Dynamic obstacle avoidance of unmanned ship based on event-triggered adaptive nonlinear model predictive control
This article studies trajectory tracking and dynamic obstacle avoidance problems of unmanned ships, and an event-triggered adaptive nonlinear model predictive control (EANMPC) method is constructed to solve the above problems. Firstly, a novel adaptive nonlinear model predictive control is used to t...
Saved in:
Published in | Ocean engineering Vol. 286; p. 115626 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 1873-5258 |
DOI | 10.1016/j.oceaneng.2023.115626 |
Cover
Abstract | This article studies trajectory tracking and dynamic obstacle avoidance problems of unmanned ships, and an event-triggered adaptive nonlinear model predictive control (EANMPC) method is constructed to solve the above problems. Firstly, a novel adaptive nonlinear model predictive control is used to track the trajectory of the unmanned ship. And then, an obstacle avoidance mechanism is formulated to deal with the condition of dynamic obstacles that appear during the unmanned ship trajectory tracking process. Secondly, an event-triggered mechanism is established to reduce the computational burden of the controller. Finally, several simulation results are provided for demonstrating the effectiveness and advantage of EANMPC.
•A novel event-triggered mechanism for unmanned ship trajectory tracking is proposed.•A novel dynamic obstacle avoidance mechanism of the unmanned ship is designed.•A novel adaptive MPC method with event-triggered mechanism is proposed.•A method can reduce calculation times and adapt to parameters change is designed. |
---|---|
AbstractList | This article studies trajectory tracking and dynamic obstacle avoidance problems of unmanned ships, and an event-triggered adaptive nonlinear model predictive control (EANMPC) method is constructed to solve the above problems. Firstly, a novel adaptive nonlinear model predictive control is used to track the trajectory of the unmanned ship. And then, an obstacle avoidance mechanism is formulated to deal with the condition of dynamic obstacles that appear during the unmanned ship trajectory tracking process. Secondly, an event-triggered mechanism is established to reduce the computational burden of the controller. Finally, several simulation results are provided for demonstrating the effectiveness and advantage of EANMPC.
•A novel event-triggered mechanism for unmanned ship trajectory tracking is proposed.•A novel dynamic obstacle avoidance mechanism of the unmanned ship is designed.•A novel adaptive MPC method with event-triggered mechanism is proposed.•A method can reduce calculation times and adapt to parameters change is designed. |
ArticleNumber | 115626 |
Author | Zhu, Yakun Guo, Ge Li, Shilong Bai, Jianguo |
Author_xml | – sequence: 1 givenname: Shilong surname: Li fullname: Li, Shilong – sequence: 2 givenname: Yakun surname: Zhu fullname: Zhu, Yakun email: zyk@neuq.edu.cn – sequence: 3 givenname: Jianguo surname: Bai fullname: Bai, Jianguo – sequence: 4 givenname: Ge orcidid: 0000-0003-4752-4920 surname: Guo fullname: Guo, Ge |
BookMark | eNqFkM9qGzEQxkVJoLbTVyh6gXVGklddQw8tzp8GDLm0ZzErjVyZtbRIqsFvn3WdXnrxaYb55hu--c3ZTUyRGPssYClA6Pv9MlnCSHG3lCDVUohWS_2BzUT3RTWtbLsbNgOQ66YD0X1k81L2AKA1qBkbH04RD8Hy1JeKdiCOxxQcRks8ef4nHjBGcrz8DiPvsUxtipyOFGtTc9jtKE8jdDjWcCQ-RRtCJMz8kBwNfJzUYP9KNsWa03DHbj0OhT691wX79fT4c_Oj2b4-v2y-bxurhKyNW-uVBIcI0rb9SjnooRfOK92LTrq1IkDUHclWrXzvPaIXANO2bpX2HagF-3q5a3MqJZM3NlSs4ZwCw2AEmDM9szf_6JkzPXOhN9n1f_YxhwPm03Xjt4uRpueOgbIpNtCE04VMthqXwrUTb3T1ktU |
CitedBy_id | crossref_primary_10_1016_j_ejcon_2024_101133 crossref_primary_10_1016_j_oceaneng_2024_119014 crossref_primary_10_3390_fractalfract8010023 crossref_primary_10_1109_ACCESS_2024_3365542 crossref_primary_10_3390_sym16101392 crossref_primary_10_1016_j_aei_2025_103116 crossref_primary_10_1016_j_oceaneng_2024_119272 crossref_primary_10_3390_jmse12101827 |
Cites_doi | 10.1016/S0005-1098(99)00214-9 10.1016/j.oceaneng.2022.112731 10.1016/j.oceaneng.2022.112482 10.1016/j.oceaneng.2022.111278 10.1016/j.automatica.2023.110959 10.1016/j.robot.2019.05.003 10.1016/j.oceaneng.2022.113120 10.1016/j.oceaneng.2023.113903 10.1016/j.oceaneng.2018.04.026 10.1016/j.egyr.2023.04.140 10.1016/j.oceaneng.2023.114689 10.1016/j.oceaneng.2021.109186 10.1016/j.oceaneng.2022.111655 10.1016/j.oceaneng.2022.113211 10.1016/j.oceaneng.2023.115088 10.1016/j.oceaneng.2023.113872 10.1109/TCST.2010.2090526 10.1016/j.oceaneng.2022.113219 10.1016/j.oceaneng.2022.112517 10.1016/j.oceaneng.2022.113528 10.1016/j.oceaneng.2022.112566 10.1080/16258312.2019.1631714 10.1016/j.oceaneng.2023.114829 10.23919/ACC50511.2021.9483029 10.1016/j.oceaneng.2023.114729 10.1016/j.oceaneng.2015.10.007 10.1016/j.oceaneng.2022.113407 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2023.115626 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2023_115626 S0029801823020103 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
ID | FETCH-LOGICAL-c312t-d96420daa02c5b43d0b0b1df36b182d93e0aa68e2534fbffaaf100a026536f803 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Sep 25 00:52:45 EDT 2025 Thu Apr 24 23:03:07 EDT 2025 Fri Feb 23 02:34:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic obstacle avoidance Adaptive model predictive control Trajectory tracking Event-triggered |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-d96420daa02c5b43d0b0b1df36b182d93e0aa68e2534fbffaaf100a026536f803 |
ORCID | 0000-0003-4752-4920 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2023_115626 crossref_primary_10_1016_j_oceaneng_2023_115626 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_115626 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-15 |
PublicationDateYYYYMMDD | 2023-10-15 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Munim (b17) 2019; 20 Ma, Tang, Lei, Jiang, Luo (b14) 2022; 266 Han, Wang, Wang, He (b8) 2022; 257 Zhang, Lin, Li (b26) 2022; 265 Lu, Cannon (b13) 2023; 152 Du, Yang, Chen, Huang (b4) 2023; 281 Molinos, Llamazares, Ocaña (b16) 2019; 118 Yoo, Park (b23) 2023; 273 Chwa (b3) 2011; 19 Fu, Zhang, Xu, Wang, Dong (b7) 2023; 269 Fossen (b6) 2011 Zeng, J., Zhang, B., Sreenath, K., 2021. Safety-Critical Model Predictive Control with Discrete-Time Control Barrier Function. In: 2021 American Control Conference. ACC, pp. 3882–3889. Hou, Wang, Wei, Iu, Fernando (b9) 2023; 268 Qian, Zheng, Wang, Xie, Wu, Xu (b18) 2023; 267 Shao (b19) 2015 Kim, Kim, Kim, Im (b10) 2022; 266 Mayne, Rawlings, Rao, Scokaert (b15) 2000; 36 Abdelaal, Fränzle, Hahn (b1) 2018; 160 Zhong, Yu, Wang, Liu, Lian (b27) 2022; 265 Feng, Yu, Huang, Cui, Qiao, Wang, Xie, Ren (b5) 2023; 280 Tang, Wang, Wang, Zhang (b20) 2022; 265 Zeng, Lian, Sammut, He, Tang, Lammas (b24) 2015; 110 Wang, Li, Ma, Yan, Jiang (b21) 2023; 268 Zhu, Bai, Li, Guo (b29) 2023; 283 Wang, Song, Huang, Su (b22) 2023; 281 Li, Bu (b11) 2021; 233 Liu, Hu, Wang, Yin (b12) 2022; 253 Zhu, Bai, Guo (b28) 2023; 273 Bu, Dai (b2) 2023; 9 Zhong (10.1016/j.oceaneng.2023.115626_b27) 2022; 265 Abdelaal (10.1016/j.oceaneng.2023.115626_b1) 2018; 160 Yoo (10.1016/j.oceaneng.2023.115626_b23) 2023; 273 Qian (10.1016/j.oceaneng.2023.115626_b18) 2023; 267 Wang (10.1016/j.oceaneng.2023.115626_b22) 2023; 281 Fu (10.1016/j.oceaneng.2023.115626_b7) 2023; 269 Kim (10.1016/j.oceaneng.2023.115626_b10) 2022; 266 Lu (10.1016/j.oceaneng.2023.115626_b13) 2023; 152 Molinos (10.1016/j.oceaneng.2023.115626_b16) 2019; 118 Tang (10.1016/j.oceaneng.2023.115626_b20) 2022; 265 Zhu (10.1016/j.oceaneng.2023.115626_b28) 2023; 273 Hou (10.1016/j.oceaneng.2023.115626_b9) 2023; 268 Li (10.1016/j.oceaneng.2023.115626_b11) 2021; 233 Bu (10.1016/j.oceaneng.2023.115626_b2) 2023; 9 Liu (10.1016/j.oceaneng.2023.115626_b12) 2022; 253 Chwa (10.1016/j.oceaneng.2023.115626_b3) 2011; 19 Ma (10.1016/j.oceaneng.2023.115626_b14) 2022; 266 Han (10.1016/j.oceaneng.2023.115626_b8) 2022; 257 Shao (10.1016/j.oceaneng.2023.115626_b19) 2015 Wang (10.1016/j.oceaneng.2023.115626_b21) 2023; 268 Mayne (10.1016/j.oceaneng.2023.115626_b15) 2000; 36 Zhu (10.1016/j.oceaneng.2023.115626_b29) 2023; 283 Fossen (10.1016/j.oceaneng.2023.115626_b6) 2011 Du (10.1016/j.oceaneng.2023.115626_b4) 2023; 281 Munim (10.1016/j.oceaneng.2023.115626_b17) 2019; 20 Zeng (10.1016/j.oceaneng.2023.115626_b24) 2015; 110 10.1016/j.oceaneng.2023.115626_b25 Zhang (10.1016/j.oceaneng.2023.115626_b26) 2022; 265 Feng (10.1016/j.oceaneng.2023.115626_b5) 2023; 280 |
References_xml | – volume: 283 year: 2023 ident: b29 article-title: Selection strategies and finite-time target tracking of multiple unmanned surface vehicles with mode uncertainty and disturbances publication-title: Ocean Eng. – volume: 269 year: 2023 ident: b7 article-title: Discrete-time adaptive predictive sliding mode trajectory tracking control for dynamic positioning ship with input magnitude and rate saturations publication-title: Ocean Eng. – volume: 20 start-page: 266 year: 2019 end-page: 279 ident: b17 article-title: Autonomous ships: a review, innovative applications and future maritime business models publication-title: Supply Chain Forum Int. J. – volume: 36 start-page: 789 year: 2000 end-page: 814 ident: b15 article-title: Constrained model predictive control: Stability and optimality publication-title: Automatica – volume: 265 year: 2022 ident: b26 article-title: A double-loop control framework for AUV trajectory tracking under model parameters uncertainties and time-varying currents publication-title: Ocean Eng. – reference: Zeng, J., Zhang, B., Sreenath, K., 2021. Safety-Critical Model Predictive Control with Discrete-Time Control Barrier Function. In: 2021 American Control Conference. ACC, pp. 3882–3889. – volume: 268 year: 2023 ident: b21 article-title: Path-following optimal control of autonomous underwater vehicle based on deep reinforcement learning publication-title: Ocean Eng. – year: 2011 ident: b6 article-title: Handbook of Marine Craft Hydrodynamics and Motion Control, No. 1 – volume: 273 year: 2023 ident: b23 article-title: Distributed dynamic obstacle avoidance design to connectivity-preserving formation control of uncertain underactuated surface vehicles under a directed network publication-title: Ocean Eng. – volume: 19 start-page: 1357 year: 2011 end-page: 1370 ident: b3 article-title: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method publication-title: IEEE Trans. Control Syst. Technol. – volume: 257 year: 2022 ident: b8 article-title: A dynamically hybrid path planning for unmanned surface vehicles based on non-uniform Theta* and improved dynamic windows approach publication-title: Ocean Eng. – volume: 280 year: 2023 ident: b5 article-title: Automatic tracking method for submarine cables and pipelines of AUV based on side scan sonar publication-title: Ocean Eng. – volume: 152 year: 2023 ident: b13 article-title: Robust adaptive model predictive control with persistent excitation conditions publication-title: Automatica – volume: 110 start-page: 303 year: 2015 end-page: 313 ident: b24 article-title: A survey on path planning for persistent autonomy of autonomous underwater vehicles publication-title: Ocean Eng. – volume: 281 year: 2023 ident: b4 article-title: Improved indirect adaptive line-of-sight guidance law for path following of under-actuated AUV subject to big ocean currents publication-title: Ocean Eng. – volume: 268 year: 2023 ident: b9 article-title: Robust adaptive finite-time tracking control for intervention-AUV with input saturation and output constraints using high-order control barrier function publication-title: Ocean Eng. – volume: 266 year: 2022 ident: b14 article-title: Trajectory tracking control for autonomous underwater vehicle with disturbances and input saturation based on contraction theory publication-title: Ocean Eng. – volume: 281 year: 2023 ident: b22 article-title: Event-triggered model-parameter-free trajectory tracking control for autonomous underwater vehicles publication-title: Ocean Eng. – volume: 266 year: 2022 ident: b10 article-title: Development of ship collision avoidance system and sea trial test for autonomous ship publication-title: Ocean Eng. – volume: 9 start-page: 1812 year: 2023 end-page: 1825 ident: b2 article-title: Event-triggered model-free adaptive predictive control for multi-area power systems under deception attacks publication-title: Energy Rep. – volume: 160 start-page: 168 year: 2018 end-page: 180 ident: b1 article-title: Nonlinear model predictive control for trajectory tracking and collision avoidance of underactuated vessels with disturbances publication-title: Ocean Eng. – volume: 267 year: 2023 ident: b18 article-title: Equilateral triangular formation of unmanned surface vehicles for target tracking with event-triggered collision avoidance publication-title: Ocean Eng. – volume: 265 year: 2022 ident: b20 article-title: An enhanced trajectory tracking control of the dynamic positioning ship based on nonlinear model predictive control and disturbance observer publication-title: Ocean Eng. – volume: 273 year: 2023 ident: b28 article-title: Cooperative target substitution tracking control of multiple unmanned surface vehicles with substitute USVs publication-title: Ocean Eng. – volume: 233 year: 2021 ident: b11 article-title: Trajectory tracking of under-actuated ships based on optimal sliding mode control with state observer publication-title: Ocean Eng. – volume: 118 start-page: 112 year: 2019 end-page: 130 ident: b16 article-title: Dynamic window based approaches for avoiding obstacles in moving publication-title: Robot. Auton. Syst. – volume: 265 year: 2022 ident: b27 article-title: Adaptive depth tracking of underwater vehicles considering actuator saturation: Theory, simulation and experiment publication-title: Ocean Eng. – year: 2015 ident: b19 article-title: Research on Path Following Control of Two-Hull and Two-Propulsion Unmanned Vessel – volume: 253 year: 2022 ident: b12 article-title: Event-triggered-based nonlinear model predictive control for trajectory tracking of underactuated ship with multi-obstacle avoidance publication-title: Ocean Eng. – volume: 36 start-page: 789 issue: 6 year: 2000 ident: 10.1016/j.oceaneng.2023.115626_b15 article-title: Constrained model predictive control: Stability and optimality publication-title: Automatica doi: 10.1016/S0005-1098(99)00214-9 – volume: 266 year: 2022 ident: 10.1016/j.oceaneng.2023.115626_b14 article-title: Trajectory tracking control for autonomous underwater vehicle with disturbances and input saturation based on contraction theory publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112731 – volume: 265 year: 2022 ident: 10.1016/j.oceaneng.2023.115626_b20 article-title: An enhanced trajectory tracking control of the dynamic positioning ship based on nonlinear model predictive control and disturbance observer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112482 – volume: 253 year: 2022 ident: 10.1016/j.oceaneng.2023.115626_b12 article-title: Event-triggered-based nonlinear model predictive control for trajectory tracking of underactuated ship with multi-obstacle avoidance publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111278 – volume: 152 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b13 article-title: Robust adaptive model predictive control with persistent excitation conditions publication-title: Automatica doi: 10.1016/j.automatica.2023.110959 – volume: 118 start-page: 112 year: 2019 ident: 10.1016/j.oceaneng.2023.115626_b16 article-title: Dynamic window based approaches for avoiding obstacles in moving publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2019.05.003 – volume: 266 year: 2022 ident: 10.1016/j.oceaneng.2023.115626_b10 article-title: Development of ship collision avoidance system and sea trial test for autonomous ship publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113120 – volume: 273 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b28 article-title: Cooperative target substitution tracking control of multiple unmanned surface vehicles with substitute USVs publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113903 – volume: 160 start-page: 168 year: 2018 ident: 10.1016/j.oceaneng.2023.115626_b1 article-title: Nonlinear model predictive control for trajectory tracking and collision avoidance of underactuated vessels with disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.04.026 – volume: 9 start-page: 1812 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b2 article-title: Event-triggered model-free adaptive predictive control for multi-area power systems under deception attacks publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.04.140 – volume: 280 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b5 article-title: Automatic tracking method for submarine cables and pipelines of AUV based on side scan sonar publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114689 – volume: 233 year: 2021 ident: 10.1016/j.oceaneng.2023.115626_b11 article-title: Trajectory tracking of under-actuated ships based on optimal sliding mode control with state observer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109186 – volume: 257 year: 2022 ident: 10.1016/j.oceaneng.2023.115626_b8 article-title: A dynamically hybrid path planning for unmanned surface vehicles based on non-uniform Theta* and improved dynamic windows approach publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111655 – volume: 267 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b18 article-title: Equilateral triangular formation of unmanned surface vehicles for target tracking with event-triggered collision avoidance publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113211 – volume: 283 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b29 article-title: Selection strategies and finite-time target tracking of multiple unmanned surface vehicles with mode uncertainty and disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115088 – volume: 273 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b23 article-title: Distributed dynamic obstacle avoidance design to connectivity-preserving formation control of uncertain underactuated surface vehicles under a directed network publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113872 – volume: 19 start-page: 1357 issue: 6 year: 2011 ident: 10.1016/j.oceaneng.2023.115626_b3 article-title: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2010.2090526 – volume: 268 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b9 article-title: Robust adaptive finite-time tracking control for intervention-AUV with input saturation and output constraints using high-order control barrier function publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113219 – volume: 265 year: 2022 ident: 10.1016/j.oceaneng.2023.115626_b27 article-title: Adaptive depth tracking of underwater vehicles considering actuator saturation: Theory, simulation and experiment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112517 – volume: 269 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b7 article-title: Discrete-time adaptive predictive sliding mode trajectory tracking control for dynamic positioning ship with input magnitude and rate saturations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113528 – year: 2011 ident: 10.1016/j.oceaneng.2023.115626_b6 – volume: 265 year: 2022 ident: 10.1016/j.oceaneng.2023.115626_b26 article-title: A double-loop control framework for AUV trajectory tracking under model parameters uncertainties and time-varying currents publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112566 – volume: 20 start-page: 266 issue: 4 year: 2019 ident: 10.1016/j.oceaneng.2023.115626_b17 article-title: Autonomous ships: a review, innovative applications and future maritime business models publication-title: Supply Chain Forum Int. J. doi: 10.1080/16258312.2019.1631714 – volume: 281 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b22 article-title: Event-triggered model-parameter-free trajectory tracking control for autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114829 – ident: 10.1016/j.oceaneng.2023.115626_b25 doi: 10.23919/ACC50511.2021.9483029 – volume: 281 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b4 article-title: Improved indirect adaptive line-of-sight guidance law for path following of under-actuated AUV subject to big ocean currents publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114729 – volume: 110 start-page: 303 year: 2015 ident: 10.1016/j.oceaneng.2023.115626_b24 article-title: A survey on path planning for persistent autonomy of autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.10.007 – volume: 268 year: 2023 ident: 10.1016/j.oceaneng.2023.115626_b21 article-title: Path-following optimal control of autonomous underwater vehicle based on deep reinforcement learning publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113407 – year: 2015 ident: 10.1016/j.oceaneng.2023.115626_b19 |
SSID | ssj0006603 |
Score | 2.421244 |
Snippet | This article studies trajectory tracking and dynamic obstacle avoidance problems of unmanned ships, and an event-triggered adaptive nonlinear model predictive... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115626 |
SubjectTerms | Adaptive model predictive control Dynamic obstacle avoidance Event-triggered Trajectory tracking |
Title | Dynamic obstacle avoidance of unmanned ship based on event-triggered adaptive nonlinear model predictive control |
URI | https://dx.doi.org/10.1016/j.oceaneng.2023.115626 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Sciencedirect - Freedom Collection customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvaggWhXro-zBa9pNNtkmx1ItVbFeLPQW9llaNAml9ehvdyfZaAWhB49JdjbLzvLNDDvzDUK3ga8g7Io9xrT0QtHXXiIU9xLdZ1zFMpQM6p2fJ2w8DR9n0ayBhnUtDKRVOuyvML1Ea_em53azVywWUOMbJBZf4aYIrnSB8RPYv-yZ7n7-pHkwRmid5gGjt6qEl11rInims3kXmohb9LDOAPvbQG0ZndExOnLeIh5UCzpBDZ210MEWh2ALHb7A7I54-hQVd1WLeZwL6_dZIcw_8oUC3eLc4E32zgFZMSRpYTBhCucZLmmcvLWN1OfQuxNzxQvAQZxVTBp8hcuWObhYwcVO-ckluZ-h6ej-dTj2XFcFT1I_WHsqsSEHUZyTQEYipIoIInxlKBN2L1VCNeGcxTqIaGiEMZwbnxA7mkWUmZjQc9S0P9cXCFvvxkgjWRhJCjxsifZhxsBGXUIpFrZRVG9lKh3lOHS-eEvr3LJlWqsgBRWklQraqPctV1SkGzslklpT6a_jk1rLsEP28h-yV2gfnsCY-dE1aq5XG31jvZS16JTHsIP2Bg9P48kXYMLpdQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHHhICAaINzlwLUubNluPEw-N17hs0m5VnmgTtNU0-P3EazoNCWkHrk2dVnb02VbszwDXUagx7eoEnBsVxLJtglRqEaSmzYXuqFhx7Hd-7fPeMH4aJaM1uK17YbCs0mN_helztPZPWl6brXI8xh7fKHX4ijdFeKXL1mEjThwmN2Cj-_jc6y8AmXPK6koPFFhqFJ7cOC8hcpO_3-AccQcgLh7gf_uoJb_zsAe7PmAk3eqf9mHN5E3YXqIRbMLOG-7uuacPoLyrpsyTQrrQzwkR8V2MNZqXFJZ85Z8CwZVgnRZBL6ZJkZM5k1Mwc8n6O47vJEKLEqGQ5BWZhpiS-dQcUk7xbme-5OvcD2H4cD-47QV-sEKgWBjNAp26rINqIWikEhkzTSWVobaMS6dOnTJDheAdEyUsttJaIWxIqXubJ4zbDmVH0HAfN8dAXIBjlVU8ThRDKrbUhLhj5BIvqTWPTyCpVZkpzzqOwy8-srq8bJLVJsjQBFllghNoLeTKindjpURaWyr7dYIy5xxWyJ7-Q_YKNnuD15fs5bH_fAZbuIK-LUzOoTGbfpkLF7TM5KU_lD9RP-wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+obstacle+avoidance+of+unmanned+ship+based+on+event-triggered+adaptive+nonlinear+model+predictive+control&rft.jtitle=Ocean+engineering&rft.au=Li%2C+Shilong&rft.au=Zhu%2C+Yakun&rft.au=Bai%2C+Jianguo&rft.au=Guo%2C+Ge&rft.date=2023-10-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=286&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.115626&rft.externalDocID=S0029801823020103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |