Machine learning in process systems engineering: Challenges and opportunities

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 181; p. 108523
Main Authors Daoutidis, Prodromos, Lee, Jay H., Rangarajan, Srinivas, Chiang, Leo, Gopaluni, Bhushan, Schweidtmann, Artur M., Harjunkoski, Iiro, Mercangöz, Mehmet, Mesbah, Ali, Boukouvala, Fani, Lima, Fernando V., del Rio Chanona, Antonio, Georgakis, Christos
Format Journal Article
LanguageEnglish
Published 01.02.2024
Online AccessGet full text
ISSN0098-1354
1873-4375
DOI10.1016/j.compchemeng.2023.108523

Cover

ArticleNumber 108523
Author Rangarajan, Srinivas
Gopaluni, Bhushan
Schweidtmann, Artur M.
Lee, Jay H.
Chiang, Leo
Georgakis, Christos
Harjunkoski, Iiro
Lima, Fernando V.
Mercangöz, Mehmet
Mesbah, Ali
Boukouvala, Fani
del Rio Chanona, Antonio
Daoutidis, Prodromos
Author_xml – sequence: 1
  givenname: Prodromos
  orcidid: 0000-0003-4803-0404
  surname: Daoutidis
  fullname: Daoutidis, Prodromos
– sequence: 2
  givenname: Jay H.
  orcidid: 0000-0001-6134-6118
  surname: Lee
  fullname: Lee, Jay H.
– sequence: 3
  givenname: Srinivas
  surname: Rangarajan
  fullname: Rangarajan, Srinivas
– sequence: 4
  givenname: Leo
  orcidid: 0000-0003-0729-6273
  surname: Chiang
  fullname: Chiang, Leo
– sequence: 5
  givenname: Bhushan
  orcidid: 0000-0002-4321-0468
  surname: Gopaluni
  fullname: Gopaluni, Bhushan
– sequence: 6
  givenname: Artur M.
  orcidid: 0000-0001-8885-6847
  surname: Schweidtmann
  fullname: Schweidtmann, Artur M.
– sequence: 7
  givenname: Iiro
  surname: Harjunkoski
  fullname: Harjunkoski, Iiro
– sequence: 8
  givenname: Mehmet
  surname: Mercangöz
  fullname: Mercangöz, Mehmet
– sequence: 9
  givenname: Ali
  surname: Mesbah
  fullname: Mesbah, Ali
– sequence: 10
  givenname: Fani
  surname: Boukouvala
  fullname: Boukouvala, Fani
– sequence: 11
  givenname: Fernando V.
  orcidid: 0000-0003-4306-1826
  surname: Lima
  fullname: Lima, Fernando V.
– sequence: 12
  givenname: Antonio
  surname: del Rio Chanona
  fullname: del Rio Chanona, Antonio
– sequence: 13
  givenname: Christos
  surname: Georgakis
  fullname: Georgakis, Christos
BookMark eNqNkM1uwjAQhH2gUoH2HdwHCPXaJDhcqgr1TwL1wt1yzAaMEjuyjSrevkb0UPXU00qzO7Ojb0JGzjsk5AHYDBhUj8eZ8f1gDtij28844yLrsuRiRMaM1bIAUc5vySTGI2OMz6Uck81Gm4N1SDvUwVm3p9bRIXiDMdJ4jgn7SHNcPsGQ10u6OuiuywpGqt2O-mHwIZ2cTRbjHblpdRfx_mdOyfb1Zbt6L9afbx-r53VhBPBUYLtDXomqboDl4kZK0Ui-KLFi7YLNAbgQohFQAu6YbqGqoRa4KEswRteNmJLlNfbkBn3-yn3UEGyvw1kBUxcW6qh-sVAXFurKIpufrmYTfIwBW2Vs0sl6l4K23b8S6j8J___-DfAbhCo
CitedBy_id crossref_primary_10_3390_coatings14080922
crossref_primary_10_1515_revce_2024_0055
crossref_primary_10_1016_j_jiec_2025_02_018
crossref_primary_10_1021_acs_iecr_4c01068
crossref_primary_10_1016_j_bej_2024_109501
crossref_primary_10_1016_j_cherd_2024_07_066
crossref_primary_10_1063_5_0244175
crossref_primary_10_1002_ppap_202300230
crossref_primary_10_1016_j_compchemeng_2024_108740
crossref_primary_10_1016_j_compchemeng_2025_109105
crossref_primary_10_1080_21681015_2024_2358823
crossref_primary_10_1016_j_cherd_2025_03_018
crossref_primary_10_1016_j_compchemeng_2024_108930
crossref_primary_10_3389_fceng_2025_1490825
crossref_primary_10_1016_j_ifacol_2024_08_443
crossref_primary_10_54021_seesv6n1_032
crossref_primary_10_1016_j_jprocont_2024_103180
crossref_primary_10_1016_j_compchemeng_2024_108789
crossref_primary_10_1002_aic_18600
crossref_primary_10_1515_revce_2024_0060
Cites_doi 10.1021/jacs.1c08794
10.1016/j.compchemeng.2021.107252
10.1016/j.compchemeng.2020.106844
10.1016/j.matt.2021.01.008
10.1002/wcms.1603
10.1016/j.ces.2014.10.030
10.1021/acs.iecr.3c01565
10.1016/j.cherd.2021.10.042
10.1016/j.compchemeng.2021.107567
10.1016/j.ces.2022.117964
10.1021/acs.iecr.9b02282
10.1016/j.ejor.2020.07.063
10.1002/aic.16489
10.1103/PhysRevLett.120.145301
10.1016/j.compchemeng.2017.09.017
10.1016/j.coche.2022.100843
10.1038/s41586-021-03819-2
10.1146/annurev-chembioeng-060816-101555
10.1038/s42256-020-00284-w
10.1007/s12532-018-0139-4
10.1109/TAC.2020.2966717
10.1186/s13321-020-00460-5
10.1038/s42256-023-00628-2
10.1002/cctc.202000953
10.1021/acs.jpcc.9b08431
10.1039/C9ME00108E
10.1016/j.compchemeng.2022.107770
10.1016/j.automatica.2021.109947
10.1016/j.compchemeng.2020.106886
10.1002/cite.202100083
10.1016/j.compchemeng.2021.107470
10.1021/acs.jcim.0c00502
10.1021/acs.jpcc.7b08089
10.1038/s41586-020-2242-8
10.1016/j.cej.2023.142089
10.1021/acs.jctc.2c01018
10.1016/j.sysconle.2020.104831
10.1016/j.arcontrol.2021.10.006
10.1109/TCYB.2020.2999556
10.1021/acscatal.9b01234
10.1016/j.compchemeng.2021.107365
10.1016/j.cherd.2023.04.028
10.1126/sciadv.aax9324
10.1002/aic.16689
10.1021/acs.jpclett.7b02010
10.1016/j.compchemeng.2019.05.029
10.1016/j.apenergy.2017.03.081
10.1016/j.compchemeng.2022.107898
10.1016/j.compchemeng.2021.107291
10.1038/nmat4717
10.1002/aic.17190
10.1016/j.ces.2022.117469
10.1016/j.compchemeng.2023.108162
10.1016/j.compchemeng.2019.04.003
10.1016/j.compchemeng.2018.11.020
10.1038/s41586-021-03213-y
10.1021/jacs.2c13467
10.1038/s42254-021-00314-5
10.1016/j.coche.2022.100831
10.1007/s10957-018-1396-0
10.1021/acs.iecr.0c02032
10.1016/j.compchemeng.2017.10.008
10.1016/j.compchemeng.2022.107956
10.1016/j.compchemeng.2019.106649
10.1016/j.compchemeng.2017.09.015
10.1021/acscentsci.9b00576
10.1073/pnas.1517384113
10.1126/science.1165893
10.1016/j.compchemeng.2022.108110
10.1002/aic.14418
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.compchemeng.2023.108523
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10.1016/j.compchemeng.2023.108523
10_1016_j_compchemeng_2023_108523
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c312t-efde26369b10016c883b8275e60f704112333b3151ed0af169193e7551cca9b3
IEDL.DBID UNPAY
ISSN 0098-1354
1873-4375
IngestDate Wed Oct 01 16:42:12 EDT 2025
Thu Oct 02 04:29:40 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-efde26369b10016c883b8275e60f704112333b3151ed0af169193e7551cca9b3
ORCID 0000-0001-6134-6118
0000-0003-0729-6273
0000-0001-8885-6847
0000-0003-4803-0404
0000-0003-4306-1826
0000-0002-4321-0468
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0098135423003939?via%3Dihub
ParticipantIDs unpaywall_primary_10_1016_j_compchemeng_2023_108523
crossref_citationtrail_10_1016_j_compchemeng_2023_108523
crossref_primary_10_1016_j_compchemeng_2023_108523
PublicationCentury 2000
PublicationDate 2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-00
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2024
References Ceccon (10.1016/j.compchemeng.2023.108523_b11) 2022; 23
Hirschfeld (10.1016/j.compchemeng.2023.108523_b32) 2020; 60
Gao (10.1016/j.compchemeng.2023.108523_b26) 2018; 108
Jumper (10.1016/j.compchemeng.2023.108523_b39) 2021; 596
Bradley (10.1016/j.compchemeng.2023.108523_b8) 2022
Nian (10.1016/j.compchemeng.2023.108523_b57) 2020
González (10.1016/j.compchemeng.2023.108523_b28) 2023; 170
Zhong (10.1016/j.compchemeng.2023.108523_b95) 2020; 581
Karg (10.1016/j.compchemeng.2023.108523_b41) 2020; 50
Petsagkourakis (10.1016/j.compchemeng.2023.108523_b60) 2020; 133
Bennett (10.1016/j.compchemeng.2023.108523_b4) 2022; 36
Chen (10.1016/j.compchemeng.2023.108523_b15) 2022; 135
Lanzetti (10.1016/j.compchemeng.2023.108523_b46) 2019
Karniadakis (10.1016/j.compchemeng.2023.108523_b42) 2021; 3
Cappart (10.1016/j.compchemeng.2023.108523_b10) 2023; 24
Andersson (10.1016/j.compchemeng.2023.108523_b1) 2019; 11
Isenberg (10.1016/j.compchemeng.2023.108523_b35) 2020; 5
Van Waarde (10.1016/j.compchemeng.2023.108523_b86) 2020; 65
Mesbah (10.1016/j.compchemeng.2023.108523_b53) 2022
Shin (10.1016/j.compchemeng.2023.108523_b77) 2019; 121
Yoon (10.1016/j.compchemeng.2023.108523_b93) 2021; 2
Kang (10.1016/j.compchemeng.2023.108523_b40) 2023; 5
Mitrai (10.1016/j.compchemeng.2023.108523_b54) 2023
Paulson (10.1016/j.compchemeng.2023.108523_b59) 2023
Chakraborty (10.1016/j.compchemeng.2023.108523_b12) 2021; 154
del Rio Chanona (10.1016/j.compchemeng.2023.108523_b19) 2021; 147
Fioretto (10.1016/j.compchemeng.2023.108523_b23) 2021
Chen (10.1016/j.compchemeng.2023.108523_b14) 2022; 37
Tang (10.1016/j.compchemeng.2023.108523_b82) 2021; 147
Ingolfsson (10.1016/j.compchemeng.2023.108523_b34) 2023; 19
Jinnouchi (10.1016/j.compchemeng.2023.108523_b38) 2017; 8
Mann (10.1016/j.compchemeng.2023.108523_b51) 2021; 67
Esche (10.1016/j.compchemeng.2023.108523_b22) 2022; 177
Schmidt (10.1016/j.compchemeng.2023.108523_b70) 2009; 324
Bhosekar (10.1016/j.compchemeng.2023.108523_b6) 2018; 108
Hirtreiter (10.1016/j.compchemeng.2023.108523_b33) 2023
Harjunkoski (10.1016/j.compchemeng.2023.108523_b31) 2020; 59
Lee (10.1016/j.compchemeng.2023.108523_b48) 2018; 114
Rangarajan (10.1016/j.compchemeng.2023.108523_b66) 2017; 121
Hanselman (10.1016/j.compchemeng.2023.108523_b30) 2019; 123
Bradford (10.1016/j.compchemeng.2023.108523_b7) 2020; 139
Kim (10.1016/j.compchemeng.2023.108523_b43) 2020; 6
Lee (10.1016/j.compchemeng.2023.108523_b47) 2023
Cozad (10.1016/j.compchemeng.2023.108523_b17) 2014; 60
Gómez-Bombarelli (10.1016/j.compchemeng.2023.108523_b27) 2016; 15
Tang (10.1016/j.compchemeng.2023.108523_b83) 2022
Zavala (10.1016/j.compchemeng.2023.108523_b94) 2023; 62
Berahas (10.1016/j.compchemeng.2023.108523_b5) 2021
Sun (10.1016/j.compchemeng.2023.108523_b81) 2021; 4
Venkatasubramanian (10.1016/j.compchemeng.2023.108523_b87) 2019; 65
Makrygiorgos (10.1016/j.compchemeng.2023.108523_b50) 2022; 162
Mitrai (10.1016/j.compchemeng.2023.108523_b56) 2023
Qin (10.1016/j.compchemeng.2023.108523_b65) 2019; 126
Shin (10.1016/j.compchemeng.2023.108523_b76) 2019; 127
Brunton (10.1016/j.compchemeng.2023.108523_b9) 2016; 113
David (10.1016/j.compchemeng.2023.108523_b18) 2020; 12
Deshwal (10.1016/j.compchemeng.2023.108523_b20) 2020
Ouyang (10.1016/j.compchemeng.2023.108523_b58) 2018; 2
Shields (10.1016/j.compchemeng.2023.108523_b75) 2021; 590
Shin (10.1016/j.compchemeng.2023.108523_b78) 2017; 195
Chiang (10.1016/j.compchemeng.2023.108523_b16) 2017; 8
Vogel (10.1016/j.compchemeng.2023.108523_b88) 2023; 171
Yao (10.1016/j.compchemeng.2023.108523_b91) 2020
Thebelt (10.1016/j.compchemeng.2023.108523_b84) 2022; 252
Spielberg (10.1016/j.compchemeng.2023.108523_b80) 2019; 65
Xie (10.1016/j.compchemeng.2023.108523_b90) 2018; 120
Schwaller (10.1016/j.compchemeng.2023.108523_b72) 2021; 3
Galagali (10.1016/j.compchemeng.2023.108523_b24) 2015; 123
Pistikopoulos (10.1016/j.compchemeng.2023.108523_b61) 2021; 147
Proctor (10.1016/j.compchemeng.2023.108523_b63) 2023
Tsay (10.1016/j.compchemeng.2023.108523_b85) 2019; 58
Polak (10.1016/j.compchemeng.2023.108523_b62) 2023
Gao (10.1016/j.compchemeng.2023.108523_b25) 2023
Kumar (10.1016/j.compchemeng.2023.108523_b44) 2021; 150
Sansana (10.1016/j.compchemeng.2023.108523_b68) 2021; 151
Wigh (10.1016/j.compchemeng.2023.108523_b89) 2022; 12
Döppel (10.1016/j.compchemeng.2023.108523_b21) 2022; 262
Schwaller (10.1016/j.compchemeng.2023.108523_b71) 2019; 5
10.1016/j.compchemeng.2023.108523_b55
Schweidtmann (10.1016/j.compchemeng.2023.108523_b74) 2019; 180
Sitapure (10.1016/j.compchemeng.2023.108523_b79) 2023; 194
Anstine (10.1016/j.compchemeng.2023.108523_b2) 2023; 145
Matera (10.1016/j.compchemeng.2023.108523_b52) 2019; 9
Savara (10.1016/j.compchemeng.2023.108523_b69) 2020; 12
Gusmão (10.1016/j.compchemeng.2023.108523_b29) 2022
Pulsipher (10.1016/j.compchemeng.2023.108523_b64) 2022; 156
Bengio (10.1016/j.compchemeng.2023.108523_b3) 2021; 290
Lan (10.1016/j.compchemeng.2023.108523_b45) 2021; 143
Chen (10.1016/j.compchemeng.2023.108523_b13) 2021
Ren (10.1016/j.compchemeng.2023.108523_b67) 2022
Yoo (10.1016/j.compchemeng.2023.108523_b92) 2021; 52
Jahani (10.1016/j.compchemeng.2023.108523_b36) 2021
Lejarza (10.1016/j.compchemeng.2023.108523_b49) 2023; 462
Schweidtmann (10.1016/j.compchemeng.2023.108523_b73) 2021; 93
Jiang (10.1016/j.compchemeng.2023.108523_b37) 2022
References_xml – year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b20
– start-page: 36
  issue: May
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b63
  article-title: Data science and digitalisation for chemical engineers
  publication-title: IChemE Chem. Eng. (TCE) Mag.
– volume: 143
  start-page: 16804
  issue: 40
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b45
  article-title: Discovering catalytic reaction networks using deep reinforcement learning from first-principles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08794
– year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b47
– volume: 147
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b61
  article-title: Process systems engineering - The generation next?
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107252
– volume: 139
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b7
  article-title: Stochastic data-driven model predictive control using Gaussian processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106844
– volume: 4
  start-page: 1305
  issue: 4
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b81
  article-title: A data fusion approach to optimize compositional stability of halide perovskites
  publication-title: Matter
  doi: 10.1016/j.matt.2021.01.008
– year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b36
– volume: 12
  issue: 5
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b89
  article-title: A review of molecular representation in the age of machine learning
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1603
– volume: 123
  start-page: 170
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108523_b24
  article-title: Bayesian inference of chemical kinetic models from proposed reactions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.10.030
– volume: 24
  start-page: 1
  issue: 130
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b10
  article-title: Combinatorial optimization and reasoning with graph neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 62
  start-page: 8995
  issue: 23
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b94
  article-title: Outlook: How I learned to Love machine learning (a personal perspective on machine learning in process systems engineering)
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c01565
– volume: 177
  start-page: 184
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b22
  article-title: Architectures for neural networks as surrogates for dynamic systems in chemical engineering
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.10.042
– volume: 156
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b64
  article-title: A unifying modeling abstraction for infinite-dimensional optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107567
– volume: 262
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b21
  article-title: Efficient machine learning based surrogate models for surface kinetics by approximating the rates of the rate-determining steps
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117964
– year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b37
– year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b25
– volume: 58
  start-page: 16696
  issue: 36
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b85
  article-title: 110Th anniversary: Using data to bridge the time and length scales of process systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b02282
– volume: 290
  start-page: 405
  issue: 2
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b3
  article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2020.07.063
– volume: 2
  issue: 8
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108523_b58
  article-title: SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates
  publication-title: Phys. Rev. Mater.
– volume: 65
  start-page: 466
  issue: 2
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b87
  article-title: The promise of artificial intelligence in chemical engineering: Is it here, finally?
  publication-title: AIChE J.
  doi: 10.1002/aic.16489
– volume: 120
  issue: 14
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108523_b90
  article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.145301
– volume: 108
  start-page: 250
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108523_b6
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.017
– volume: 37
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b14
  article-title: Recent progress toward catalyst properties, performance, and prediction with data-driven methods
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2022.100843
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b39
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 8
  start-page: 63
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108523_b16
  article-title: Big data analytics in chemical engineering
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-060816-101555
– volume: 3
  start-page: 144
  issue: 2
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b72
  article-title: Mapping the space of chemical reactions using attention-based neural networks
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00284-w
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b1
  article-title: CasADi: a software framework for nonlinear optimization and optimal control
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-018-0139-4
– volume: 65
  start-page: 4753
  issue: 11
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b86
  article-title: Data informativity: a new perspective on data-driven analysis and control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2020.2966717
– volume: 12
  start-page: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b18
  article-title: Molecular representations in AI-driven drug discovery: a review and practical guide
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-020-00460-5
– volume: 5
  start-page: 309
  issue: 3
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b40
  article-title: A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00628-2
– volume: 12
  start-page: 5385
  issue: 21
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b69
  article-title: CheKiPEUQ intro 1: Bayesian parameter estimation considering uncertainty or error from both experiments and theory
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202000953
– volume: 123
  start-page: 29209
  issue: 48
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b30
  article-title: Optimization-based design of active and stable nanostructured surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b08431
– volume: 2
  issue: 4
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b93
  article-title: Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 5
  start-page: 232
  issue: 1
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b35
  article-title: Identification of optimally stable nanocluster geometries via mathematical optimization and density-functional theory
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C9ME00108E
– volume: 162
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b50
  article-title: Performance-oriented model learning for control via multi-objective Bayesian optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107770
– volume: 135
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b15
  article-title: Large scale model predictive control with neural networks and primal active sets
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109947
– year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b57
  article-title: A review on reinforcement learning: Introduction and applications in industrial process control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106886
– volume: 93
  start-page: 2029
  issue: 12
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b73
  article-title: Machine learning in chemical engineering: A perspective
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.202100083
– volume: 154
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b12
  article-title: AI-DARWIN: A first principles-based model discovery engine using machine learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107470
– volume: 60
  start-page: 3770
  issue: 8
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b32
  article-title: Uncertainty quantification using neural networks for molecular property prediction
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00502
– year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b33
  article-title: Toward automatic generation of control structures for process flow diagrams with large language models
  publication-title: AIChE J.
– year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b13
– start-page: 1295
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b59
  article-title: A tutorial on derivative-free policy learning methods for interpretable controller representations
– volume: 121
  start-page: 25847
  issue: 46
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108523_b66
  article-title: Sequential-optimization-based framework for robust modeling and design of heterogeneous catalytic systems
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b08089
– volume: 581
  start-page: 178
  issue: 7807
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b95
  article-title: Accelerated discovery of CO2 electrocatalysts using active machine learning
  publication-title: Nature
  doi: 10.1038/s41586-020-2242-8
– volume: 462
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b49
  article-title: A dynamic nonlinear optimization framework for learning data-driven reduced-order microkinetic models
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142089
– year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b5
– volume: 19
  start-page: 2658
  issue: 9
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b34
  article-title: Machine learning-driven multiscale modeling: Bridging the scales with a next-generation simulation infrastructure
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c01018
– volume: 147
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b82
  article-title: Dissipativity learning control (DLC): theoretical foundations of input–output data-driven model-free control
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2020.104831
– volume: 52
  start-page: 108
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b92
  article-title: Reinforcement learning for batch process control: Review and perspectives
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2021.10.006
– volume: 50
  start-page: 3866
  issue: 9
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b41
  article-title: Efficient representation and approximation of model predictive control laws via deep learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2999556
– volume: 9
  start-page: 6624
  issue: 8
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b52
  article-title: Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01234
– volume: 151
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b68
  article-title: Recent trends on hybrid modeling for Industry 4.0
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107365
– start-page: 1048
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b83
  article-title: Data-driven control: Overview and perspectives
– volume: 147
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b19
  article-title: Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation
  publication-title: Comput. Chem. Eng.
– volume: 194
  start-page: 461
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b79
  article-title: Exploring the potential of time-series transformers for process modeling and control in chemical systems: an inevitable paradigm shift?
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2023.04.028
– volume: 6
  start-page: eaax9324
  issue: 1
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b43
  article-title: Inverse design of porous materials using artificial neural networks
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax9324
– year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b62
– volume: 65
  issue: 10
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b80
  article-title: Toward self-driving processes: A deep reinforcement learning approach to control
  publication-title: AIChE J.
  doi: 10.1002/aic.16689
– volume: 23
  issue: 1
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b11
  article-title: OMLT: Optimization & machine learning toolkit
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 4279
  issue: 17
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108523_b38
  article-title: Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02010
– volume: 127
  start-page: 282
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b76
  article-title: Reinforcement learning – Overview of recent progress and implications for process control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.05.029
– start-page: 342
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b53
  article-title: Fusion of machine learning and MPC under uncertainty: What advances are on the horizon?
– volume: 195
  start-page: 616
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108523_b78
  article-title: Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.081
– year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b8
  article-title: Perspectives on the integration between first-principles and data-driven modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107898
– volume: 150
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b44
  article-title: Industrial, large-scale model predictive control with structured neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107291
– volume: 15
  start-page: 1120
  issue: 10
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108523_b27
  article-title: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4717
– volume: 67
  issue: 3
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b51
  article-title: Predicting chemical reaction outcomes: A grammar ontology-based transformer framework
  publication-title: AIChE J.
  doi: 10.1002/aic.17190
– volume: 252
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b84
  article-title: Maximizing information from chemical engineering data sets: Applications to machine learning
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117469
– start-page: 118
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b23
  article-title: Lagrangian duality for constrained deep learning
– ident: 10.1016/j.compchemeng.2023.108523_b55
– volume: 171
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b88
  article-title: Learning from flowsheets: A generative transformer model for autocompletion of flowsheets
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108162
– volume: 126
  start-page: 465
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b65
  article-title: Advances and opportunities in machine learning for process data analytics
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.04.003
– volume: 121
  start-page: 556
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b77
  article-title: Multi-timescale, multi-period decision-making model development by combining reinforcement learning and mathematical programming
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.11.020
– volume: 590
  start-page: 89
  issue: 7844
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b75
  article-title: Bayesian reaction optimization as a tool for chemical synthesis
  publication-title: Nature
  doi: 10.1038/s41586-021-03213-y
– volume: 145
  start-page: 8736
  issue: 16
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b2
  article-title: Generative models as an emerging paradigm in the chemical sciences
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13467
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108523_b42
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b56
– start-page: 581
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b91
  article-title: Pyhessian: Neural networks through the lens of the hessian
– volume: 36
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b4
  article-title: Autonomous chemical science and engineering enabled by self-driving laboratories
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2022.100831
– volume: 180
  start-page: 925
  issue: 3
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b74
  article-title: Deterministic global optimization with artificial neural networks embedded
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1396-0
– volume: 59
  start-page: 16684
  issue: 38
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b31
  article-title: Synergistic and intelligent process optimization: First results and open challenges
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c02032
– volume: 114
  start-page: 111
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108523_b48
  article-title: Machine learning: Overview of the recent progresses and implications for the process systems engineering field
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.10.008
– year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b67
  article-title: A tutorial review of neural network modeling approaches for model predictive control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107956
– volume: 133
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108523_b60
  article-title: Reinforcement learning for batch bioprocess optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106649
– volume: 108
  start-page: 268
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108523_b26
  article-title: Application and comparison of derivative-free optimization algorithms to control and optimize free radical polymerization simulated using the kinetic Monte Carlo method
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.015
– volume: 5
  start-page: 1572
  issue: 9
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b71
  article-title: Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00576
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108523_b9
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 324
  start-page: 81
  issue: 5923
  year: 2009
  ident: 10.1016/j.compchemeng.2023.108523_b70
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
  doi: 10.1126/science.1165893
– volume: 170
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b28
  article-title: New paradigms for exploiting parallel experiments in Bayesian optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.108110
– start-page: 655
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108523_b54
  article-title: A graph classification algorithm to determine when to decompose optimization problems
– volume: 60
  start-page: 2211
  issue: 6
  year: 2014
  ident: 10.1016/j.compchemeng.2023.108523_b17
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J.
  doi: 10.1002/aic.14418
– year: 2022
  ident: 10.1016/j.compchemeng.2023.108523_b29
  article-title: Kinetics-informed neural networks
  publication-title: Catal. Today
– start-page: 1005
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108523_b46
  article-title: Recurrent neural network based MPC for process industries
SSID ssj0002488
Score 2.5946488
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 108523
Title Machine learning in process systems engineering: Challenges and opportunities
URI https://www.sciencedirect.com/science/article/am/pii/S0098135423003939?via%3Dihub
UnpaywallVersion publishedVersion
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0098-1354
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0098-1354
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0098-1354
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0098-1354
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0098-1354
  databaseCode: AKRWK
  dateStart: 19770101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7WFRQPvkVFlwh67G6b2bSpFxEfiLCLgoKeStKmWl1r0a2iB3-7SR_r6knEa-hAkgkz39BvvgHY1klVCWbHlhdRtLo-5ZZgKrZoyLhjfiw5had7fffksnt6xa4acF73whhaZRX7y5heROtqpVPdZkc8dLIkMW2-PneQaUhQ9Jj6ey-J2MHD5DaXEzDpMg3PmzB52T_bv661M83npgjjnt4aemwKtr44X4bGre_qQaU3bTNX3DDwGMVvOWs6TzPx9ioGg7FEdDwHT_URSv7JfTsfynb4_kPd8V_POA-zFWwl-6XVAjRUuggzY2KGS9DrFbxMRapBFDckSUlW9iGQUjD6magvi11yUA9yeSYijchjZmqBPC00Xpfh4vjo4uDEqoY1WCE6dGipOFLURdeXRtXJDTlHyanHlGvHnt3VsA4RJWqAoSJbxEajx0flacCm35AvcQWa6WOqVoEIpovAyGdKoehGNPKVLZCFkjNJ9Zq3Brz2RhBWQuZmnsYgqBlrd8GYIwPjyKB05BrQkWlWqnn8xghHLv-91fqfrDagOXzK1aYGOkPZgon2h9OqHvAnLd8AhA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwED7mBMUHf4uKSgR97Nblljb1RWQqQ5goKOhTSdp0Vreu6KroX2_SH3P6JOJr6EGSC3ff0e--AzjQSVUJZkeWG1K02h7llmAqsmjAeMv8WGrlnu5dOt3b9sUdu6vBddULY2iVZewvYnoercuVZnmbTTFspnFs2nw93kKmIUHeY-odv8biEE_jh0zOwKzDNDyvw-zt5dXJfaWdaT43RRh39dbQZXOw_8X5MjRufVdDlfQbZq64YeAxit9y1nyWpOL9TQwGU4nofAmeqyMU_JOnRjaWjeDjh7rjv55xGRZL2EpOCqsVqKlkFRamxAzXoNfLeZmKlIMo-iROSFr0IZBCMPqFqC-LI9KpBrm8EJGEZJSaWiBLco3Xdbg5P7vpdK1yWIMVYIuOLRWFijroeNKoOjkB5yg5dZly7Mi12xrWIaJEDTBUaIvIaPR4qFwN2PQb8iRuQD0ZJWoTiGC6CAw9phSKdkhDT9kCWSA5k1SvuVvAK2_4QSlkbuZpDPyKsfboTznSN470C0duAZ2YpoWax2-McOLy31tt_8lqB-rj50ztaqAzlnvl0_0EMHT_dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+process+systems+engineering%3A+Challenges+and+opportunities&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Daoutidis%2C+Prodromos&rft.au=Lee%2C+Jay+H.&rft.au=Rangarajan%2C+Srinivas&rft.au=Chiang%2C+Leo&rft.date=2024-02-01&rft.issn=0098-1354&rft.volume=181&rft.spage=108523&rft_id=info:doi/10.1016%2Fj.compchemeng.2023.108523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2023_108523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon