Charm physics with overlap fermions on 2+1-flavor domain wall fermion configurations

Decay constants of pseudoscalar mesons D , , and vector mesons , , are determined from the lattice QCD at a lattice spacing fm. For vector mesons, the decay constants defined by tensor currents are given in the scheme at GeV. The calculation is performed on domain wall fermion configurations generat...

Full description

Saved in:
Bibliographic Details
Published inChinese physics C Vol. 48; no. 12; p. 123104
Main Authors Li, Dong-Hao, Chen, Ying, Gong, Ming, liu, keh-fei, Liu, Zhaofeng, Wang, Ting-Xiao
Format Journal Article
LanguageEnglish
Published China IOP Publishing 01.12.2024
Online AccessGet full text
ISSN1674-1137
2058-6132
2058-6132
DOI10.1088/1674-1137/ad736f

Cover

Abstract Decay constants of pseudoscalar mesons D , , and vector mesons , , are determined from the lattice QCD at a lattice spacing fm. For vector mesons, the decay constants defined by tensor currents are given in the scheme at GeV. The calculation is performed on domain wall fermion configurations generated by the RBC-UKQCD collaborations and the overlap fermion action is used for the valence quarks. Comparing the current results with our previous results at a coarser lattice spacing fm provides a better understanding of the discretization error. We obtain with a better precision than our previous result. Combining our MeV with the total width of determined in a recent study gives a branching fraction for leptonic decay.
AbstractList Abstract Decay constants of pseudoscalar mesons $D$, $D_s$, $\eta_c$ and vector mesons $D^*$, $D_s^*$, $J/\psi$ are determined from $N_f=2+1$ lattice QCD at a lattice spacing $a\sim0.08$ fm. For vector mesons, the decay constants defined by tensor currents are given in the $\msbar$ scheme at $2$ GeV. The calculation is performed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations and the overlap fermion action is used for the valence quarks. Comparing the current results with our previous ones at a coarser lattice spacing $a\sim0.11$ fm gives us a better understanding of the discretization error. We obtain $f_{D_s^*}^T(\msbar,\mbox{ 2 GeV})/f_{D_s^*}=0.909(18)$ with a better precision than our previous result. Combining our $f_{D_s^*}=277(11)$ MeV with the total width of $D_s^*$ determined in a recent work gives a branching fraction $4.26(52)\times10^{-5}$ for $D_s^*$ leptonic decay.Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.
Decay constants of pseudoscalar mesons D , , and vector mesons , , are determined from the lattice QCD at a lattice spacing fm. For vector mesons, the decay constants defined by tensor currents are given in the scheme at GeV. The calculation is performed on domain wall fermion configurations generated by the RBC-UKQCD collaborations and the overlap fermion action is used for the valence quarks. Comparing the current results with our previous results at a coarser lattice spacing fm provides a better understanding of the discretization error. We obtain with a better precision than our previous result. Combining our MeV with the total width of determined in a recent study gives a branching fraction for leptonic decay.
Author Wang 王, Ting-Xiao 庭霄
Gong 宫, Ming 明
Liu 刘, Zhaofeng 朝峰
Chen 陈, Ying 莹
Li 李, Dong-Hao 东浩
Liu 刘, Keh-Fei 克非
Author_xml – sequence: 1
  fullname: Li, Dong-Hao
– sequence: 2
  orcidid: 0000000250769972
  fullname: Chen, Ying
  organization: ORCID:0000000250769972
– sequence: 3
  fullname: Gong, Ming
– sequence: 4
  fullname: liu, keh-fei
– sequence: 5
  orcidid: 0000000241783924
  fullname: Liu, Zhaofeng
  organization: ORCID:0000000241783924
– sequence: 6
  fullname: Wang, Ting-Xiao
BackLink https://www.osti.gov/biblio/2437819$$D View this record in Osti.gov
BookMark eNqFkL1PwzAUxC1UJNrCzmixolA_24nTEVV8SZVYuluWYxOjxI7stFX_exICDAwwveHd73R3CzTzwRuEroHcASnLFRSCZwBMrFQlWGHP0JySvMwKYHSG5j_vC7RI6Z2Qgg_UHO02tYot7upTcjrho-trHA4mNqrD1sTWBZ9w8JjeQmYbdQgRV6FVzuOjappvCdbBW_e2j6ofgUt0blWTzNXXXaLd48Nu85xtX59eNvfbTDOgfWaKihHFmc1B5LbiFRhiKHANkOuKC2oLWpC1UUxwbaHMK0orlXOuGBV8zZYIJtu979RpzCO76FoVTxKIHFeRY2051pbTKgNzMzEh9U4m7Xqj6yG9N7qXlDNRwmhcTCIdQ0rRWDnoPqv1UbnmL3fyC_w30AevwYSw
CitedBy_id crossref_primary_10_1103_PhysRevD_111_054504
Cites_doi 10.1103/PhysRevD.96.034524
10.1103/PhysRevD.106.114506
10.1103/PhysRevD.102.054511
10.1103/PhysRevD.72.054508
10.1103/PhysRevD.98.054506
10.1103/PhysRevLett.100.241802
10.1103/PhysRevD.93.074505
10.1103/PhysRevD.88.074504
10.1016/S0920-5632(01)01638-3
10.1103/PhysRevD.73.074507
10.1103/PhysRevLett.131.141802
10.1140/epjc/s10052-022-10536-1
10.1103/PhysRevD.102.094509
10.1103/PhysRevLett.112.212002
10.1007/JHEP02(2012)042
10.1103/PhysRevD.92.094016
10.1140/epjc/s10052-024-12816-4
10.1103/PhysRevD.82.114504
10.1140/epjc/s10052-015-3653-9
10.1103/PhysRevD.106.036029
10.1140/epjc/s10052-013-2505-8
10.1016/j.nuclphysb.2014.03.024
10.1103/PhysRevD.108.L071504
10.1140/epjc/s10052-022-10987-6
10.1088/1674-1137/abcd8f
10.1103/PhysRevD.108.054506
10.1016/j.jcp.2011.11.003
10.1103/PhysRevD.98.034018
10.1016/S0370-2693(97)01368-3
10.1140/epjc/s10052-018-6495-4
10.1103/PhysRevD.109.074511
10.1088/1742-6596/1137/1/012005
10.1103/PhysRevD.83.074508
10.1038/s41586-021-03418-1
10.1103/PhysRevD.97.094501
10.1103/PhysRevD.81.034506
10.1103/PhysRevD.78.054510
10.1103/PhysRevD.107.114514
10.1103/PhysRevD.59.074501
10.1103/PhysRevD.90.034505
10.1103/PhysRevD.98.074512
10.1103/PhysRevD.86.094501
10.1093/ptep/ptac097
10.1103/PhysRevD.100.054018
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
ADTOC
UNPAY
DOI 10.1088/1674-1137/ad736f
DatabaseName CrossRef
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-6132
ExternalDocumentID 10.1088/1674-1137/ad736f
2437819
10_1088_1674_1137_ad736f
GroupedDBID -SA
-SC
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
7.M
AAGCD
AAGID
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ACAFW
ACGFS
ACHIP
ADEQX
AEINN
AENEX
AFYNE
AIBLX
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CAJEA
CAJEC
CCEZO
CCVFK
CEBXE
CHBEP
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EPQRW
EQZZN
ER.
IJHAN
IOP
IZVLO
KOT
N5L
OK1
PJBAE
Q--
RIN
ROL
RPA
SY9
U1G
U5K
U5M
W28
AAXDM
FA0
OTOTI
02O
1WK
92E
92I
AALHV
ADTOC
AERVB
AFUIB
BBWZM
CW9
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
Q02
RNS
TCJ
TGP
UNPAY
ID FETCH-LOGICAL-c312t-e6d30a43f5175fd4d1e0e214c115cd472f62609ea374cf185d22da544a327493
IEDL.DBID UNPAY
ISSN 1674-1137
2058-6132
IngestDate Sun Oct 26 03:16:47 EDT 2025
Mon Sep 02 05:55:49 EDT 2024
Thu Apr 24 22:51:24 EDT 2025
Wed Oct 01 03:43:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-e6d30a43f5175fd4d1e0e214c115cd472f62609ea374cf185d22da544a327493
Notes USDOE
ORCID 0000000250769972
0000000241783924
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1674-1137/ad736f
ParticipantIDs unpaywall_primary_10_1088_1674_1137_ad736f
osti_scitechconnect_2437819
crossref_citationtrail_10_1088_1674_1137_ad736f
crossref_primary_10_1088_1674_1137_ad736f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Chinese physics C
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Blum . (RBC (cpc_48_12_123104_bib30) 2016; 93
C. Donald (cpc_48_12_123104_bib11) 2014; 112
Bussone . (Alpha) (cpc_48_12_123104_bib4) 2024; 84
cpc_48_12_123104_bib42
Cheng (cpc_48_12_123104_bib7) 2022; 82
cpc_48_12_123104_bib49
Bazavov . (Fermilab Lattice (cpc_48_12_123104_bib38) 2023; 107
cpc_48_12_123104_bib5
G. Wang (cpc_48_12_123104_bib17) 2015; 75
Bailas (cpc_48_12_123104_bib24) 2018; 78
T. H. Davies . (HPQCD) (cpc_48_12_123104_bib45) 2010; 81
Bečirević (cpc_48_12_123104_bib23) 2014; 883
T. H. Davies (cpc_48_12_123104_bib25) 2010; 82
Blossier (cpc_48_12_123104_bib13) 2018; 98
Aoki (cpc_48_12_123104_bib44) 2008; 78
J. Dowdall (cpc_48_12_123104_bib40) 2013; 88
J. Dudek (cpc_48_12_123104_bib22) 2006; 73
Babiarz (cpc_48_12_123104_bib19) 2019; 100
He . (χQCD) (cpc_48_12_123104_bib36) 2022; 106
Bazavov (cpc_48_12_123104_bib39) 2018; 98
Y. Cui (cpc_48_12_123104_bib9) 2023; 108
Becirevic (cpc_48_12_123104_bib12) 2012; 02
Liu . (chiQCD) (cpc_48_12_123104_bib34) 2014; 90
L. Workman . (Particle Data Group) (cpc_48_12_123104_bib1) 2022; 2022
Chen . (χQCD) (cpc_48_12_123104_bib28) 2021; 45
Bi . (χQCD) (cpc_48_12_123104_bib37) 2023; 108
Borsanyi (cpc_48_12_123104_bib43) 2021; 593
A. Dobrescu (cpc_48_12_123104_bib2) 2008; 100
Aoki . (RBC (cpc_48_12_123104_bib29) 2011; 83
Aoki . (Flavour Lattice Averaging Group (FLAG)) (cpc_48_12_123104_bib3) 2022; 82
Ablikim . (BESIII) (cpc_48_12_123104_bib6) 2023; 131
Meng (cpc_48_12_123104_bib47) 2024; 109
Gambino (cpc_48_12_123104_bib15) 2019; 1137
Bi (cpc_48_12_123104_bib35) 2018; 97
A. DeGrand (cpc_48_12_123104_bib33) 2005; 72
H. Zhou (cpc_48_12_123104_bib10) 2015; 92
W. Chiu (cpc_48_12_123104_bib32) 1999; 59
Y. Ryu (cpc_48_12_123104_bib20) 2018; 98
Alexandru (cpc_48_12_123104_bib48) 2012; 231
C. Donald C. T. H. Davies (cpc_48_12_123104_bib26) 2012; 86
Yang (cpc_48_12_123104_bib8) 2022; 106
Neuberger (cpc_48_12_123104_bib31) 1998; 417
P. Lepage . (HPQCD) (cpc_48_12_123104_bib41) 2002; 106
Hatton . (HPQCD) (cpc_48_12_123104_bib27) 2020; 102
cpc_48_12_123104_bib16
Hatton . (HPQCD) (cpc_48_12_123104_bib46) 2020; 102
Lubicz . (ETM) (cpc_48_12_123104_bib14) 2017; 96
cpc_48_12_123104_bib18
Q. Geng (cpc_48_12_123104_bib21) 2013; 73
References_xml – volume: 96
  start-page: 034524
  year: 2017
  ident: cpc_48_12_123104_bib14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.034524
– volume: 106
  start-page: 114506
  year: 2022
  ident: cpc_48_12_123104_bib36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.114506
– volume: 102
  start-page: 054511
  year: 2020
  ident: cpc_48_12_123104_bib27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.054511
– volume: 72
  start-page: 054508
  year: 2005
  ident: cpc_48_12_123104_bib33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.054508
– volume: 98
  start-page: 054506
  year: 2018
  ident: cpc_48_12_123104_bib13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.054506
– ident: cpc_48_12_123104_bib18
– volume: 100
  start-page: 241802
  year: 2008
  ident: cpc_48_12_123104_bib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.241802
– volume: 93
  start-page: 074505
  year: 2016
  ident: cpc_48_12_123104_bib30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.074505
– volume: 88
  start-page: 074504
  year: 2013
  ident: cpc_48_12_123104_bib40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.074504
– volume: 106
  start-page: 12
  year: 2002
  ident: cpc_48_12_123104_bib41
  publication-title: Nucl. Phys. B Proc. Suppl.
  doi: 10.1016/S0920-5632(01)01638-3
– volume: 73
  start-page: 074507
  year: 2006
  ident: cpc_48_12_123104_bib22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.074507
– volume: 131
  start-page: 141802
  year: 2023
  ident: cpc_48_12_123104_bib6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.141802
– volume: 82
  start-page: 869
  year: 2022
  ident: cpc_48_12_123104_bib3
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10536-1
– volume: 102
  start-page: 094509
  year: 2020
  ident: cpc_48_12_123104_bib46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.094509
– volume: 112
  start-page: 212002
  year: 2014
  ident: cpc_48_12_123104_bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.212002
– volume: 02
  start-page: 042
  year: 2012
  ident: cpc_48_12_123104_bib12
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)042
– volume: 92
  start-page: 094016
  year: 2015
  ident: cpc_48_12_123104_bib10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.094016
– volume: 84
  start-page: 506
  year: 2024
  ident: cpc_48_12_123104_bib4
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-024-12816-4
– volume: 82
  start-page: 114504
  year: 2010
  ident: cpc_48_12_123104_bib25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.114504
– volume: 75
  start-page: 427
  year: 2015
  ident: cpc_48_12_123104_bib17
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3653-9
– volume: 106
  start-page: 036029
  year: 2022
  ident: cpc_48_12_123104_bib8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.036029
– volume: 73
  start-page: 2505
  year: 2013
  ident: cpc_48_12_123104_bib21
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2505-8
– volume: 883
  start-page: 306
  year: 2014
  ident: cpc_48_12_123104_bib23
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.03.024
– volume: 108
  start-page: L071504
  year: 2023
  ident: cpc_48_12_123104_bib9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.L071504
– volume: 82
  start-page: 1037
  year: 2022
  ident: cpc_48_12_123104_bib7
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10987-6
– ident: cpc_48_12_123104_bib49
– volume: 45
  start-page: 023109
  year: 2021
  ident: cpc_48_12_123104_bib28
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/abcd8f
– volume: 108
  start-page: 5
  year: 2023
  ident: cpc_48_12_123104_bib37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.054506
– volume: 231
  start-page: 1866
  year: 2012
  ident: cpc_48_12_123104_bib48
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.11.003
– volume: 98
  start-page: 034018
  year: 2018
  ident: cpc_48_12_123104_bib20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.034018
– ident: cpc_48_12_123104_bib16
– volume: 417
  start-page: 141
  year: 1998
  ident: cpc_48_12_123104_bib31
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(97)01368-3
– ident: cpc_48_12_123104_bib5
– volume: 78
  start-page: 1018
  year: 2018
  ident: cpc_48_12_123104_bib24
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6495-4
– volume: 109
  start-page: 074511
  year: 2024
  ident: cpc_48_12_123104_bib47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.074511
– volume: 1137
  start-page: 012005
  year: 2019
  ident: cpc_48_12_123104_bib15
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1137/1/012005
– volume: 83
  start-page: 074508
  year: 2011
  ident: cpc_48_12_123104_bib29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.074508
– volume: 593
  start-page: 51
  year: 2021
  ident: cpc_48_12_123104_bib43
  publication-title: Nature
  doi: 10.1038/s41586-021-03418-1
– ident: cpc_48_12_123104_bib42
– volume: 97
  start-page: 094501
  year: 2018
  ident: cpc_48_12_123104_bib35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.094501
– volume: 81
  start-page: 034506
  year: 2010
  ident: cpc_48_12_123104_bib45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.034506
– volume: 78
  start-page: 054510
  year: 2008
  ident: cpc_48_12_123104_bib44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.054510
– volume: 107
  start-page: 114514
  year: 2023
  ident: cpc_48_12_123104_bib38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.114514
– volume: 59
  start-page: 074501
  year: 1999
  ident: cpc_48_12_123104_bib32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.59.074501
– volume: 90
  start-page: 034505
  year: 2014
  ident: cpc_48_12_123104_bib34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.034505
– volume: 98
  start-page: 074512
  year: 2018
  ident: cpc_48_12_123104_bib39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.074512
– volume: 86
  start-page: 094501
  year: 2012
  ident: cpc_48_12_123104_bib26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.094501
– volume: 2022
  start-page: 083C01
  year: 2022
  ident: cpc_48_12_123104_bib1
  publication-title: PTEP
  doi: 10.1093/ptep/ptac097
– volume: 100
  start-page: 054018
  year: 2019
  ident: cpc_48_12_123104_bib19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.054018
SSID ssj0064088
Score 2.3324077
Snippet Decay constants of pseudoscalar mesons D , , and vector mesons , , are determined from the lattice QCD at a lattice spacing fm. For vector mesons, the decay...
Abstract Decay constants of pseudoscalar mesons $D$, $D_s$, $\eta_c$ and vector mesons $D^*$, $D_s^*$, $J/\psi$ are determined from $N_f=2+1$ lattice QCD at a...
SourceID unpaywall
osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 123104
Title Charm physics with overlap fermions on 2+1-flavor domain wall fermion configurations
URI https://www.osti.gov/biblio/2437819
https://doi.org/10.1088/1674-1137/ad736f
UnpaywallVersion publishedVersion
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-6132
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064088
  issn: 1674-1137
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC50ZFEPuuouji_64EUlmvQjkzmKKCr4OIzgnkKnHyLGZHAyivvrt2qSkVXEx726aaorqa8e_RXAplPoE3zoAqJGp9QN_gdlNwukIf4qHqssoYfCZ-fx8ZU8vVbXTb6D3sK8qt9jcEZN8kEUic6eth0R-0mYihWi7hZMXZ1f7v-heGosQnPkQpVgNCR4U5F8b4tXHqhV4pc0C9PDoq-fn3Se_-ddjuZrqqPBiJSQmkrudodVtmv-vqFs_MrBf8JcAzHZfm0TCzDhikX4MWr1NIMl6FGF_Z7VKY0Bo0Qsoz7OXPeZp9YYtENWFozvRIHP9WP5wGx5r28LRgcfizCMo_3tzbA2oMEv6B0d9g6Og2a2QmBExKvAxVaEWgqvED94K23kQscjaRAhGis73FOk03VadKTx6NQt51YrKbXAOLYrfkOrKAu3DMwJ7UOhrHZKS899ohHSJLjSyixzLmrD3ljdqWl4x2n8RZ6O6t9JkpKqUlJVWquqDVsvK_o158YHsqt0gyniBSK9NdQdZKqUaBYR67Rh--ViP91q5TvCqzDDEd7UjS1r0Koehm4d4UmVbcDkycXlRmOf_wDfP9uD
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61QVXhQEsfItBWe-ACyMTeh-McI1SEKjXqIZHgZK33UUU4dpQ4IPj1zMROBBWicJ9drWbHnm8e-w3AgVPoE3zoAqJGp9QN_gdlLwukIf4qHqssoYfCvwfx-Uj-ulAXTb6D3sI8qt9jcEZN8kEUiW5H266I_VvYiBWi7hZsjAZ_-pcUT61EaI5cqBKMhgRvKpJPbfHIA7VK_JK24P2imOrbG53nD7zL2Yea6mi-JCWkppKrk0WVnZi7fygbX3Lwj7DdQEzWr21iB9644hO8W7Z6mvlnGFKFfcLqlMacUSKWUR9nrqfMU2sM2iErC8aPo8Dn-rqcMVtO9LhgdPCVCMM42o__LmoDmn-B4dnP4el50MxWCIyIeBW42IpQS-EV4gdvpY1c6HgkDSJEY2WXe4p0ek6LrjQenbrl3GolpRYYx_bEV2gVZeF2gTmhfSiU1U5p6blPNEKaBFdamWXORW3orNSdmoZ3nMZf5Omy_p0kKakqJVWltaracLheMa05N56R3acbTBEvEOmtoe4gU6VEs4hYpw1H64v971Z7rxHeh02O8KZubPkGrWq2cN8RnlTZj8Yy7wG_Z9p6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charm+physics+with+overlap+fermions+on+2%2B1-flavor+domain+wall+fermion+configurations&rft.jtitle=Chinese+physics+C&rft.au=Li%2C+Dong-Hao&rft.au=Chen%2C+Ying&rft.au=Gong%2C+Ming&rft.au=liu%2C+keh-fei&rft.date=2024-12-01&rft.pub=IOP+Publishing&rft.issn=1674-1137&rft_id=info:doi/10.1088%2F1674-1137%2Fad736f&rft.externalDocID=2437819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1137&client=summon