024_01338_y
crossref_primary_10_1016_j_gsd_2021_100643
crossref_primary_10_1007_s10661_024_13423_2
crossref_primary_10_1016_j_catena_2024_107848
crossref_primary_10_1007_s11270_024_06913_z
crossref_primary_10_1109_ACCESS_2021_3100490
crossref_primary_10_2166_hydro_2023_028
crossref_primary_10_1016_j_ejrh_2023_101435
crossref_primary_10_1016_j_jwpe_2024_105940
crossref_primary_10_2166_aqua_2021_150
crossref_primary_10_1016_j_chemolab_2024_105244
crossref_primary_10_1111_jfs_12903
crossref_primary_10_1080_19475705_2024_2353144
crossref_primary_10_3390_w16243547
crossref_primary_10_3390_agriculture10110529
crossref_primary_10_1007_s00477_024_02694_3
crossref_primary_10_3390_w15142631
crossref_primary_10_1007_s12205_024_2613_z
crossref_primary_10_1007_s11269_023_03666_y
crossref_primary_10_3389_fmars_2023_1126556
crossref_primary_10_1364_JOSAB_482644
crossref_primary_10_1016_j_reactfunctpolym_2022_105219
crossref_primary_10_2166_ws_2021_224
crossref_primary_10_1016_j_jhydrol_2024_130637
crossref_primary_10_1007_s00500_021_05628_1
crossref_primary_10_1016_j_engappai_2022_105166
crossref_primary_10_1016_j_jenvman_2024_123522
crossref_primary_10_1016_j_ufug_2021_127032
crossref_primary_10_1142_S1793962324300024
crossref_primary_10_2166_nh_2024_032
crossref_primary_10_1080_02626667_2024_2321332
crossref_primary_10_1016_j_chemolab_2021_104329
crossref_primary_10_1016_j_jwpe_2022_103296
crossref_primary_10_1021_acs_est_4c05004
crossref_primary_10_1007_s11356_024_32984_w
crossref_primary_10_1007_s11269_023_03674_y
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1016_j_psep_2024_10_054
crossref_primary_10_1007_s11356_022_20385_w
crossref_primary_10_1016_j_watres_2021_117666
crossref_primary_10_2166_hydro_2023_122
crossref_primary_10_5004_dwt_2021_26813
crossref_primary_10_1016_j_envres_2022_114723
crossref_primary_10_1016_j_scitotenv_2022_159714
crossref_primary_10_3390_w15091750
crossref_primary_10_1080_10106049_2022_2087758
crossref_primary_10_3390_su16229848
crossref_primary_10_1016_j_scitotenv_2023_167591
Cites_doi 10.1061/(ASCE)HE.1943-5584.0000245
10.1016/j.scitotenv.2014.06.133
10.1061/(ASCE)EE.1943-7870.0000706
10.1007/BF03326121
10.1002/clen.200900191
10.1061/(ASCE)EE.1943-7870.0000780
10.1029/2007WR006155
10.1061/(ASCE)0733-9496(2003)129:6(505)
10.1016/S0925-2312(01)00702-0
10.1016/j.jhydrol.2012.06.019
10.1080/02626667.2010.508871
10.1016/j.advengsoft.2011.05.018
10.1016/j.scitotenv.2009.05.016
10.1016/j.envsoft.2013.12.016
10.1623/hysj.48.3.349.45288
10.1007/s10661-012-2874-8
10.1016/j.chemolab.2006.03.006
10.1007/s11356-014-2842-7
10.1016/S1364-8152(99)00007-9
10.1007/s00521-012-0940-3
10.1016/j.jhydrol.2005.04.004
10.1007/s11356-013-1876-6
10.1007/s10201-013-0412-1
10.1016/j.jhydrol.2015.07.044
10.1016/0954-1810(94)00011-S
10.1016/j.envsoft.2005.09.009
10.1016/S0019-9958(65)90241-X
10.1016/j.chemolab.2010.08.005
10.1080/09593330.2013.878396
10.1016/j.jhydrol.2014.03.057
10.1016/j.advwatres.2003.10.003
10.1007/s13369-014-1243-z
10.1007/s10661-011-2269-2
10.1623/hysj.49.1.183.54001
10.1007/s12517-015-2220-x
10.1016/j.eswa.2010.01.002
10.1016/j.chemolab.2016.11.012
10.1016/j.ecolmodel.2005.03.007
10.1007/s10661-015-4381-1
10.1029/1998WR900018
10.1061/(ASCE)1084-0699(2006)11:1(71)
10.2307/1907187
10.1080/0952813X.2015.1042531
10.1007/s10661-015-4590-7
10.1007/s10661-013-3402-1
10.1007/s13201-014-0159-9
10.1007/s11356-015-4730-1
10.1061/(ASCE)HE.1943-5584.0000556
10.1623/hysj.52.4.793
10.1016/j.jhydrol.2007.12.005
10.1016/j.chemolab.2008.10.007
10.1016/j.engappai.2009.09.015
10.1016/j.ecolmodel.2009.01.004
10.1007/s11356-013-2048-4
10.1016/j.jhydrol.2014.03.005
10.1061/(ASCE)0733-9372(2003)129:3(267)
10.1016/j.advengsoft.2008.06.004
10.1007/s10661-013-3576-6
10.1016/j.aca.2011.07.027
10.1016/j.engappai.2013.09.019
10.1016/j.marpolbul.2008.05.021
10.1016/j.jhydrol.2005.04.003
10.1016/j.agwat.2010.12.012
10.1016/j.chemolab.2011.06.006
10.1061/(ASCE)EE.1943-7870.0000801
10.1016/j.eswa.2007.09.052
10.1061/(ASCE)HE.1943-5584.0000347
10.1016/j.jhydrol.2013.03.024
10.1007/s11356-016-6781-3
10.1016/j.apor.2015.09.001
10.1109/21.256541
10.1016/j.scitotenv.2010.11.028
10.1016/j.eswa.2008.05.024
10.1002/clen.201500395
10.1016/j.jhydrol.2008.06.013
10.1016/j.jhydrol.2014.01.054
10.1016/j.envsoft.2010.02.003
10.1016/S0022-1694(97)00125-X
10.1002/joc.4249
10.1016/j.jhydrol.2010.06.033
10.1016/j.jhydrol.2016.03.062
10.1061/(ASCE)EE.1943-7870.0000511
10.1007/s11269-006-9036-0
10.1007/s11269-014-0824-7
10.1080/02626669809492102
10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
10.1007/s00521-010-0486-1
10.1016/j.jhydrol.2018.12.037
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2020.103978
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID 10_1016_j_chemolab_2020_103978
S0169743919304939
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-f2387703e027e9c897b6f4bfa67d0c696315a6988b5f123544a5a6f6651ab4423
IEDL.DBID .~1
ISSN 0169-7439
IngestDate Thu Apr 24 23:12:44 EDT 2025
Thu Oct 02 04:30:31 EDT 2025
Fri Feb 23 02:50:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords River water quality
Hybrid model
Wavelet transform
Review
Artificial intelligence
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-f2387703e027e9c897b6f4bfa67d0c696315a6988b5f123544a5a6f6651ab4423
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2020_103978
crossref_primary_10_1016_j_chemolab_2020_103978
elsevier_sciencedirect_doi_10_1016_j_chemolab_2020_103978
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kendall (bib33) 1975
Donald, Coomans, Everingham (bib67) 2011; 108
Parmar, Bhardwaj (bib97) 2014; 4
McLeod (bib95) 2005
Parmar, Bhardwaj (bib76) 2015; 29
Basant, Gupta, Malik, Singh (bib93) 2010; 104
Kisi (bib52) 2004; 49
Zounemat-Kermani, Scholz (bib55) 2013; 140
Şen (bib35) 2011; 17
Aytek, Kişi (bib58) 2008; 351
Rajaee, Mirbagheri, Zounemat-Kermani, Nourani (bib3) 2009; 407
Wijaya, Sarno, Zulaika (bib68) 2017; 160
Cığızoğlu (bib89) 2003; 48
Alp, Cigizoglu (bib20) 2007; 22
Kisi, Ay (bib5) 2014; 513
Mirbagheri, Nourani, Rajaee, Alikhani (bib75) 2010; 55
Chang, Chung, Chen, Liu, Coynel, Vachaud (bib84) 2014; 494
Nourani, Baghanam, Adamowski, Kisi (bib18) 2014; 514
Daszykowski, Serneels, Kaczmarek, Van Espen, Croux, Walczak (bib94) 2007; 85
Ravansalar, Rajaee, Zounemat-Kermani (bib78) 2016; 537
Markus, Tsai, Demissie (bib40) 2003; 129
Adamowski, Sun (bib38) 2010; 390
Anmala, Meier, Meier, Grubbs (bib48) 2014; 141
Khani, Shiraz (bib103) 2016; 23
Najah, El-Shafie, Karim, Jaafar, El-Shafie (bib61) 2011; 6
Partal, Cigizoglu (bib69) 2008; 358
Khani, Rajaee (bib37) 2017; 45
Najah, El-Shafie, Karim, Jaafar (bib47) 2012; 21
Maier, Jain, Dandy, Sudheer (bib17) 2010; 25
Ravansalar, Rajaee (bib71) 2015; 187
Legates, McCabe (bib101) 1999; 35
Rajaee (bib105) 2019; 572
Rajaee, Shahabi (bib39) 2016; 9
Maier, Dandy (bib16) 2000; 15
Hyndman, Athanasopoulos (bib30) 2018
Mahapatra, Nanda, Panigrahy (bib54) 2011; 42
Li, Liang, Xu (bib27) 2009; 95
Poli, Langdon, McPhee, Koza (bib57) 2008
Rajaee (bib2) 2011; 409
Zhang (bib15) 2003; 50
Box, Jenkins (bib29) 1970
Goh (bib87) 1995; 9
Rajaee, Boroumand (bib63) 2015; 53
Areerachakul (bib88) 2012; 6
Lohani, Goel, Bhatia (bib53) 2007; 52
Ravansalar, Rajaee, Ergil (bib72) 2016; 28
Vapnik (bib59) 1995
Box, Jenkins, Reinsel (bib31) 1991
Dogan, Sasal, Isik (bib96) 2005
Diamantopoulou, Antonopoulos, Papamichail (bib7) 2007; 21
Najah, El-Shafie, Karim, El-Shafie (bib8) 2013; 22
Faruk (bib6) 2010; 23
Prasad, Beg (bib90) 2009; 36
Zadeh (bib51) 1965; 8
Rajaee, Mirbagheri, Nourani, Alikhani (bib74) 2010; 7
Koza (bib56) 1992; vol. 1
Adamowski, Karapataki (bib22) 2010; 15
Ay, Kisi (bib79) 2014; 511
Singh, Basant, Gupta (bib14) 2011; 703
Altunkaynak, Özger, Çakmakcı (bib50) 2005; 189
Shahwan, Odening (bib28) 2007
Yang, Zhang, Zhou (bib70) 2014; 39
Snedecor, Cochran (bib23) 1981
Singh, Gupta, Rai (bib26) 2014; 186
Bayram, Kankal, Önsoy (bib45) 2012; 184
Rajaee, Khani (bib102) 2015; 23
Luo, He, Chaffe, Nover, Takara, Rozainy (bib36) 2013; 15
Zhang, Dai, Tang (bib64) 2014; 2014
Ay, Kisi (bib24) 2011; 138
Melesse, Ahmad, McClain, Wang, Lim (bib1) 2011; 98
Wen, Fang, Diao, Zhang (bib46) 2013; 185
Rajaee (bib12) 2010; 38
Piotrowski, Napiorkowski, Napiorkowski, Osuch (bib49) 2015; 529
Antanasijevic, Pocajt, Povrenović, Perić-Grujić, Ristić (bib25) 2013; 20
Najah, El-Shafie, Karim, El-Shafie (bib81) 2014; 21
Liu, Xu, Jiang, Li, Chen, Li (bib77) 2014; 29
Heddam (bib83) 2014; 21
Hamed, Rao (bib34) 1998; 204
Raghuwanshi, Singh, Reddy (bib42) 2006; 11
Willmott (bib99) 1982; 63
Kisi, Sanikhani (bib60) 2015
Dawson, Wilby (bib92) 1998; 43
Mann (bib32) 1945
Heddam (bib104) 2014; 35
Wu, Dandy, Maier (bib11) 2014; 54
Olyaie, Banejad, Chau, Melesse (bib73) 2015; 187
Suen, Eheart (bib41) 2003; 129
Kisi (bib62) 2012; 456
Singh, Basant, Malik, Jain (bib9) 2009; 220
Jang (bib100) 1993; 23
Burchard-Levine, Liu, Vince, Li, Ostfeld (bib86) 2014; 143
Palani, Liong, Tkalich (bib98) 2008; 56
Rajaee, Nourani, Zounemat-Kermani, Kisi (bib4) 2010; 16
Nourani, Komasi (bib21) 2013; 490
Cigizoglu (bib19) 2004; 27
Dogan, Sengorur, Koklu (bib44) 2009; 90
Jolai, Ghanbari (bib91) 2010; 37
Labat, Ronchail, Guyot (bib66) 2005; 314
Wu, Huang, Schmalz, Fohrer (bib10) 2014; 15
Orouji, Haddad, Fallah-Mehdipour, Mariño (bib13) 2013; 139
Labat (bib65) 2005; 314
Heddam (bib82) 2014; 186
Kisi, Haktanir, Ardiclioglu, Ozturk, Yalcin, Uludag (bib80) 2009; 40
Sedki, Ouazar, El Mazoudi (bib85) 2009; 36
Kingston, Maier, Lambert (bib43) 2008; 44
Mann (10.1016/j.chemolab.2020.103978_bib32) 1945
McLeod (10.1016/j.chemolab.2020.103978_bib95) 2005
Wu (10.1016/j.chemolab.2020.103978_bib11) 2014; 54
Rajaee (10.1016/j.chemolab.2020.103978_bib3) 2009; 407
Li (10.1016/j.chemolab.2020.103978_bib27) 2009; 95
Singh (10.1016/j.chemolab.2020.103978_bib26) 2014; 186
Aytek (10.1016/j.chemolab.2020.103978_bib58) 2008; 351
Kisi (10.1016/j.chemolab.2020.103978_bib60) 2015
Najah (10.1016/j.chemolab.2020.103978_bib61) 2011; 6
Donald (10.1016/j.chemolab.2020.103978_bib67) 2011; 108
Kendall (10.1016/j.chemolab.2020.103978_bib33) 1975
Orouji (10.1016/j.chemolab.2020.103978_bib13) 2013; 139
Najah (10.1016/j.chemolab.2020.103978_bib47) 2012; 21
Shahwan (10.1016/j.chemolab.2020.103978_bib28) 2007
Palani (10.1016/j.chemolab.2020.103978_bib98) 2008; 56
Liu (10.1016/j.chemolab.2020.103978_bib77) 2014; 29
Yang (10.1016/j.chemolab.2020.103978_bib70) 2014; 39
Mirbagheri (10.1016/j.chemolab.2020.103978_bib75) 2010; 55
Rajaee (10.1016/j.chemolab.2020.103978_bib74) 2010; 7
Ay (10.1016/j.chemolab.2020.103978_bib24) 2011; 138
Zhang (10.1016/j.chemolab.2020.103978_bib15) 2003; 50
Parmar (10.1016/j.chemolab.2020.103978_bib76) 2015; 29
Faruk (10.1016/j.chemolab.2020.103978_bib6) 2010; 23
Heddam (10.1016/j.chemolab.2020.103978_bib104) 2014; 35
Kisi (10.1016/j.chemolab.2020.103978_bib5) 2014; 513
Suen (10.1016/j.chemolab.2020.103978_bib41) 2003; 129
Melesse (10.1016/j.chemolab.2020.103978_bib1) 2011; 98
Kisi (10.1016/j.chemolab.2020.103978_bib80) 2009; 40
Adamowski (10.1016/j.chemolab.2020.103978_bib22) 2010; 15
Rajaee (10.1016/j.chemolab.2020.103978_bib102) 2015; 23
Bayram (10.1016/j.chemolab.2020.103978_bib45) 2012; 184
Antanasijevic (10.1016/j.chemolab.2020.103978_bib25) 2013; 20
Najah (10.1016/j.chemolab.2020.103978_bib8) 2013; 22
Partal (10.1016/j.chemolab.2020.103978_bib69) 2008; 358
Poli (10.1016/j.chemolab.2020.103978_bib57) 2008
Labat (10.1016/j.chemolab.2020.103978_bib66) 2005; 314
Sedki (10.1016/j.chemolab.2020.103978_bib85) 2009; 36
Zhang (10.1016/j.chemolab.2020.103978_bib64) 2014; 2014
Ravansalar (10.1016/j.chemolab.2020.103978_bib71) 2015; 187
Altunkaynak (10.1016/j.chemolab.2020.103978_bib50) 2005; 189
Hyndman (10.1016/j.chemolab.2020.103978_bib30) 2018
Kisi (10.1016/j.chemolab.2020.103978_bib62) 2012; 456
Areerachakul (10.1016/j.chemolab.2020.103978_bib88) 2012; 6
Kingston (10.1016/j.chemolab.2020.103978_bib43) 2008; 44
Labat (10.1016/j.chemolab.2020.103978_bib65) 2005; 314
Şen (10.1016/j.chemolab.2020.103978_bib35) 2011; 17
Zounemat-Kermani (10.1016/j.chemolab.2020.103978_bib55) 2013; 140
Jolai (10.1016/j.chemolab.2020.103978_bib91) 2010; 37
Heddam (10.1016/j.chemolab.2020.103978_bib83) 2014; 21
Willmott (10.1016/j.chemolab.2020.103978_bib99) 1982; 63
Goh (10.1016/j.chemolab.2020.103978_bib87) 1995; 9
Rajaee (10.1016/j.chemolab.2020.103978_bib105) 2019; 572
Wu (10.1016/j.chemolab.2020.103978_bib10) 2014; 15
Prasad (10.1016/j.chemolab.2020.103978_bib90) 2009; 36
Hamed (10.1016/j.chemolab.2020.103978_bib34) 1998; 204
Jang (10.1016/j.chemolab.2020.103978_bib100) 1993; 23
Koza (10.1016/j.chemolab.2020.103978_bib56) 1992; vol. 1
Legates (10.1016/j.chemolab.2020.103978_bib101) 1999; 35
Heddam (10.1016/j.chemolab.2020.103978_bib82) 2014; 186
Ravansalar (10.1016/j.chemolab.2020.103978_bib78) 2016; 537
Cigizoglu (10.1016/j.chemolab.2020.103978_bib19) 2004; 27
Wijaya (10.1016/j.chemolab.2020.103978_bib68) 2017; 160
Dogan (10.1016/j.chemolab.2020.103978_bib96) 2005
Cığızoğlu (10.1016/j.chemolab.2020.103978_bib89) 2003; 48
Dawson (10.1016/j.chemolab.2020.103978_bib92) 1998; 43
Singh (10.1016/j.chemolab.2020.103978_bib14) 2011; 703
Piotrowski (10.1016/j.chemolab.2020.103978_bib49) 2015; 529
Khani (10.1016/j.chemolab.2020.103978_bib103) 2016; 23
Nourani (10.1016/j.chemolab.2020.103978_bib18) 2014; 514
Rajaee (10.1016/j.chemolab.2020.103978_bib2) 2011; 409
Dogan (10.1016/j.chemolab.2020.103978_bib44) 2009; 90
Rajaee (10.1016/j.chemolab.2020.103978_bib12) 2010; 38
Snedecor (10.1016/j.chemolab.2020.103978_bib23) 1981
Olyaie (10.1016/j.chemolab.2020.103978_bib73) 2015; 187
Mahapatra (10.1016/j.chemolab.2020.103978_bib54) 2011; 42
Rajaee (10.1016/j.chemolab.2020.103978_bib63) 2015; 53
Daszykowski (10.1016/j.chemolab.2020.103978_bib94) 2007; 85
Adamowski (10.1016/j.chemolab.2020.103978_bib38) 2010; 390
Najah (10.1016/j.chemolab.2020.103978_bib81) 2014; 21
Singh (10.1016/j.chemolab.2020.103978_bib9) 2009; 220
Box (10.1016/j.chemolab.2020.103978_bib29) 1970
Lohani (10.1016/j.chemolab.2020.103978_bib53) 2007; 52
Ay (10.1016/j.chemolab.2020.103978_bib79) 2014; 511
Kisi (10.1016/j.chemolab.2020.103978_bib52) 2004; 49
Burchard-Levine (10.1016/j.chemolab.2020.103978_bib86) 2014; 143
Vapnik (10.1016/j.chemolab.2020.103978_bib59) 1995
Rajaee (10.1016/j.chemolab.2020.103978_bib39) 2016; 9
Maier (10.1016/j.chemolab.2020.103978_bib16) 2000; 15
Luo (10.1016/j.chemolab.2020.103978_bib36) 2013; 15
Khani (10.1016/j.chemolab.2020.103978_bib37) 2017; 45
Zadeh (10.1016/j.chemolab.2020.103978_bib51) 1965; 8
Chang (10.1016/j.chemolab.2020.103978_bib84) 2014; 494
Wen (10.1016/j.chemolab.2020.103978_bib46) 2013; 185
Alp (10.1016/j.chemolab.2020.103978_bib20) 2007; 22
Ravansalar (10.1016/j.chemolab.2020.103978_bib72) 2016; 28
Rajaee (10.1016/j.chemolab.2020.103978_bib4) 2010; 16
Parmar (10.1016/j.chemolab.2020.103978_bib97) 2014; 4
Nourani (10.1016/j.chemolab.2020.103978_bib21) 2013; 490
Box (10.1016/j.chemolab.2020.103978_bib31) 1991
Anmala (10.1016/j.chemolab.2020.103978_bib48) 2014; 141
Raghuwanshi (10.1016/j.chemolab.2020.103978_bib42) 2006; 11
Diamantopoulou (10.1016/j.chemolab.2020.103978_bib7) 2007; 21
Maier (10.1016/j.chemolab.2020.103978_bib17) 2010; 25
Markus (10.1016/j.chemolab.2020.103978_bib40) 2003; 129
Basant (10.1016/j.chemolab.2020.103978_bib93) 2010; 104
References_xml – volume: 54
  start-page: 108
  year: 2014
  end-page: 127
  ident: bib11
  article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
  publication-title: Environ. Model. Software
– year: 1975
  ident: bib33
  article-title: Rank Correlation Methods
– volume: vol. 1
  year: 1992
  ident: bib56
  publication-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection
– volume: 15
  start-page: 101
  year: 2000
  end-page: 124
  ident: bib16
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ. Model. Software
– volume: 22
  start-page: 187
  year: 2013
  end-page: 201
  ident: bib8
  article-title: Application of artificial neural networks for water quality prediction
  publication-title: Neural Comput. Appl.
– volume: 21
  start-page: 649
  year: 2007
  end-page: 662
  ident: bib7
  article-title: Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers
  publication-title: Water Resour. Manag.
– volume: 27
  start-page: 185
  year: 2004
  end-page: 195
  ident: bib19
  article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
  publication-title: Adv. Water Resour.
– year: 1991
  ident: bib31
  article-title: Time Series Analysis, Forecasting and Control
– volume: 314
  start-page: 289
  year: 2005
  end-page: 311
  ident: bib66
  article-title: Recent advances in wavelet analyses: Part 2—amazon, Parana, Orinoco and Congo discharges time scale variability
  publication-title: J. Hydrol.
– volume: 29
  start-page: 114
  year: 2014
  end-page: 124
  ident: bib77
  article-title: A hybrid WA–CPSO-LSSVR model for dissolved oxygen content prediction in crab culture
  publication-title: Eng. Appl. Artif. Intell.
– volume: 184
  start-page: 4355
  year: 2012
  end-page: 4365
  ident: bib45
  article-title: Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks
  publication-title: Environ. Monit. Assess.
– volume: 29
  start-page: 17
  year: 2015
  end-page: 33
  ident: bib76
  article-title: river water prediction modeling using neural networks, fuzzy and wavelet coupled model
  publication-title: Water Resour. Manag.
– volume: 358
  start-page: 317
  year: 2008
  end-page: 331
  ident: bib69
  article-title: Estimation and forecasting of daily suspended sediment data using wavelet–neural networks
  publication-title: J. Hydrol.
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: bib15
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
– volume: 141
  year: 2014
  ident: bib48
  article-title: GIS and artificial neural network–based water quality model for a stream network in the upper green River Basin, Kentucky, USA
  publication-title: J. Environ. Eng.
– volume: 537
  start-page: 398
  year: 2016
  end-page: 407
  ident: bib78
  article-title: A wavelet–linear genetic programming model for sodium (Na+) concentration forecasting in rivers
  publication-title: J. Hydrol.
– volume: 85
  start-page: 269
  year: 2007
  end-page: 277
  ident: bib94
  article-title: TOMCAT: a MATLAB toolbox for multivariate calibration techniques
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 11
  start-page: 71
  year: 2006
  end-page: 79
  ident: bib42
  article-title: Runoff and sediment yield modeling using artificial neural networks: upper Siwane River, India
  publication-title: J. Hydrol. Eng.
– volume: 15
  start-page: 1052
  year: 2013
  end-page: 1061
  ident: bib36
  article-title: Statistical analysis and estimation of annual suspended sediments of major rivers in Japan
  publication-title: Environ. Sci.: Process. Impacts
– volume: 37
  start-page: 5331
  year: 2010
  end-page: 5335
  ident: bib91
  article-title: Integrating data transformation techniques with Hopfield neural networks for solving travelling salesman problem
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 2
  year: 2007
  end-page: 13
  ident: bib20
  article-title: Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
  publication-title: Environ. Model. Software
– volume: 95
  start-page: 188
  year: 2009
  end-page: 198
  ident: bib27
  article-title: Support vector machines and its applications in chemistry
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 4
  start-page: 425
  year: 2014
  end-page: 434
  ident: bib97
  article-title: Water quality management using statistical analysis and time-series prediction model
  publication-title: Appl. Water Sci.
– volume: 55
  start-page: 1175
  year: 2010
  end-page: 1189
  ident: bib75
  article-title: Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers
  publication-title: Hydrol. Sci. J.–J. Sci. Hydrol.
– volume: 314
  start-page: 275
  year: 2005
  end-page: 288
  ident: bib65
  article-title: Recent advances in wavelet analyses: Part 1. A review of concepts
  publication-title: J. Hydrol.
– volume: 28
  start-page: 689
  year: 2016
  end-page: 706
  ident: bib72
  article-title: Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 25
  start-page: 891
  year: 2010
  end-page: 909
  ident: bib17
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
  publication-title: Environ. Model. Software
– volume: 53
  start-page: 208
  year: 2015
  end-page: 217
  ident: bib63
  article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models
  publication-title: Appl. Ocean Res.
– volume: 40
  start-page: 438
  year: 2009
  end-page: 444
  ident: bib80
  article-title: Adaptive neuro-fuzzy computing technique for suspended sediment estimation
  publication-title: Adv. Eng. Software
– year: 1981
  ident: bib23
  article-title: Statistical Methods
– volume: 42
  start-page: 787
  year: 2011
  end-page: 796
  ident: bib54
  article-title: A Cascaded Fuzzy Inference System for Indian river water quality prediction
  publication-title: Adv. Eng. Software
– volume: 52
  start-page: 793
  year: 2007
  end-page: 807
  ident: bib53
  article-title: Deriving stage–discharge–sediment concentration relationships using fuzzy logic
  publication-title: Hydrol. Sci. J.
– volume: 204
  start-page: 182
  year: 1998
  end-page: 196
  ident: bib34
  article-title: A modified Mann-Kendall trend test for autocorrelated data
  publication-title: J. Hydrol.
– volume: 7
  start-page: 93
  year: 2010
  end-page: 110
  ident: bib74
  article-title: Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 186
  start-page: 597
  year: 2014
  end-page: 619
  ident: bib82
  article-title: Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study
  publication-title: Environ. Monit. Assess.
– volume: 572
  start-page: 336
  year: 2019
  end-page: 351
  ident: bib105
  article-title: A review of the artificial intelligence methods in groundwater level modeling
  publication-title: J. Hydrol.
– volume: 36
  start-page: 4523
  year: 2009
  end-page: 4527
  ident: bib85
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 586
  year: 2010
  end-page: 594
  ident: bib6
  article-title: A hybrid neural network and ARIMA model for water quality time series prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib51
  article-title: Fuzzy sets
  publication-title: Inf. Contr.
– start-page: 63
  year: 2007
  end-page: 74
  ident: bib28
  article-title: Computational Intelligence in Economics and Finance
– volume: 390
  start-page: 85
  year: 2010
  end-page: 91
  ident: bib38
  article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
  publication-title: J. Hydrol.
– volume: 6
  start-page: 286
  year: 2012
  end-page: 290
  ident: bib88
  article-title: Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water
  publication-title: Int. J. Chem. Biomol. Eng.
– volume: 90
  start-page: 1229
  year: 2009
  end-page: 1235
  ident: bib44
  article-title: Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
  publication-title: J. Environ. Manag.
– volume: 21
  start-page: 9212
  year: 2014
  end-page: 9227
  ident: bib83
  article-title: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 23
  start-page: 13576
  year: 2016
  end-page: 13577
  ident: bib103
  article-title: Comment on “Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model H. Wang & Z. Wu & C. Hu & X. Du. Environ Sci Pollut Res, 22 (18), 14095-14103.”
  publication-title: Environ. Sci. Pollut. Res.
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: bib18
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review
  publication-title: J. Hydrol.
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  ident: bib101
  article-title: Evaluating the use of" goodness-of-fit" measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
– volume: 186
  start-page: 2749
  year: 2014
  end-page: 2765
  ident: bib26
  article-title: Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data
  publication-title: Environ. Monit. Assess.
– volume: 23
  start-page: 938
  year: 2015
  end-page: 940
  ident: bib102
  article-title: Comment on “Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670”
  publication-title: Environ. Sci. Pollut. Res.
– volume: 703
  start-page: 152
  year: 2011
  end-page: 162
  ident: bib14
  article-title: Support vector machines in water quality management
  publication-title: Anal. Chim. Acta
– volume: 9
  start-page: 143
  year: 1995
  end-page: 151
  ident: bib87
  article-title: Back-propagation neural networks for modeling complex systems
  publication-title: Artif. Intell. Eng.
– volume: 104
  start-page: 172
  year: 2010
  end-page: 180
  ident: bib93
  article-title: Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 56
  start-page: 1586
  year: 2008
  end-page: 1597
  ident: bib98
  article-title: An ANN application for water quality forecasting
  publication-title: Mar. Pollut. Bull.
– volume: 15
  start-page: 729
  year: 2010
  end-page: 743
  ident: bib22
  article-title: Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms
  publication-title: J. Hydrol. Eng.
– year: 1970
  ident: bib29
  article-title: Time Series Analysis: Forecasting and Control
– volume: 21
  start-page: 1658
  year: 2014
  end-page: 1670
  ident: bib81
  article-title: Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring
  publication-title: Environ. Sci. Pollut. Control Ser.
– year: 1995
  ident: bib59
  article-title: The Nature of Statical Learning Theory
– volume: 351
  start-page: 288
  year: 2008
  end-page: 298
  ident: bib58
  article-title: A genetic programming approach to suspended sediment modelling
  publication-title: J. Hydrol.
– volume: 48
  start-page: 349
  year: 2003
  end-page: 361
  ident: bib89
  article-title: Estimation, forecasting and extrapolation of flow data by artificial neural networks
  publication-title: Hydrol. Sci. J.
– volume: 2014
  year: 2014
  ident: bib64
  article-title: A conjunction method of wavelet transform-particle swarm optimization-support vector machine for streamflow forecasting
  publication-title: J. Appl. Math.
– volume: 39
  start-page: 6895
  year: 2014
  end-page: 6905
  ident: bib70
  article-title: A hybrid methodology for salinity time series forecasting based on wavelet transform and NARX neural networks
  publication-title: Arabian J. Sci. Eng.
– volume: 513
  start-page: 362
  year: 2014
  end-page: 375
  ident: bib5
  article-title: Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey
  publication-title: J. Hydrol.
– year: 2008
  ident: bib57
  article-title: A Field Guide to Genetic Programming
– volume: 16
  start-page: 613
  year: 2010
  end-page: 627
  ident: bib4
  article-title: River suspended sediment load prediction: application of ANN and wavelet conjunction model
  publication-title: J. Hydrol. Eng.
– start-page: 395
  year: 2005
  end-page: 406
  ident: bib96
  article-title: June). Suspended sediment load estimation in lower Sakarya river by using soft computational methods
  publication-title: Proceeding of the International Conference on Computational and Mathematical Methods in Science and Engineering
– volume: 139
  start-page: 947
  year: 2013
  end-page: 957
  ident: bib13
  article-title: Modeling of water quality parameters using data-driven models
  publication-title: J. Environ. Eng.
– volume: 21
  start-page: 833
  year: 2012
  end-page: 841
  ident: bib47
  article-title: Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation
  publication-title: Neural Comput. Appl.
– year: 2015
  ident: bib60
  article-title: Modelling long-term monthly temperatures by several data-driven methods using geographical inputs
  publication-title: Int. J. Climatol.
– volume: 6
  start-page: 5298
  year: 2011
  end-page: 5308
  ident: bib61
  article-title: An application of different artificial intelligences techniques for water quality prediction
  publication-title: Int. J. Phys. Sci.
– volume: 108
  start-page: 133
  year: 2011
  end-page: 141
  ident: bib67
  article-title: Joint multiple adaptive wavelet regression ensembles
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 160
  start-page: 59
  year: 2017
  end-page: 71
  ident: bib68
  article-title: Information Quality Ratio as a novel metric for mother wavelet selection
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 43
  start-page: 47
  year: 1998
  end-page: 66
  ident: bib92
  article-title: An artificial neural network approach to rainfall-runoff modelling
  publication-title: Hydrol. Sci. J.
– volume: 529
  start-page: 302
  year: 2015
  end-page: 315
  ident: bib49
  article-title: Comparing various artificial neural network types for water temperature prediction in rivers
  publication-title: J. Hydrol.
– volume: 494
  start-page: 202
  year: 2014
  end-page: 210
  ident: bib84
  article-title: Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis
  publication-title: Sci. Total Environ.
– start-page: 384
  year: 2018
  ident: bib30
  article-title: Forecasting: Principles and Practice
– volume: 140
  start-page: 69
  year: 2013
  end-page: 76
  ident: bib55
  article-title: Modeling of dissolved oxygen applying stepwise regression and a template-based fuzzy logic system
  publication-title: J. Environ. Eng.
– volume: 143
  start-page: 8
  year: 2014
  end-page: 16
  ident: bib86
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J. Environ. Manag.
– volume: 45
  year: 2017
  ident: bib37
  article-title: Modeling of dissolved oxygen concentration and its hysteresis behavior in rivers using wavelet transform-based hybrid models
  publication-title: CLEAN–Soil, Air, Water
– start-page: 245
  year: 1945
  end-page: 259
  ident: bib32
  article-title: Nonparametric tests against trend
  publication-title: Econometrica: J. Econom. Soc.
– volume: 129
  start-page: 267
  year: 2003
  end-page: 274
  ident: bib40
  article-title: Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks
  publication-title: J. Environ. Eng.
– volume: 187
  start-page: 1
  year: 2015
  end-page: 16
  ident: bib71
  article-title: Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model
  publication-title: Environ. Monit. Assess.
– volume: 511
  start-page: 279
  year: 2014
  end-page: 289
  ident: bib79
  article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques
  publication-title: J. Hydrol.
– volume: 44
  year: 2008
  ident: bib43
  article-title: Bayesian model selection applied to artificial neural networks used for water resources modeling
  publication-title: Water Resour. Res.
– volume: 456
  start-page: 110
  year: 2012
  end-page: 120
  ident: bib62
  article-title: Modeling discharge-suspended sediment relationship using least square support vector machine
  publication-title: J. Hydrol.
– volume: 63
  start-page: 1309
  year: 1982
  end-page: 1313
  ident: bib99
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 409
  start-page: 2917
  year: 2011
  end-page: 2928
  ident: bib2
  article-title: Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers
  publication-title: Sci. Total Environ.
– year: 2005
  ident: bib95
  article-title: Kendall Rank Correlation and Mann-Kendall Trend Test
– volume: 38
  start-page: 275
  year: 2010
  end-page: 286
  ident: bib12
  article-title: Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction
  publication-title: Clean–Soil, Air, Water
– volume: 189
  start-page: 436
  year: 2005
  end-page: 446
  ident: bib50
  article-title: Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn
  publication-title: Ecol. Model.
– volume: 17
  start-page: 1042
  year: 2011
  end-page: 1046
  ident: bib35
  article-title: Innovative trend analysis methodology
  publication-title: J. Hydrol. Eng.
– volume: 20
  start-page: 9006
  year: 2013
  end-page: 9013
  ident: bib25
  article-title: Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 220
  start-page: 888
  year: 2009
  end-page: 895
  ident: bib9
  article-title: Artificial neural network modeling of the river water quality—a case study
  publication-title: Ecol. Model.
– volume: 35
  start-page: 1650
  year: 2014
  end-page: 1657
  ident: bib104
  article-title: Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA
  publication-title: Environ. Technol.
– volume: 185
  start-page: 4361
  year: 2013
  end-page: 4371
  ident: bib46
  article-title: Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China
  publication-title: Environ. Monit. Assess.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: bib100
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 98
  start-page: 855
  year: 2011
  end-page: 866
  ident: bib1
  article-title: Suspended sediment load prediction of river systems: an artificial neural network approach
  publication-title: Agric. Water Manag.
– volume: 49
  start-page: 183
  year: 2004
  end-page: 197
  ident: bib52
  article-title: Daily suspended sediment modelling using a fuzzy differential evolution approach/Modélisation journalière des matières en suspension par une approche d’évolution différentielle floue
  publication-title: Hydrol. Sci. J.
– volume: 187
  start-page: 1
  year: 2015
  end-page: 22
  ident: bib73
  article-title: A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States
  publication-title: Environ. Monit. Assess.
– volume: 138
  start-page: 654
  year: 2011
  end-page: 662
  ident: bib24
  article-title: Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado
  publication-title: J. Environ. Eng.
– volume: 129
  start-page: 505
  year: 2003
  end-page: 510
  ident: bib41
  article-title: Evaluation of neural networks for modeling nitrate concentrations in rivers
  publication-title: J. Water Resour. Plann. Manag.
– volume: 407
  start-page: 4916
  year: 2009
  end-page: 4927
  ident: bib3
  article-title: Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
  publication-title: Sci. Total Environ.
– volume: 9
  start-page: 176
  year: 2016
  ident: bib39
  article-title: Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters
  publication-title: Arabian J. Geosci.
– volume: 490
  start-page: 41
  year: 2013
  end-page: 55
  ident: bib21
  article-title: A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process
  publication-title: J. Hydrol.
– volume: 36
  start-page: 519
  year: 2009
  end-page: 526
  ident: bib90
  article-title: Investigating data preprocessing methods for circuit complexity models
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 47
  year: 2014
  end-page: 56
  ident: bib10
  article-title: Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches
  publication-title: Limnology
– volume: 15
  start-page: 729
  issue: 10
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib22
  article-title: Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000245
– volume: 494
  start-page: 202
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib84
  article-title: Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.06.133
– volume: 139
  start-page: 947
  issue: 7
  year: 2013
  ident: 10.1016/j.chemolab.2020.103978_bib13
  article-title: Modeling of water quality parameters using data-driven models
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000706
– volume: 7
  start-page: 93
  issue: 1
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib74
  article-title: Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/BF03326121
– volume: 38
  start-page: 275
  issue: 3
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib12
  article-title: Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction
  publication-title: Clean–Soil, Air, Water
  doi: 10.1002/clen.200900191
– volume: 140
  start-page: 69
  issue: 1
  year: 2013
  ident: 10.1016/j.chemolab.2020.103978_bib55
  article-title: Modeling of dissolved oxygen applying stepwise regression and a template-based fuzzy logic system
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000780
– volume: 44
  issue: 4
  year: 2008
  ident: 10.1016/j.chemolab.2020.103978_bib43
  article-title: Bayesian model selection applied to artificial neural networks used for water resources modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006155
– volume: 129
  start-page: 505
  issue: 6
  year: 2003
  ident: 10.1016/j.chemolab.2020.103978_bib41
  article-title: Evaluation of neural networks for modeling nitrate concentrations in rivers
  publication-title: J. Water Resour. Plann. Manag.
  doi: 10.1061/(ASCE)0733-9496(2003)129:6(505)
– volume: 90
  start-page: 1229
  issue: 2
  year: 2009
  ident: 10.1016/j.chemolab.2020.103978_bib44
  article-title: Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
  publication-title: J. Environ. Manag.
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.chemolab.2020.103978_bib15
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 456
  start-page: 110
  year: 2012
  ident: 10.1016/j.chemolab.2020.103978_bib62
  article-title: Modeling discharge-suspended sediment relationship using least square support vector machine
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.06.019
– volume: 15
  start-page: 1052
  issue: 5
  year: 2013
  ident: 10.1016/j.chemolab.2020.103978_bib36
  article-title: Statistical analysis and estimation of annual suspended sediments of major rivers in Japan
  publication-title: Environ. Sci.: Process. Impacts
– volume: 55
  start-page: 1175
  issue: 7
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib75
  article-title: Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers
  publication-title: Hydrol. Sci. J.–J. Sci. Hydrol.
  doi: 10.1080/02626667.2010.508871
– volume: 42
  start-page: 787
  issue: 10
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib54
  article-title: A Cascaded Fuzzy Inference System for Indian river water quality prediction
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2011.05.018
– year: 1975
  ident: 10.1016/j.chemolab.2020.103978_bib33
– volume: 407
  start-page: 4916
  issue: 17
  year: 2009
  ident: 10.1016/j.chemolab.2020.103978_bib3
  article-title: Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.05.016
– volume: 54
  start-page: 108
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib11
  article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2013.12.016
– volume: 48
  start-page: 349
  issue: 3
  year: 2003
  ident: 10.1016/j.chemolab.2020.103978_bib89
  article-title: Estimation, forecasting and extrapolation of flow data by artificial neural networks
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.48.3.349.45288
– volume: 185
  start-page: 4361
  issue: 5
  year: 2013
  ident: 10.1016/j.chemolab.2020.103978_bib46
  article-title: Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-012-2874-8
– volume: 85
  start-page: 269
  issue: 2
  year: 2007
  ident: 10.1016/j.chemolab.2020.103978_bib94
  article-title: TOMCAT: a MATLAB toolbox for multivariate calibration techniques
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2006.03.006
– volume: 21
  start-page: 9212
  issue: 15
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib83
  article-title: Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-014-2842-7
– volume: 15
  start-page: 101
  issue: 1
  year: 2000
  ident: 10.1016/j.chemolab.2020.103978_bib16
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ. Model. Software
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 22
  start-page: 187
  issue: 1
  year: 2013
  ident: 10.1016/j.chemolab.2020.103978_bib8
  article-title: Application of artificial neural networks for water quality prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0940-3
– volume: 314
  start-page: 289
  issue: 1
  year: 2005
  ident: 10.1016/j.chemolab.2020.103978_bib66
  article-title: Recent advances in wavelet analyses: Part 2—amazon, Parana, Orinoco and Congo discharges time scale variability
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.04.004
– volume: 20
  start-page: 9006
  issue: 12
  year: 2013
  ident: 10.1016/j.chemolab.2020.103978_bib25
  article-title: Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-013-1876-6
– volume: 6
  start-page: 286
  year: 2012
  ident: 10.1016/j.chemolab.2020.103978_bib88
  article-title: Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water
  publication-title: Int. J. Chem. Biomol. Eng.
– volume: 15
  start-page: 47
  issue: 1
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib10
  article-title: Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches
  publication-title: Limnology
  doi: 10.1007/s10201-013-0412-1
– volume: 529
  start-page: 302
  year: 2015
  ident: 10.1016/j.chemolab.2020.103978_bib49
  article-title: Comparing various artificial neural network types for water temperature prediction in rivers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.07.044
– volume: 143
  start-page: 8
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib86
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J. Environ. Manag.
– volume: 9
  start-page: 143
  issue: 3
  year: 1995
  ident: 10.1016/j.chemolab.2020.103978_bib87
  article-title: Back-propagation neural networks for modeling complex systems
  publication-title: Artif. Intell. Eng.
  doi: 10.1016/0954-1810(94)00011-S
– volume: 22
  start-page: 2
  issue: 1
  year: 2007
  ident: 10.1016/j.chemolab.2020.103978_bib20
  article-title: Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2005.09.009
– year: 1970
  ident: 10.1016/j.chemolab.2020.103978_bib29
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 10.1016/j.chemolab.2020.103978_bib51
  article-title: Fuzzy sets
  publication-title: Inf. Contr.
  doi: 10.1016/S0019-9958(65)90241-X
– start-page: 384
  year: 2018
  ident: 10.1016/j.chemolab.2020.103978_bib30
– volume: 104
  start-page: 172
  issue: 2
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib93
  article-title: Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.08.005
– volume: 35
  start-page: 1650
  issue: 13
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib104
  article-title: Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2013.878396
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib18
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 27
  start-page: 185
  issue: 2
  year: 2004
  ident: 10.1016/j.chemolab.2020.103978_bib19
  article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2003.10.003
– volume: 39
  start-page: 6895
  issue: 10
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib70
  article-title: A hybrid methodology for salinity time series forecasting based on wavelet transform and NARX neural networks
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-014-1243-z
– volume: 184
  start-page: 4355
  issue: 7
  year: 2012
  ident: 10.1016/j.chemolab.2020.103978_bib45
  article-title: Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-011-2269-2
– volume: 49
  start-page: 183
  issue: 1
  year: 2004
  ident: 10.1016/j.chemolab.2020.103978_bib52
  article-title: Daily suspended sediment modelling using a fuzzy differential evolution approach/Modélisation journalière des matières en suspension par une approche d’évolution différentielle floue
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.49.1.183.54001
– volume: 9
  start-page: 176
  issue: 3
  year: 2016
  ident: 10.1016/j.chemolab.2020.103978_bib39
  article-title: Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-015-2220-x
– volume: 37
  start-page: 5331
  issue: 7
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib91
  article-title: Integrating data transformation techniques with Hopfield neural networks for solving travelling salesman problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.01.002
– volume: 160
  start-page: 59
  year: 2017
  ident: 10.1016/j.chemolab.2020.103978_bib68
  article-title: Information Quality Ratio as a novel metric for mother wavelet selection
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.11.012
– volume: 189
  start-page: 436
  issue: 3
  year: 2005
  ident: 10.1016/j.chemolab.2020.103978_bib50
  article-title: Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2005.03.007
– year: 1995
  ident: 10.1016/j.chemolab.2020.103978_bib59
– volume: 187
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.chemolab.2020.103978_bib73
  article-title: A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4381-1
– volume: 35
  start-page: 233
  issue: 1
  year: 1999
  ident: 10.1016/j.chemolab.2020.103978_bib101
  article-title: Evaluating the use of" goodness-of-fit" measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900018
– volume: 11
  start-page: 71
  issue: 1
  year: 2006
  ident: 10.1016/j.chemolab.2020.103978_bib42
  article-title: Runoff and sediment yield modeling using artificial neural networks: upper Siwane River, India
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2006)11:1(71)
– start-page: 245
  year: 1945
  ident: 10.1016/j.chemolab.2020.103978_bib32
  article-title: Nonparametric tests against trend
  publication-title: Econometrica: J. Econom. Soc.
  doi: 10.2307/1907187
– volume: 28
  start-page: 689
  issue: 4
  year: 2016
  ident: 10.1016/j.chemolab.2020.103978_bib72
  article-title: Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2015.1042531
– volume: 187
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.chemolab.2020.103978_bib71
  article-title: Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4590-7
– year: 2005
  ident: 10.1016/j.chemolab.2020.103978_bib95
– volume: 186
  start-page: 597
  issue: 1
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib82
  article-title: Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3402-1
– volume: 4
  start-page: 425
  issue: 4
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib97
  article-title: Water quality management using statistical analysis and time-series prediction model
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-014-0159-9
– volume: 23
  start-page: 938
  issue: 1
  year: 2015
  ident: 10.1016/j.chemolab.2020.103978_bib102
  article-title: Comment on “Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670”
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4730-1
– volume: 17
  start-page: 1042
  issue: 9
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib35
  article-title: Innovative trend analysis methodology
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000556
– volume: vol. 1
  year: 1992
  ident: 10.1016/j.chemolab.2020.103978_bib56
– volume: 52
  start-page: 793
  issue: 4
  year: 2007
  ident: 10.1016/j.chemolab.2020.103978_bib53
  article-title: Deriving stage–discharge–sediment concentration relationships using fuzzy logic
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.52.4.793
– volume: 6
  start-page: 5298
  issue: 22
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib61
  article-title: An application of different artificial intelligences techniques for water quality prediction
  publication-title: Int. J. Phys. Sci.
– volume: 351
  start-page: 288
  issue: 3
  year: 2008
  ident: 10.1016/j.chemolab.2020.103978_bib58
  article-title: A genetic programming approach to suspended sediment modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.12.005
– volume: 95
  start-page: 188
  issue: 2
  year: 2009
  ident: 10.1016/j.chemolab.2020.103978_bib27
  article-title: Support vector machines and its applications in chemistry
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2008.10.007
– volume: 23
  start-page: 586
  issue: 4
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib6
  article-title: A hybrid neural network and ARIMA model for water quality time series prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2009.09.015
– volume: 220
  start-page: 888
  issue: 6
  year: 2009
  ident: 10.1016/j.chemolab.2020.103978_bib9
  article-title: Artificial neural network modeling of the river water quality—a case study
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.01.004
– volume: 21
  start-page: 1658
  issue: 3
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib81
  article-title: Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-013-2048-4
– volume: 513
  start-page: 362
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib5
  article-title: Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.005
– volume: 129
  start-page: 267
  issue: 3
  year: 2003
  ident: 10.1016/j.chemolab.2020.103978_bib40
  article-title: Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2003)129:3(267)
– volume: 40
  start-page: 438
  issue: 6
  year: 2009
  ident: 10.1016/j.chemolab.2020.103978_bib80
  article-title: Adaptive neuro-fuzzy computing technique for suspended sediment estimation
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2008.06.004
– start-page: 63
  year: 2007
  ident: 10.1016/j.chemolab.2020.103978_bib28
– volume: 186
  start-page: 2749
  issue: 5
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib26
  article-title: Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3576-6
– volume: 703
  start-page: 152
  issue: 2
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib14
  article-title: Support vector machines in water quality management
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.07.027
– volume: 29
  start-page: 114
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib77
  article-title: A hybrid WA–CPSO-LSSVR model for dissolved oxygen content prediction in crab culture
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.09.019
– volume: 56
  start-page: 1586
  issue: 9
  year: 2008
  ident: 10.1016/j.chemolab.2020.103978_bib98
  article-title: An ANN application for water quality forecasting
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2008.05.021
– volume: 314
  start-page: 275
  issue: 1
  year: 2005
  ident: 10.1016/j.chemolab.2020.103978_bib65
  article-title: Recent advances in wavelet analyses: Part 1. A review of concepts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.04.003
– volume: 98
  start-page: 855
  issue: 5
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib1
  article-title: Suspended sediment load prediction of river systems: an artificial neural network approach
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2010.12.012
– volume: 108
  start-page: 133
  issue: 2
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib67
  article-title: Joint multiple adaptive wavelet regression ensembles
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.06.006
– volume: 141
  issue: 5
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib48
  article-title: GIS and artificial neural network–based water quality model for a stream network in the upper green River Basin, Kentucky, USA
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000801
– volume: 36
  start-page: 519
  issue: 1
  year: 2009
  ident: 10.1016/j.chemolab.2020.103978_bib90
  article-title: Investigating data preprocessing methods for circuit complexity models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.09.052
– volume: 16
  start-page: 613
  issue: 8
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib4
  article-title: River suspended sediment load prediction: application of ANN and wavelet conjunction model
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000347
– volume: 490
  start-page: 41
  year: 2013
  ident: 10.1016/j.chemolab.2020.103978_bib21
  article-title: A geomorphology-based ANFIS model for multi-station modeling of rainfall–runoff process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.03.024
– volume: 23
  start-page: 13576
  issue: 13
  year: 2016
  ident: 10.1016/j.chemolab.2020.103978_bib103
  article-title: Comment on “Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model H. Wang & Z. Wu & C. Hu & X. Du. Environ Sci Pollut Res, 22 (18), 14095-14103.”
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6781-3
– year: 1981
  ident: 10.1016/j.chemolab.2020.103978_bib23
– volume: 53
  start-page: 208
  year: 2015
  ident: 10.1016/j.chemolab.2020.103978_bib63
  article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2015.09.001
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.chemolab.2020.103978_bib100
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– volume: 409
  start-page: 2917
  issue: 15
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib2
  article-title: Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.11.028
– volume: 36
  start-page: 4523
  issue: 3
  year: 2009
  ident: 10.1016/j.chemolab.2020.103978_bib85
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.05.024
– volume: 2014
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib64
  article-title: A conjunction method of wavelet transform-particle swarm optimization-support vector machine for streamflow forecasting
  publication-title: J. Appl. Math.
– volume: 45
  issue: 2
  year: 2017
  ident: 10.1016/j.chemolab.2020.103978_bib37
  article-title: Modeling of dissolved oxygen concentration and its hysteresis behavior in rivers using wavelet transform-based hybrid models
  publication-title: CLEAN–Soil, Air, Water
  doi: 10.1002/clen.201500395
– volume: 358
  start-page: 317
  issue: 3
  year: 2008
  ident: 10.1016/j.chemolab.2020.103978_bib69
  article-title: Estimation and forecasting of daily suspended sediment data using wavelet–neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.06.013
– year: 1991
  ident: 10.1016/j.chemolab.2020.103978_bib31
– volume: 511
  start-page: 279
  year: 2014
  ident: 10.1016/j.chemolab.2020.103978_bib79
  article-title: Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.01.054
– volume: 25
  start-page: 891
  issue: 8
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib17
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 204
  start-page: 182
  issue: 1
  year: 1998
  ident: 10.1016/j.chemolab.2020.103978_bib34
  article-title: A modified Mann-Kendall trend test for autocorrelated data
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(97)00125-X
– year: 2015
  ident: 10.1016/j.chemolab.2020.103978_bib60
  article-title: Modelling long-term monthly temperatures by several data-driven methods using geographical inputs
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4249
– volume: 390
  start-page: 85
  issue: 1
  year: 2010
  ident: 10.1016/j.chemolab.2020.103978_bib38
  article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.06.033
– volume: 537
  start-page: 398
  year: 2016
  ident: 10.1016/j.chemolab.2020.103978_bib78
  article-title: A wavelet–linear genetic programming model for sodium (Na+) concentration forecasting in rivers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.062
– start-page: 395
  year: 2005
  ident: 10.1016/j.chemolab.2020.103978_bib96
  article-title: June). Suspended sediment load estimation in lower Sakarya river by using soft computational methods
– volume: 138
  start-page: 654
  issue: 6
  year: 2011
  ident: 10.1016/j.chemolab.2020.103978_bib24
  article-title: Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000511
– volume: 21
  start-page: 649
  issue: 3
  year: 2007
  ident: 10.1016/j.chemolab.2020.103978_bib7
  article-title: Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-006-9036-0
– volume: 29
  start-page: 17
  issue: 1
  year: 2015
  ident: 10.1016/j.chemolab.2020.103978_bib76
  article-title: river water prediction modeling using neural networks, fuzzy and wavelet coupled model
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0824-7
– year: 2008
  ident: 10.1016/j.chemolab.2020.103978_bib57
– volume: 43
  start-page: 47
  issue: 1
  year: 1998
  ident: 10.1016/j.chemolab.2020.103978_bib92
  article-title: An artificial neural network approach to rainfall-runoff modelling
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669809492102
– volume: 63
  start-page: 1309
  issue: 11
  year: 1982
  ident: 10.1016/j.chemolab.2020.103978_bib99
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
– volume: 21
  start-page: 833
  issue: 5
  year: 2012
  ident: 10.1016/j.chemolab.2020.103978_bib47
  article-title: Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0486-1
– volume: 572
  start-page: 336
  year: 2019
  ident: 10.1016/j.chemolab.2020.103978_bib105
  article-title: A review of the artificial intelligence methods in groundwater level modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.12.037
SSID ssj0016941
Score 2.630563
SecondaryResourceType review_article
Snippet The need for accurate predictions of water quality in rivers has encouraged researchers to develop new methods and to improve the predictive ability of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103978
SubjectTerms Artificial intelligence
Hybrid model
Prediction
Review
River water quality
Wavelet transform
Title Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review
URI https://dx.doi.org/10.1016/j.chemolab.2020.103978
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMsCCeIryqDywumkS20nYqoqqgOgClbpFjmOLViWtQhHqwm_nLo-qSEgdGJ3kouhs333n3HdHyK1nAdP7XcW0MJJx4fos8YKU2SRSXCkb-AW36nkkh2P-OBGTBunXXBhMq6xsf2nTC2tdXXEqbTrL6dR5wToiCKcBggDM9ZHEx3mAXQw635s0DxeJmmV974jh01ss4VkH9PIOEWQCcaJX8M-Ldmt_OagtpzM4IocVWqS98oOOScNkJ2S_XzdpOyUzvFUWgaDTreqaDL1TSvEgYG6oylL6tkZuFi0633xQgKp0meNPGpwYurD0C0BnTkuO5RreRfMiY-OO9mhJbzkj48H9a3_IqvYJTPuut2IWvHEAG9pA5GkiHUZBIi1PrJJB2tUSdp4rlIzCMBEWGbOcKxhbKYWrEg4w65w0s0VmLggFjIRIUusU5s4IrUIBe1dpwBNWA8BsEVHrLNZVbXFscTGP6ySyWVzrOkZdx6WuW8TZyC3L6ho7JaJ6SuJf6yQGF7BD9vIfslfkAEeYN-CKa9Jc5Z_mBuDIKmkX661N9noPT8PRD_jt33w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4QD3gxPiM-e_BaYB_dhzdCJKjARUi4NW13GyG4kBVjuPjbndkHwcSEg8fd7mw2M23nm-58M4Tc2wYwvdOSTPPYYy63HKZsP2JGhdKV0vhOxq0aDL3e2H2e8EmFdEouDKZVFnt_vqdnu3Vxp1los7mcTpuvWEcE4TRAEIC5TrhH9l1u-xiBNb43eR4WMjXzAt8hw8e3aMKzBijmHUJIBYGinRHQs35rf3moLa_TPSKHBVyk7fyLjkklTk5IrVN2aTslMxzKq0DQ6VZ5TYbuKaJ4EjCPqUwi-rZGchbNWt98UMCqdJniXxq0DF0Y-gWoM6U5yXIN76JplrLxQNs057eckXH3cdTpsaJ_AtOOZa-YAXfsw4qOIfSMQx2EvvKMq4z0_KilPVh6FpdeGASKG6TMuq6Ea-N53JLKBZx1TqrJIokvCAWQhFBS6wiMF3MtAw6LV2oAFEYDwqwTXupM6KK4OPa4mIsyi2wmSl0L1LXIdV0nzY3cMi-vsVMiLE0ifk0UAT5gh-zlP2TvSK03GvRF_2n4ckUOcASTCCx-Taqr9DO-AWyyUrfZ3PsBP8LhEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-based+single+and+hybrid+models+for+prediction+of+water+quality+in+rivers%3A+A+review&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Rajaee%2C+Taher&rft.au=Khani%2C+Salar&rft.au=Ravansalar%2C+Masoud&rft.date=2020-05-15&rft.issn=0169-7439&rft.volume=200&rft.spage=103978&rft_id=info:doi/10.1016%2Fj.chemolab.2020.103978&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2020_103978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon