Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems
Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroi...
Saved in:
| Published in | Chinese physics B Vol. 23; no. 4; pp. 113 - 117 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 1741-4199 |
| DOI | 10.1088/1674-1056/23/4/040304 |
Cover
| Abstract | Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP. |
|---|---|
| AbstractList | Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum information processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a potential system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP. Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP. |
| Author | 曹聪 刘刚 张茹 王川 |
| AuthorAffiliation | school of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China state Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beifing 100876, China School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| Author_xml | – sequence: 1 fullname: 曹聪 刘刚 张茹 王川 |
| BookMark | eNqFkc9O4zAQxq0VSFsKj7CSuXHJ1v_iOuKEECxIFVyWs-U4k9arxG5tB6mPwFuvq6IeuHAaefz9vtF8c4HOfPCA0C9KflOi1ILKpagoqeWC8YVYEEE4ET_QjJFaVVxxcYZmJ81PdJHSP0IkJYzP0MfzuB1gBJ9NdsHj0GODi_8QrBnwS7WbWpexDb5zh__S225MArw2GfCUnF_jvAHsXY5hDb56N9Z4u8e2OELExnd4dDaGHGJwXcEjpGJTnsV0KqM7nPYpw5gu0XlvhgRXn3WO3h4f_t4_VavXP8_3d6vKcspy1dOaKqWgUXVtaNcA55II0cISwCzL7kbWHeHcQtt3De1pJ9qmNZIzqpisLZ-jm6PvNobdBCnr0SULw2A8hClpupSMyIYzWaS3R2lZIKUIvbbumFOOxg2aEn04gD6Eqw_hasa10McDFLr-Qm-jG03cf8tdf3Kb4Ne7EvEJFA0lUjaC_wdzb5l7 |
| CitedBy_id | crossref_primary_10_1007_s11128_016_1344_6 |
| Cites_doi | 10.1364/JOSAB.29.003349 10.1103/PhysRevA.79.032303 10.1038/nphys569 10.1126/science.1157233 10.1038/nmat2420 10.1103/PhysRevA.64.012305 10.1126/science.1196436 10.1103/PhysRevLett.89.237901 10.1038/nature01623 10.1103/PhysRevA.62.052317 10.1364/OE.21.004093 10.1103/PhysRevA.76.044305 10.1038/nphys318 10.1103/PhysRevLett.92.127902 10.1103/PhysRevA.79.064304 10.1103/PhysRevA.52.3457 10.1088/1674-1056/22/5/050306 10.1021/nl8032944 10.1126/science.1152261 10.1063/1.3262948 10.1103/PhysRevLett.93.250502 10.1103/PhysRevA.83.054305 10.1103/PhysRevB.74.104303 10.1088/1674-1056/18/6/034 10.1364/OE.16.019136 10.1103/PhysRevA.72.032333 10.1103/PhysRevB.74.161203 10.1103/PhysRevLett.102.083601 10.1103/PhysRevA.52.R2493 10.1038/nature09256 10.1103/PhysRevLett.85.2392 10.1063/1.3499300 10.1103/PhysRevA.78.014304 10.1103/PhysRevLett.93.130501 10.1103/PhysRevLett.79.325 10.1088/1367-2630/11/1/013007 10.1103/PhysRevA.87.022305 10.1126/science.276.5321.2012 10.1088/0034-4885/69/5/R02 10.1038/nphoton.2007.46 10.1016/j.optcom.2013.07.083 10.1364/OE.20.024664 10.1103/PhysRevLett.105.040504 10.1007/978-3-642-79504-6 10.1038/nphys1536 10.1021/nl061342r 10.1364/OE.21.005988 10.1103/PhysRevA.73.012323 10.1103/PhysRevLett.104.160503 |
| ContentType | Journal Article |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
| DOI | 10.1088/1674-1056/23/4/040304 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems |
| EISSN | 2058-3834 1741-4199 |
| EndPage | 117 |
| ExternalDocumentID | 10_1088_1674_1056_23_4_040304 49106694 |
| GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c312t-f151888e9855a1d9e336044be7eea7040a65d033cebfd91f1d4b9ba63218265c3 |
| ISSN | 1674-1056 |
| IngestDate | Thu Oct 02 12:06:46 EDT 2025 Wed Oct 01 03:34:48 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 Wed Feb 14 10:37:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-f151888e9855a1d9e336044be7eea7040a65d033cebfd91f1d4b9ba63218265c3 |
| Notes | N-qubit conditional phase gate, nitrogen-vacancy center, microtoroidal resonator 11-5639/O4 Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1762069326 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1762069326 crossref_citationtrail_10_1088_1674_1056_23_4_040304 crossref_primary_10_1088_1674_1056_23_4_040304 chongqing_primary_49106694 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chinese Physics |
| PublicationYear | 2014 |
| References | 44 45 46 47 48 49 He L Y (36) 2013; 298 Pan G Z (12) 2009; 18 50 Cheng L Y (16) 2013; 22 51 10 13 14 15 17 18 19 Nielsen M A (1) 2000 2 3 4 5 6 7 8 9 20 21 Young A (27) 2009; 11 22 23 24 25 26 28 29 30 31 32 33 34 35 37 38 39 Walther H (11) 2006; 69 40 41 42 43 |
| References_xml | – ident: 35 doi: 10.1364/JOSAB.29.003349 – ident: 30 doi: 10.1103/PhysRevA.79.032303 – year: 2000 ident: 1 publication-title: Quantum Computation and Quantum Information – ident: 49 doi: 10.1038/nphys569 – ident: 23 doi: 10.1126/science.1157233 – ident: 24 doi: 10.1038/nmat2420 – ident: 9 doi: 10.1103/PhysRevA.64.012305 – ident: 28 doi: 10.1126/science.1196436 – ident: 37 doi: 10.1103/PhysRevLett.89.237901 – ident: 3 doi: 10.1038/nature01623 – ident: 6 doi: 10.1103/PhysRevA.62.052317 – ident: 14 doi: 10.1364/OE.21.004093 – ident: 20 doi: 10.1103/PhysRevA.76.044305 – ident: 22 doi: 10.1038/nphys318 – ident: 17 doi: 10.1103/PhysRevLett.92.127902 – ident: 31 doi: 10.1103/PhysRevA.79.064304 – ident: 2 doi: 10.1103/PhysRevA.52.3457 – volume: 22 start-page: 050306 issn: 1674-1056 year: 2013 ident: 16 publication-title: Chin. Phys. doi: 10.1088/1674-1056/22/5/050306 – ident: 47 doi: 10.1021/nl8032944 – ident: 29 doi: 10.1126/science.1152261 – ident: 41 doi: 10.1063/1.3262948 – ident: 4 doi: 10.1103/PhysRevLett.93.250502 – ident: 32 doi: 10.1103/PhysRevA.83.054305 – ident: 40 doi: 10.1103/PhysRevB.74.104303 – volume: 18 start-page: 2319 issn: 1674-1056 year: 2009 ident: 12 publication-title: Chin. Phys. doi: 10.1088/1674-1056/18/6/034 – ident: 48 doi: 10.1364/OE.16.019136 – ident: 18 doi: 10.1103/PhysRevA.72.032333 – ident: 43 doi: 10.1103/PhysRevB.74.161203 – ident: 51 doi: 10.1103/PhysRevLett.102.083601 – volume: 298 start-page: 260 issn: 0030-4018 year: 2013 ident: 36 publication-title: Opt. Commun. – ident: 8 doi: 10.1103/PhysRevA.52.R2493 – ident: 38 doi: 10.1038/nature09256 – ident: 10 doi: 10.1103/PhysRevLett.85.2392 – ident: 26 doi: 10.1063/1.3499300 – ident: 21 doi: 10.1103/PhysRevA.78.014304 – ident: 25 doi: 10.1103/PhysRevLett.93.130501 – ident: 7 doi: 10.1103/PhysRevLett.79.325 – volume: 11 start-page: 013007 issn: 1367-2630 year: 2009 ident: 27 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/1/013007 – ident: 15 doi: 10.1103/PhysRevA.87.022305 – ident: 42 doi: 10.1126/science.276.5321.2012 – volume: 69 start-page: 1325 issn: 0034-4885 year: 2006 ident: 11 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/69/5/R02 – ident: 50 doi: 10.1038/nphoton.2007.46 – ident: 34 doi: 10.1016/j.optcom.2013.07.083 – ident: 13 doi: 10.1364/OE.20.024664 – ident: 45 doi: 10.1103/PhysRevLett.105.040504 – ident: 39 doi: 10.1007/978-3-642-79504-6 – ident: 44 doi: 10.1038/nphys1536 – ident: 46 doi: 10.1021/nl061342r – ident: 33 doi: 10.1364/OE.21.005988 – ident: 19 doi: 10.1103/PhysRevA.73.012323 – ident: 5 doi: 10.1103/PhysRevLett.104.160503 |
| SSID | ssj0061023 ssib054405859 ssib000804704 |
| Score | 1.9931735 |
| Snippet | Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a... Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum information processing (QIP) tasks. Recently, a... |
| SourceID | proquest crossref chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113 |
| SubjectTerms | Data processing Diamonds Gates Holes Joining Quantum electrodynamics Resonators Tasks 相位 空位 耦合系统 腔量子电动力学 谐振器 量子信息处理 量子比特 非局部 |
| Title | Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems |
| URI | http://lib.cqvip.com/qk/85823A/201404/49106694.html https://www.proquest.com/docview/1762069326 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbplkIvpU-a7QMVSi9BG9uSZftYwi7bss0uJYHchGzLJNDNY2P30H_QH9L_2RlLfqQsdNuLSYZYcjSfZ0ajeRDyPjAy0dwkzEvDmAkT50wnWjBAT8ELY4qgPmj_MpXnc_F5ES4Gg1-9qKWqTE-yH7fmlfwPV4EGfMUs2X_gbDsoEOAz8BeuwGG43onHdWnfa5c9tLapjrCdr_XTaMp2VboqMa48XzmP33YJSmuEnrNRtW8SpeClvtnAHOy7zlDWjjBg09jYymuM18MqB6u87gCAhjt8hUErmDp3haD3fRMXO3IbmMX6TPZdW-eJtm7ZjVOWGAa0qmrHvO5IrQf7a9U5-y1lsqwclp2bwu9Ht1jJKiNAgBe6uteWBuYMHkMnfXFs048d7ERPtoK44bZVsdPUPrMkFt6qC0B-oluimRdTX7BIhcDzqt5Q_Qrc00t1Nr-4ULPTxezDdsewORke4rtOLffI_QCUB3YI-XR51bOiPBF1u9pQgBEco5VoDQKJ1TFw3988SZNIFsfjljYO-FiM7XNhmY8l8GIHODg0lw6thdoEmj0mj9zehX60QHxCBmb9lDy4snx-Rn4ewpFuCqppA0fq4Eh7cKQ1HCnCkdZwpABH-iccqYUjBTjSAzjSFo7UwZE6OD4n87PT2eScuU4fLON-ULLCx7qAsUniMNR-nhjOpSdEaiJjNCytp2WYe5xnJi3yxC_8XKRJqiXH_gMyzPgLcgT_x7wk1MO4PZnqMIpiuM_TRaGzwE_zXAvcaw_Jcbu4amsruigBRrOUiRgS0ay2ylyNfGzV8k3VsRpxrJBhChmmAq6EsgwbkpP2tmbIv9zwrmGlAnGOZ3R6bTbVXvmIL4mbquM7_OYVedi9a6_JUXlTmTdgJJfp2xqivwG8GLkN |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+a+nonlocal+N-qubit+conditional+phase+gate+using+the+nitrogen-vacancy+center+and+microtoroidal+resonator+coupled+systems&rft.jtitle=Chinese+physics+B&rft.au=Cao%2C+Cong&rft.au=Liu%2C+Gang&rft.au=Zhang%2C+Ru&rft.au=Wang%2C+Chuan&rft.date=2014-04-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=23&rft.issue=4&rft.spage=040304&rft.epage=1-040304-5&rft_id=info:doi/10.1088%2F1674-1056%2F23%2F4%2F040304&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |