Model Extraction From Clinical Data Subject to Large Uncertainties and Poor Identifiability
This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability conditions. These difficult conditions are often present in medical systems due to ethical, safety and regulatory limitations regarding applica...
Saved in:
Published in | IEEE control systems letters Vol. 8; pp. 2151 - 2156 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2475-1456 2475-1456 |
DOI | 10.1109/LCSYS.2024.3402942 |
Cover
Abstract | This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability conditions. These difficult conditions are often present in medical systems due to ethical, safety and regulatory limitations regarding application of persistent drug-related excitation to human body. Furthermore, drug-dose effect relationship is of particular challenge due to large inter- and intra- patient variability. This is strengthened by the lack of suitable instrumentation to measure the necessary information, rather making available inferences and surrogate metrics. A notable advantage of the proposed approach is its robustness to uncertainty. The efficacy of our approach was examined in clinical data from patients monitored during induction phase of target controlled intravenous anesthesia. The proposed method delivered models with physiological explainable parameters and suitable for closed loop control of anesthesia. |
---|---|
AbstractList | This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability conditions. These difficult conditions are often present in medical systems due to ethical, safety and regulatory limitations regarding application of persistent drug-related excitation to human body. Furthermore, drug-dose effect relationship is of particular challenge due to large inter- and intra- patient variability. This is strengthened by the lack of suitable instrumentation to measure the necessary information, rather making available inferences and surrogate metrics. A notable advantage of the proposed approach is its robustness to uncertainty. The efficacy of our approach was examined in clinical data from patients monitored during induction phase of target controlled intravenous anesthesia. The proposed method delivered models with physiological explainable parameters and suitable for closed loop control of anesthesia. |
Author | Ynineb, Amani Ionescu, Clara M. Othman, Ghada Ben Neckebroek, Martine Copot, Dana Keyser, Robin De Yumuk, Erhan |
Author_xml | – sequence: 1 givenname: Clara M. orcidid: 0000-0001-7685-035X surname: Ionescu fullname: Ionescu, Clara M. email: claramihaela.ionescu@ugent.be organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium – sequence: 2 givenname: Robin De orcidid: 0009-0001-5439-0978 surname: Keyser fullname: Keyser, Robin De email: robain.dekeyser@ugent.be organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium – sequence: 3 givenname: Dana orcidid: 0000-0002-6010-830X surname: Copot fullname: Copot, Dana email: dana.copot@ugent.be organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium – sequence: 4 givenname: Erhan orcidid: 0000-0001-9416-6690 surname: Yumuk fullname: Yumuk, Erhan email: erhan.yumuk@ugent.be organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium – sequence: 5 givenname: Amani surname: Ynineb fullname: Ynineb, Amani email: amani.ynineb@ugent.be organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium – sequence: 6 givenname: Ghada Ben surname: Othman fullname: Othman, Ghada Ben email: ghada.benothman@ugent.be organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium – sequence: 7 givenname: Martine surname: Neckebroek fullname: Neckebroek, Martine email: martine.neckebroek@ugent.be organization: Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium |
BookMark | eNp9kM1Kw0AQgBepYK19AfGwL9C6f2mSo8RWCxGF2IN4CJPdiWxJs7JZwb69ie2hePAyMwzzzQzfJRm1rkVCrjmbc87S2zwr3oq5YELNpWIiVeKMjIWKoxlX0WJ0Ul-QaddtGWM8EXE_OSbvT85gQ5ffwYMO1rV05d2OZo1trYaG3kMAWnxVW9SBBkdz8B9IN61GH8C2wWJHoTX0xTlP1wb7Tm2hso0N-ytyXkPT4fSYJ2SzWr5mj7P8-WGd3eUzLbkIfdQGRI2VqfuvdMWYStNaq0hrQBXHDHlsZFIDMwkqs4iH4QRBSq1ZFWs5IeKwV3vXdR7r8tPbHfh9yVk5GCp_DZWDofJoqIeSP5C2AQYDvQnb_I_eHFCLiCe3IqkSnsgfzlF4Yw |
CODEN | ICSLBO |
CitedBy_id | crossref_primary_10_3390_fractalfract8090539 crossref_primary_10_3390_app14135556 |
Cites_doi | 10.1109/smc.2015.435 10.1109/lcsys.2024.3359529 10.1016/j.jprocont.2024.103243 10.1016/j.ifacsc.2024.100247 10.1109/mcs.2022.3187542 10.1016/j.cmpb.2020.105783 10.1016/j.cnsns.2014.05.014 10.1097/00000542-199805000-00006 10.1109/tbme.2023.3241957 10.1088/2516-1091/ac6d36 10.3390/s24072031 10.1109/lcsys.2023.3291665 10.1016/j.ifacol.2021.10.226 10.1109/JBHI.2023.3323688 10.1016/j.jclinane.2020.109818 10.1016/j.jprocont.2024.103179 10.1109/lcsys.2022.3220188 10.1016/j.jprocont.2021.12.004 10.1097/00000542-199701000-00004 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION |
DOI | 10.1109/LCSYS.2024.3402942 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1456 |
EndPage | 2156 |
ExternalDocumentID | 10_1109_LCSYS_2024_3402942 10534818 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Union. The work of Dana Copot was supported by the Flanders Research Foundation grantid: 12X6823N – fundername: European Research Council (ERC) Consolidator Grant AMICAS grantid: 101043225 funderid: 10.13039/501100000781 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c312t-c3cda2febdf827cb00499fc45ccae4770e17d38fa0d8e4d67a2fe8ea33cc0b7c3 |
IEDL.DBID | RIE |
ISSN | 2475-1456 |
IngestDate | Thu Apr 24 22:58:43 EDT 2025 Tue Jul 01 04:06:44 EDT 2025 Wed Aug 27 02:01:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-c3cda2febdf827cb00499fc45ccae4770e17d38fa0d8e4d67a2fe8ea33cc0b7c3 |
ORCID | 0000-0002-6010-830X 0000-0001-9416-6690 0000-0001-7685-035X 0009-0001-5439-0978 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10534818 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1109_LCSYS_2024_3402942 ieee_primary_10534818 crossref_citationtrail_10_1109_LCSYS_2024_3402942 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE control systems letters |
PublicationTitleAbbrev | LCSYS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1109/smc.2015.435 – ident: ref10 doi: 10.1109/lcsys.2024.3359529 – ident: ref19 doi: 10.1016/j.jprocont.2024.103243 – ident: ref6 doi: 10.1016/j.ifacsc.2024.100247 – ident: ref9 doi: 10.1109/mcs.2022.3187542 – ident: ref3 doi: 10.1016/j.cmpb.2020.105783 – ident: ref17 doi: 10.1016/j.cnsns.2014.05.014 – ident: ref12 doi: 10.1097/00000542-199805000-00006 – ident: ref5 doi: 10.1109/tbme.2023.3241957 – ident: ref1 doi: 10.1088/2516-1091/ac6d36 – ident: ref14 doi: 10.3390/s24072031 – ident: ref4 doi: 10.1109/lcsys.2023.3291665 – ident: ref16 doi: 10.1016/j.ifacol.2021.10.226 – ident: ref2 doi: 10.1109/JBHI.2023.3323688 – ident: ref15 doi: 10.1016/j.jclinane.2020.109818 – ident: ref7 doi: 10.1016/j.jprocont.2024.103179 – ident: ref8 doi: 10.1109/lcsys.2022.3220188 – ident: ref11 doi: 10.1016/j.jprocont.2021.12.004 – ident: ref13 doi: 10.1097/00000542-199701000-00004 |
SSID | ssj0001827029 |
Score | 2.2741 |
Snippet | This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2151 |
SubjectTerms | Anesthesia Anesthesia dynamics Data models Drugs Europe identification Mathematical models pharmacodynamic Protocols Uncertainty |
Title | Model Extraction From Clinical Data Subject to Large Uncertainties and Poor Identifiability |
URI | https://ieeexplore.ieee.org/document/10534818 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT158YMX6Yg_eJDWPbR5HqS1FpAi1UPEQkt1ZEGsiIQX11zuzm2oVFC8hhFlYZibZmcl83zB2hoe6G1KXeAweOBiBaycHINZ9X4SB74VSmi7fSTieiet5f96A1Q0WBgBM8xn06Nb8y1elXFKpDN_wPuFG4xZroZ9ZsNZXQSUmaFWyAsa4ycXNYHo_xRTQF70A06RE-N8On7VpKuYwGW2zyWobtofkqbes8558_8HQ-O997rCtJqzkl9YPdtkGFHvsgQadLfjwta4sfIGPqvKZN1SgC36V1RnHLweVYnhd8hvqCuczdAPTJkBUqzwrFL8ty4pbRK9-tLzebx02Gw3vBmOnGabgyMDza7xKlfkacqVRUdK0OCVaij6aEEQUueBFKoh15qoYhAojEo4hCwIp3TySwT5rF2UBB4wDsb5lOtIYngmV57HGsEnISArP05gwdpm30nIqG6ZxGnixSE3G4SapsUxKlkkby3TZ-eeaF8uz8ad0h7S-JmkVfvjL8yO2Sctt6eSYtetqCScYTNT5qXGiD8npx5M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiAyvW5x68SWIem2RzlGqpGovQFioeQrI7C2JNJKSg_nr3kWoVFC8hhE1YZjbZmcn3fYPQidzUnVChxCm4YMkIXFg5gFLd90joe27ImEb5DsL-mFxPgklDVtdcGADQ4DOw1an-l89LNlOlMvmGB4o3SpfRSiDTCmroWl8lFarIVfGcGuPEZ0l3eD-USaBHbF8mSjHxvm0_C_1U9HbS20CD-UQMiuTJntW5zd5_aDT-e6abaL0JLPG5WQlbaAmKbfSgWp1N8eVrXRkCA-5V5TNuxECn-CKrMyy_HaoYg-sSJwoXjsdyIWiggBJbxVnB8V1ZVthwesWjUfZ-a6Nx73LU7VtNOwWL-a5XyyPjmScg50IaimmQUywYCaQTgUSRA27EfSoyh1MgPIzUYAqZ7zPm5BHzd1CrKAvYRRiU7lsmIiEDNMLznAoZOBEWMeK6QqaMHeTOrZyyRmtctbyYpjrncOJUeyZVnkkbz3TQ6ec9L0Zp48_RbWX1hZHG4Hu_XD9Gq_3RbZImV4ObfbSmHmUKKQeoVVczOJShRZ0f6QX1AXTkyuY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Extraction+From+Clinical+Data+Subject+to+Large+Uncertainties+and+Poor+Identifiability&rft.jtitle=IEEE+control+systems+letters&rft.au=Ionescu%2C+Clara+M.&rft.au=Keyser%2C+Robin+De&rft.au=Copot%2C+Dana&rft.au=Yumuk%2C+Erhan&rft.date=2024&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=8&rft.spage=2151&rft.epage=2156&rft_id=info:doi/10.1109%2FLCSYS.2024.3402942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2024_3402942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |