Model Extraction From Clinical Data Subject to Large Uncertainties and Poor Identifiability

This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability conditions. These difficult conditions are often present in medical systems due to ethical, safety and regulatory limitations regarding applica...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 8; pp. 2151 - 2156
Main Authors Ionescu, Clara M., Keyser, Robin De, Copot, Dana, Yumuk, Erhan, Ynineb, Amani, Othman, Ghada Ben, Neckebroek, Martine
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text
ISSN2475-1456
2475-1456
DOI10.1109/LCSYS.2024.3402942

Cover

Abstract This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability conditions. These difficult conditions are often present in medical systems due to ethical, safety and regulatory limitations regarding application of persistent drug-related excitation to human body. Furthermore, drug-dose effect relationship is of particular challenge due to large inter- and intra- patient variability. This is strengthened by the lack of suitable instrumentation to measure the necessary information, rather making available inferences and surrogate metrics. A notable advantage of the proposed approach is its robustness to uncertainty. The efficacy of our approach was examined in clinical data from patients monitored during induction phase of target controlled intravenous anesthesia. The proposed method delivered models with physiological explainable parameters and suitable for closed loop control of anesthesia.
AbstractList This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability conditions. These difficult conditions are often present in medical systems due to ethical, safety and regulatory limitations regarding application of persistent drug-related excitation to human body. Furthermore, drug-dose effect relationship is of particular challenge due to large inter- and intra- patient variability. This is strengthened by the lack of suitable instrumentation to measure the necessary information, rather making available inferences and surrogate metrics. A notable advantage of the proposed approach is its robustness to uncertainty. The efficacy of our approach was examined in clinical data from patients monitored during induction phase of target controlled intravenous anesthesia. The proposed method delivered models with physiological explainable parameters and suitable for closed loop control of anesthesia.
Author Ynineb, Amani
Ionescu, Clara M.
Othman, Ghada Ben
Neckebroek, Martine
Copot, Dana
Keyser, Robin De
Yumuk, Erhan
Author_xml – sequence: 1
  givenname: Clara M.
  orcidid: 0000-0001-7685-035X
  surname: Ionescu
  fullname: Ionescu, Clara M.
  email: claramihaela.ionescu@ugent.be
  organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
– sequence: 2
  givenname: Robin De
  orcidid: 0009-0001-5439-0978
  surname: Keyser
  fullname: Keyser, Robin De
  email: robain.dekeyser@ugent.be
  organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
– sequence: 3
  givenname: Dana
  orcidid: 0000-0002-6010-830X
  surname: Copot
  fullname: Copot, Dana
  email: dana.copot@ugent.be
  organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
– sequence: 4
  givenname: Erhan
  orcidid: 0000-0001-9416-6690
  surname: Yumuk
  fullname: Yumuk, Erhan
  email: erhan.yumuk@ugent.be
  organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
– sequence: 5
  givenname: Amani
  surname: Ynineb
  fullname: Ynineb, Amani
  email: amani.ynineb@ugent.be
  organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
– sequence: 6
  givenname: Ghada Ben
  surname: Othman
  fullname: Othman, Ghada Ben
  email: ghada.benothman@ugent.be
  organization: Department of Electromechanics, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
– sequence: 7
  givenname: Martine
  surname: Neckebroek
  fullname: Neckebroek, Martine
  email: martine.neckebroek@ugent.be
  organization: Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium
BookMark eNp9kM1Kw0AQgBepYK19AfGwL9C6f2mSo8RWCxGF2IN4CJPdiWxJs7JZwb69ie2hePAyMwzzzQzfJRm1rkVCrjmbc87S2zwr3oq5YELNpWIiVeKMjIWKoxlX0WJ0Ul-QaddtGWM8EXE_OSbvT85gQ5ffwYMO1rV05d2OZo1trYaG3kMAWnxVW9SBBkdz8B9IN61GH8C2wWJHoTX0xTlP1wb7Tm2hso0N-ytyXkPT4fSYJ2SzWr5mj7P8-WGd3eUzLbkIfdQGRI2VqfuvdMWYStNaq0hrQBXHDHlsZFIDMwkqs4iH4QRBSq1ZFWs5IeKwV3vXdR7r8tPbHfh9yVk5GCp_DZWDofJoqIeSP5C2AQYDvQnb_I_eHFCLiCe3IqkSnsgfzlF4Yw
CODEN ICSLBO
CitedBy_id crossref_primary_10_3390_fractalfract8090539
crossref_primary_10_3390_app14135556
Cites_doi 10.1109/smc.2015.435
10.1109/lcsys.2024.3359529
10.1016/j.jprocont.2024.103243
10.1016/j.ifacsc.2024.100247
10.1109/mcs.2022.3187542
10.1016/j.cmpb.2020.105783
10.1016/j.cnsns.2014.05.014
10.1097/00000542-199805000-00006
10.1109/tbme.2023.3241957
10.1088/2516-1091/ac6d36
10.3390/s24072031
10.1109/lcsys.2023.3291665
10.1016/j.ifacol.2021.10.226
10.1109/JBHI.2023.3323688
10.1016/j.jclinane.2020.109818
10.1016/j.jprocont.2024.103179
10.1109/lcsys.2022.3220188
10.1016/j.jprocont.2021.12.004
10.1097/00000542-199701000-00004
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2024.3402942
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 2156
ExternalDocumentID 10_1109_LCSYS_2024_3402942
10534818
Genre orig-research
GrantInformation_xml – fundername: European Union. The work of Dana Copot was supported by the Flanders Research Foundation
  grantid: 12X6823N
– fundername: European Research Council (ERC) Consolidator Grant AMICAS
  grantid: 101043225
  funderid: 10.13039/501100000781
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c312t-c3cda2febdf827cb00499fc45ccae4770e17d38fa0d8e4d67a2fe8ea33cc0b7c3
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Thu Apr 24 22:58:43 EDT 2025
Tue Jul 01 04:06:44 EDT 2025
Wed Aug 27 02:01:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-c3cda2febdf827cb00499fc45ccae4770e17d38fa0d8e4d67a2fe8ea33cc0b7c3
ORCID 0000-0002-6010-830X
0000-0001-9416-6690
0000-0001-7685-035X
0009-0001-5439-0978
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10534818
PageCount 6
ParticipantIDs crossref_primary_10_1109_LCSYS_2024_3402942
ieee_primary_10534818
crossref_citationtrail_10_1109_LCSYS_2024_3402942
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1109/smc.2015.435
– ident: ref10
  doi: 10.1109/lcsys.2024.3359529
– ident: ref19
  doi: 10.1016/j.jprocont.2024.103243
– ident: ref6
  doi: 10.1016/j.ifacsc.2024.100247
– ident: ref9
  doi: 10.1109/mcs.2022.3187542
– ident: ref3
  doi: 10.1016/j.cmpb.2020.105783
– ident: ref17
  doi: 10.1016/j.cnsns.2014.05.014
– ident: ref12
  doi: 10.1097/00000542-199805000-00006
– ident: ref5
  doi: 10.1109/tbme.2023.3241957
– ident: ref1
  doi: 10.1088/2516-1091/ac6d36
– ident: ref14
  doi: 10.3390/s24072031
– ident: ref4
  doi: 10.1109/lcsys.2023.3291665
– ident: ref16
  doi: 10.1016/j.ifacol.2021.10.226
– ident: ref2
  doi: 10.1109/JBHI.2023.3323688
– ident: ref15
  doi: 10.1016/j.jclinane.2020.109818
– ident: ref7
  doi: 10.1016/j.jprocont.2024.103179
– ident: ref8
  doi: 10.1109/lcsys.2022.3220188
– ident: ref11
  doi: 10.1016/j.jprocont.2021.12.004
– ident: ref13
  doi: 10.1097/00000542-199701000-00004
SSID ssj0001827029
Score 2.2741
Snippet This letter presents an extension to system theory as a novel approach to provide models from clinical data under large uncertainty and poor identifiability...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2151
SubjectTerms Anesthesia
Anesthesia dynamics
Data models
Drugs
Europe
identification
Mathematical models
pharmacodynamic
Protocols
Uncertainty
Title Model Extraction From Clinical Data Subject to Large Uncertainties and Poor Identifiability
URI https://ieeexplore.ieee.org/document/10534818
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT158YMX6Yg_eJDWPbR5HqS1FpAi1UPEQkt1ZEGsiIQX11zuzm2oVFC8hhFlYZibZmcl83zB2hoe6G1KXeAweOBiBaycHINZ9X4SB74VSmi7fSTieiet5f96A1Q0WBgBM8xn06Nb8y1elXFKpDN_wPuFG4xZroZ9ZsNZXQSUmaFWyAsa4ycXNYHo_xRTQF70A06RE-N8On7VpKuYwGW2zyWobtofkqbes8558_8HQ-O997rCtJqzkl9YPdtkGFHvsgQadLfjwta4sfIGPqvKZN1SgC36V1RnHLweVYnhd8hvqCuczdAPTJkBUqzwrFL8ty4pbRK9-tLzebx02Gw3vBmOnGabgyMDza7xKlfkacqVRUdK0OCVaij6aEEQUueBFKoh15qoYhAojEo4hCwIp3TySwT5rF2UBB4wDsb5lOtIYngmV57HGsEnISArP05gwdpm30nIqG6ZxGnixSE3G4SapsUxKlkkby3TZ-eeaF8uz8ad0h7S-JmkVfvjL8yO2Sctt6eSYtetqCScYTNT5qXGiD8npx5M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiAyvW5x68SWIem2RzlGqpGovQFioeQrI7C2JNJKSg_nr3kWoVFC8hhE1YZjbZmcn3fYPQidzUnVChxCm4YMkIXFg5gFLd90joe27ImEb5DsL-mFxPgklDVtdcGADQ4DOw1an-l89LNlOlMvmGB4o3SpfRSiDTCmroWl8lFarIVfGcGuPEZ0l3eD-USaBHbF8mSjHxvm0_C_1U9HbS20CD-UQMiuTJntW5zd5_aDT-e6abaL0JLPG5WQlbaAmKbfSgWp1N8eVrXRkCA-5V5TNuxECn-CKrMyy_HaoYg-sSJwoXjsdyIWiggBJbxVnB8V1ZVthwesWjUfZ-a6Nx73LU7VtNOwWL-a5XyyPjmScg50IaimmQUywYCaQTgUSRA27EfSoyh1MgPIzUYAqZ7zPm5BHzd1CrKAvYRRiU7lsmIiEDNMLznAoZOBEWMeK6QqaMHeTOrZyyRmtctbyYpjrncOJUeyZVnkkbz3TQ6ec9L0Zp48_RbWX1hZHG4Hu_XD9Gq_3RbZImV4ObfbSmHmUKKQeoVVczOJShRZ0f6QX1AXTkyuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Extraction+From+Clinical+Data+Subject+to+Large+Uncertainties+and+Poor+Identifiability&rft.jtitle=IEEE+control+systems+letters&rft.au=Ionescu%2C+Clara+M.&rft.au=Keyser%2C+Robin+De&rft.au=Copot%2C+Dana&rft.au=Yumuk%2C+Erhan&rft.date=2024&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=8&rft.spage=2151&rft.epage=2156&rft_id=info:doi/10.1109%2FLCSYS.2024.3402942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2024_3402942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon