Dynamic event-triggered control for MSVs via composite-learning-based adaptive neural approach
This article investigates the control issue of marine surface vehicles (MSVs) subject to uncertainties and input saturation. To ensure the smooth implementation of backstepping design framework, the non-smooth saturation model is replaced by a smooth function, which is analogous to the hyperbolic ta...
Saved in:
Published in | Ocean engineering Vol. 278; p. 114312 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 1873-5258 |
DOI | 10.1016/j.oceaneng.2023.114312 |
Cover
Abstract | This article investigates the control issue of marine surface vehicles (MSVs) subject to uncertainties and input saturation. To ensure the smooth implementation of backstepping design framework, the non-smooth saturation model is replaced by a smooth function, which is analogous to the hyperbolic tangent function. To exact reconstruct the uncertainties including unknown internal nonlinear dynamic and external disturbance, an idea of separation reconstruction is proposed. That is, the adaptive neural network (NN) is utilized to online reconstruct the unknown internal nonlinear dynamic, and a NN-based disturbance observer is proposed to timely recover the external disturbance plus the reconstruction error of adaptive NN. To enhance the control accuracy, a serial-parallel estimation model (SPEM) is involved to capture the prediction error of MSVs’ velocity. Based on this, a novel adaptive law used to update the NN weight is designed by involving the velocity error, prediction error and estimation value of disturbance. Furthermore, a composite-learning-based adaptive neural control (CLBANC) law is designed. To decrease the physical wear of actuator, a dynamic event-triggered mechanism is established between the control law and actuator. Finally, a dynamic event-triggered (DET) CLBANC (DET-CLBANC) scheme is developed for MSVs. Theoretical analysis indicates that the proposed control scheme is endowed with the ability to ensure the boundedness of all signals in the whole closed-loop system of MSVs. Moreover, the effectiveness of DET-CLBANC scheme is verified by simulation and comparison.
•The proposed control scheme guarantees that the position and velocity errors converge to a predefined neighborhood of origin in an appoint time, and the appoint time and predefined neighborhood can be determined off-line by user.•Only one unknown parameter needs to be updated in this work, which can reduce the computational burden greatly.•This work establishes an event triggering mechanism between the control law and the actuator, which can effective decrease the amount of transmitted control command and reduce the unnecessary mechanical wear of actuator. |
---|---|
AbstractList | This article investigates the control issue of marine surface vehicles (MSVs) subject to uncertainties and input saturation. To ensure the smooth implementation of backstepping design framework, the non-smooth saturation model is replaced by a smooth function, which is analogous to the hyperbolic tangent function. To exact reconstruct the uncertainties including unknown internal nonlinear dynamic and external disturbance, an idea of separation reconstruction is proposed. That is, the adaptive neural network (NN) is utilized to online reconstruct the unknown internal nonlinear dynamic, and a NN-based disturbance observer is proposed to timely recover the external disturbance plus the reconstruction error of adaptive NN. To enhance the control accuracy, a serial-parallel estimation model (SPEM) is involved to capture the prediction error of MSVs’ velocity. Based on this, a novel adaptive law used to update the NN weight is designed by involving the velocity error, prediction error and estimation value of disturbance. Furthermore, a composite-learning-based adaptive neural control (CLBANC) law is designed. To decrease the physical wear of actuator, a dynamic event-triggered mechanism is established between the control law and actuator. Finally, a dynamic event-triggered (DET) CLBANC (DET-CLBANC) scheme is developed for MSVs. Theoretical analysis indicates that the proposed control scheme is endowed with the ability to ensure the boundedness of all signals in the whole closed-loop system of MSVs. Moreover, the effectiveness of DET-CLBANC scheme is verified by simulation and comparison.
•The proposed control scheme guarantees that the position and velocity errors converge to a predefined neighborhood of origin in an appoint time, and the appoint time and predefined neighborhood can be determined off-line by user.•Only one unknown parameter needs to be updated in this work, which can reduce the computational burden greatly.•This work establishes an event triggering mechanism between the control law and the actuator, which can effective decrease the amount of transmitted control command and reduce the unnecessary mechanical wear of actuator. |
ArticleNumber | 114312 |
Author | Zhu, Guibing Shi, Jiahui Liu, Zhengjiang |
Author_xml | – sequence: 1 givenname: Jiahui orcidid: 0000-0003-2707-9495 surname: Shi fullname: Shi, Jiahui organization: School of Navigation, Dalian Maritime University, Dalian 116026, China – sequence: 2 givenname: Zhengjiang surname: Liu fullname: Liu, Zhengjiang email: liuzhengjiang@dlmu.edu.cn organization: School of Navigation, Dalian Maritime University, Dalian 116026, China – sequence: 3 givenname: Guibing orcidid: 0000-0002-8267-9437 surname: Zhu fullname: Zhu, Guibing organization: College of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China |
BookMark | eNqFkMtOwzAQRS1UJFrgF1B-IGEct0kqsQCVp1TEgscSa2JPgqvUjmxTqX9PqsKGTVcjjeZczT0TNrLOEmMXHDIOvLhcZU4RWrJtlkMuMs6ngudHbMyrUqSzfFaN2Bggn6cV8OqETUJYAUBRgBizz9utxbVRCW3IxjR607bkSSfK2ehdlzTOJ8-vHyHZGByW694FEyntCL01tk1rDMM1auyj2VBi6dtjl2Dfe4fq64wdN9gFOv-dp-z9_u5t8ZguXx6eFjfLVA2vxlRBSQLKuVZlrau8Qa5KhGIGJeT1tNECAaHmhUaigiDHaia4UFBomtYK5uKUXe1zlXcheGqkMhGj2ZVA00kOcudKruSfK7lzJfeuBrz4h_ferNFvD4PXe5CGchtDXgZlyCrSxpOKUjtzKOIHoKiL3Q |
CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110237 crossref_primary_10_1016_j_oceaneng_2024_118022 |
Cites_doi | 10.1109/JOE.2018.2877895 10.1109/TCYB.2020.3005800 10.1016/j.neucom.2018.08.056 10.1002/rnc.3324 10.1016/j.oceaneng.2020.107540 10.1109/TCYB.2014.2311824 10.1016/j.arcontrol.2016.04.018 10.1109/TNNLS.2021.3068762 10.1109/CDC.2012.6425820 10.1016/j.oceaneng.2016.09.037 10.1002/rnc.4314 10.1016/j.oceaneng.2019.106122 10.1109/TMECH.2017.2651057 10.1016/j.oceaneng.2019.05.078 10.1016/j.oceaneng.2022.111939 10.1016/j.arcontrol.2012.09.008 10.1016/j.oceaneng.2018.04.016 10.1016/j.jfranklin.2018.07.033 10.1016/j.oceaneng.2021.108734 10.1109/TITS.2021.3054177 10.1109/TAC.2000.880994 10.1016/j.oceaneng.2022.111169 10.1109/ACCESS.2022.3146315 10.1109/TIE.2020.2978713 10.1016/j.isatra.2022.03.027 10.1109/TIE.2017.2677330 10.1109/TITS.2022.3170322 10.1109/TMECH.2017.2660528 10.1016/j.isatra.2020.12.059 10.1016/j.isatra.2019.03.007 10.1016/j.neucom.2019.07.007 10.1016/j.isatra.2018.12.047 10.1109/TAC.2011.2122730 10.1109/TNNLS.2021.3053292 10.1109/TVT.2021.3063687 10.1109/.2005.1469806 10.1007/s00773-020-00758-x 10.1109/TCST.2017.2728518 10.1016/S0167-6911(97)00068-6 10.1016/j.ijnaoe.2021.11.005 10.1016/j.jfranklin.2020.06.010 10.1016/j.oceaneng.2020.107242 10.1016/j.oceaneng.2007.02.005 10.1016/j.sysconle.2015.07.002 10.1109/TAC.2014.2366855 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2023.114312 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2023_114312 S0029801823006960 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
ID | FETCH-LOGICAL-c312t-c07e3079dc7bd82fa1c7a0650702b4fd3a0a0b16daee6e02a85313c06de4bc093 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Sep 25 00:44:11 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Fri Feb 23 02:36:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Composite learning Internal and external uncertainty Marine surface vehicles Adaptive neural control Dynamic event-triggered mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-c07e3079dc7bd82fa1c7a0650702b4fd3a0a0b16daee6e02a85313c06de4bc093 |
ORCID | 0000-0003-2707-9495 0000-0002-8267-9437 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2023_114312 crossref_primary_10_1016_j_oceaneng_2023_114312 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_114312 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Campbell, Naeem, Irwin (b1) 2012; 36 Min, Zhang (b20) 2021; 224 Deng, Zhang, Im, Zhang (b4) 2019; 186 Zhu, Du, Kao (b44) 2018; 355 Zhang, Yu, Yan (b38) 2019; 186 Zhu, Ma, Li, Malekian, Sotelo (b49) 2021; 70 Xu, Shi, Yang, Sun (b34) 2014; 44 Yu, Lu, Zhu, Yang (b36) 2022; 253 Ma, Zhao, Li, Bi, Wang, Malekian, Sotelo (b18) 2022; 23 Ihle, I., R.Skjetne, Fossen, T.I., 2005. Output feedback control for maneuvering systems using observer backstepping. In: Proceedings of the 13th Mediterrean Conference on Control and Automation Intelligent Control. pp. 1512–1517. Peng, Jiang, Wang (b23) 2021; 68 Zhu, Du (b43) 2018; 45 Shi, Shen, Fang, Li (b27) 2017; 22 Wen, Ge, Tu, Choo (b32) 2017; 64 Ma, Nie, Yu, Peng (b17) 2020; 213 Van (b31) 2019; 90 Moreira, Fossen, Soares (b21) 2007; 34 Zheng, Lau, Xie (b42) 2018; 28 Liu, W. Zhang, Wang, Peng (b14) 2020; 209 Girard (b8) 2014; 60 Zhu, Du, Kao (b45) 2020; 357 Swaroop, Hedrick, Yip, Gerdes (b29) 2000; 45 Fu, Yu (b7) 2018; 159 Zhu, Ma, Yan (b50) 2022 Shin, Kwak, Lee (b28) 2017; 22 Ding, Wang, Sun, Qin (b5) 2022; 260 Fang, Liu, Gao (b6) 2021; 32 Hu, x. Wei, Y. Kao, Han (b11) 2021; 23 Yu, Lu, Zhu, Yang (b35) 2022; 253 Ma, Zhu, Li (b19) 2019; 11 Ma, Nie, Yu, Hu, Peng (b16) 2020; 213 Pham, Dao (b24) 2022; 130 Tuo, Wang, Guo (b30) 2022; 14 Zhang, Chu, Jin, Zhang (b37) 2021; 51 Sarda, Qu, Bertaska, Ellenrieder (b25) 2016; 127 Sawada, Hirata, Kitagawa, Saito, Ueno, Tanizawa, Fukuto (b26) 2021; 26 Zhang, Yu, Yan (b39) 2019; 93 Hu, Du, Zhu, Sun (b10) 2018; 318 Zheng, Huang, Xie, Zhu (b41) 2017; 26 Chen, Jiang, Cui (b2) 2016; 26 Deng, Krstić (b3) 1997; 32 Zhu, Huang, Zhou, Su, Zhang (b47) 2021; 114 Pan, Chen, Zhu, Su (b22) 2022; 10 Huang, Wen, Wang, Song (b12) 2015; 85 Heemels, W., Johansson, K., Tabuada, P., 2012. An introduction to event-triggered and self-triggered control. In: 51st IEEE Conference on Decision and Control. Cdc, pp. 3270–3285. Zhu, Du, Li, Kao (b46) 2019; 365 Zhu, Ma, Li, Malekian, M. (b48) 2022 Wen, Zhou, Liu, Su (b33) 2011; 56 Liu, Zhang, Yu, Yuan (b15) 2016; 41 Zhao, Ma, Hu (b40) 2021; 32 Zhu (10.1016/j.oceaneng.2023.114312_b44) 2018; 355 Zhu (10.1016/j.oceaneng.2023.114312_b47) 2021; 114 Shi (10.1016/j.oceaneng.2023.114312_b27) 2017; 22 Zhu (10.1016/j.oceaneng.2023.114312_b50) 2022 Zhu (10.1016/j.oceaneng.2023.114312_b49) 2021; 70 Zheng (10.1016/j.oceaneng.2023.114312_b42) 2018; 28 Pham (10.1016/j.oceaneng.2023.114312_b24) 2022; 130 Girard (10.1016/j.oceaneng.2023.114312_b8) 2014; 60 Van (10.1016/j.oceaneng.2023.114312_b31) 2019; 90 Hu (10.1016/j.oceaneng.2023.114312_b11) 2021; 23 Yu (10.1016/j.oceaneng.2023.114312_b35) 2022; 253 Wen (10.1016/j.oceaneng.2023.114312_b33) 2011; 56 10.1016/j.oceaneng.2023.114312_b13 Sawada (10.1016/j.oceaneng.2023.114312_b26) 2021; 26 Swaroop (10.1016/j.oceaneng.2023.114312_b29) 2000; 45 Min (10.1016/j.oceaneng.2023.114312_b20) 2021; 224 Zhang (10.1016/j.oceaneng.2023.114312_b38) 2019; 186 Tuo (10.1016/j.oceaneng.2023.114312_b30) 2022; 14 Xu (10.1016/j.oceaneng.2023.114312_b34) 2014; 44 10.1016/j.oceaneng.2023.114312_b9 Ding (10.1016/j.oceaneng.2023.114312_b5) 2022; 260 Huang (10.1016/j.oceaneng.2023.114312_b12) 2015; 85 Shin (10.1016/j.oceaneng.2023.114312_b28) 2017; 22 Zhu (10.1016/j.oceaneng.2023.114312_b46) 2019; 365 Zhu (10.1016/j.oceaneng.2023.114312_b48) 2022 Chen (10.1016/j.oceaneng.2023.114312_b2) 2016; 26 Ma (10.1016/j.oceaneng.2023.114312_b18) 2022; 23 Ma (10.1016/j.oceaneng.2023.114312_b17) 2020; 213 Liu (10.1016/j.oceaneng.2023.114312_b15) 2016; 41 Ma (10.1016/j.oceaneng.2023.114312_b19) 2019; 11 Zhu (10.1016/j.oceaneng.2023.114312_b45) 2020; 357 Liu (10.1016/j.oceaneng.2023.114312_b14) 2020; 209 Zhu (10.1016/j.oceaneng.2023.114312_b43) 2018; 45 Ma (10.1016/j.oceaneng.2023.114312_b16) 2020; 213 Deng (10.1016/j.oceaneng.2023.114312_b3) 1997; 32 Fu (10.1016/j.oceaneng.2023.114312_b7) 2018; 159 Pan (10.1016/j.oceaneng.2023.114312_b22) 2022; 10 Fang (10.1016/j.oceaneng.2023.114312_b6) 2021; 32 Hu (10.1016/j.oceaneng.2023.114312_b10) 2018; 318 Yu (10.1016/j.oceaneng.2023.114312_b36) 2022; 253 Zhao (10.1016/j.oceaneng.2023.114312_b40) 2021; 32 Peng (10.1016/j.oceaneng.2023.114312_b23) 2021; 68 Deng (10.1016/j.oceaneng.2023.114312_b4) 2019; 186 Moreira (10.1016/j.oceaneng.2023.114312_b21) 2007; 34 Campbell (10.1016/j.oceaneng.2023.114312_b1) 2012; 36 Zhang (10.1016/j.oceaneng.2023.114312_b37) 2021; 51 Zheng (10.1016/j.oceaneng.2023.114312_b41) 2017; 26 Wen (10.1016/j.oceaneng.2023.114312_b32) 2017; 64 Zhang (10.1016/j.oceaneng.2023.114312_b39) 2019; 93 Sarda (10.1016/j.oceaneng.2023.114312_b25) 2016; 127 |
References_xml | – volume: 26 start-page: 542 year: 2016 end-page: 564 ident: b2 article-title: Actuator fault-tolerant control of ocean surface vessels with input saturation publication-title: Int. J. Robust Nonlinear Control – volume: 186 year: 2019 ident: b4 article-title: Event-triggered robust fuzzy path following control for underactuated ships with input saturation publication-title: Ocean Eng. – volume: 60 start-page: 1992 year: 2014 end-page: 1997 ident: b8 article-title: Dynamic triggering mechanisms for event-triggered control publication-title: IEEE Trans. Automat. Control – volume: 45 start-page: 1893 year: 2000 end-page: 1899 ident: b29 article-title: Dynamic surface control for a class of nonlinear systems publication-title: IEEE Trans. Automat. Control – volume: 260 year: 2022 ident: b5 article-title: Adaptive prescribed performance second-order sliding mode tracking control of autonomous underwater vehicle using neural network-based disturbance observer publication-title: Ocean Eng. – volume: 253 year: 2022 ident: b36 article-title: Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer publication-title: Ocean Eng. – volume: 209 year: 2020 ident: b14 article-title: Event-triggered extended state observers design for dynamic positioning vessels subject to unknown sea loads publication-title: Ocean Eng. – volume: 64 start-page: 5640 year: 2017 end-page: 5647 ident: b32 article-title: Artificial potential based adaptive h synchronized tracking control for accommodation vessel publication-title: IEEE Trans. Ind. Electron. – volume: 26 start-page: 1851 year: 2017 end-page: 1859 ident: b41 article-title: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output publication-title: IEEE Trans. Control Syst. Technol. – volume: 127 start-page: 305 year: 2016 end-page: 324 ident: b25 article-title: Station-keeping control of an unmanned surface vehicle exposed to current and wind disturbances publication-title: Ocean Eng. – volume: 365 start-page: 125 year: 2019 end-page: 136 ident: b46 article-title: Robust adaptive NN tracking control for MIMO uncertain nonlinear systems with completely unknown control gains under input saturations publication-title: Neurocomputing – volume: 22 start-page: 1121 year: 2017 end-page: 1131 ident: b27 article-title: Advanced control in marine mechatronic systems: A survey publication-title: IEEE/ASME Trans. Mechatronics – volume: 41 start-page: 71 year: 2016 end-page: 93 ident: b15 article-title: Unmanned surface vehicles: An overview of developments and challenges publication-title: Annu. Rev. Control – volume: 93 start-page: 145 year: 2019 end-page: 155 ident: b39 article-title: Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties publication-title: ISA Trans. – volume: 32 start-page: 143 year: 1997 end-page: 150 ident: b3 article-title: Stochastic nonlinear stabilization-i: A backstepping design publication-title: Syst. Control Lett. – reference: Heemels, W., Johansson, K., Tabuada, P., 2012. An introduction to event-triggered and self-triggered control. In: 51st IEEE Conference on Decision and Control. Cdc, pp. 3270–3285. – volume: 51 start-page: 2327 year: 2021 end-page: 2338 ident: b37 article-title: Composite neural learning fault-tolerant control for underactuated vehicles with event-triggered input publication-title: IEEE Trans. Cybern. – volume: 34 start-page: 2074 year: 2007 end-page: 2085 ident: b21 article-title: Path following control system for a tanker ship model publication-title: Ocean Eng. – volume: 10 start-page: 14440 year: 2022 end-page: 14449 ident: b22 article-title: Event-triggered composite learning finite-time trajectory tracking control for underactuated MSVs subject to uncertainties publication-title: IEEE Access – reference: Ihle, I., R.Skjetne, Fossen, T.I., 2005. Output feedback control for maneuvering systems using observer backstepping. In: Proceedings of the 13th Mediterrean Conference on Control and Automation Intelligent Control. pp. 1512–1517. – volume: 23 start-page: 5470 year: 2021 end-page: 5479 ident: b11 article-title: Robust synchronization for under-actuated vessels based on disturbance observer publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 224 year: 2021 ident: b20 article-title: Concise robust fuzzy nonlinear feedback track keeping control for ships using multi-technique improved LOS guidance publication-title: Ocean Eng. – volume: 357 start-page: 8591 year: 2020 end-page: 8610 ident: b45 article-title: Robust adaptive neural trajectory tracking control of surface vessels under input and output constraints publication-title: J. Franklin Inst. – volume: 44 start-page: 2626 year: 2014 end-page: 2634 ident: b34 article-title: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form publication-title: IEEE Trans. Cybern. – volume: 186 year: 2019 ident: b38 article-title: Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances publication-title: Ocean Eng. – year: 2022 ident: b50 article-title: Event-triggered neuroadaptive predefined practical finite-time control for dynamic positioning vessels: A time-based generator approach publication-title: Fundam. Res. – volume: 32 start-page: 5468 year: 2021 end-page: 5478 ident: b40 article-title: USV formation and path-following control via deep reinforcement learning with random braking publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 11 start-page: 17 year: 2019 end-page: 28 ident: b19 article-title: Error-driven-based nonlinear feedback recursive design for aadaptive nn trajectory tracking control of surface ships with input saturation publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 28 start-page: 5312 year: 2018 end-page: 5325 ident: b42 article-title: Event-triggered control for a saturated nonlinear system with prescribed performance and finite-time convergence publication-title: Internat. J. Robust Nonlinear Control – volume: 90 start-page: 30 year: 2019 end-page: 40 ident: b31 article-title: An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer publication-title: ISA Trans. – volume: 56 start-page: 1672 year: 2011 end-page: 1678 ident: b33 article-title: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance publication-title: IEEE Trans. Autom. Control – volume: 23 start-page: 19578 year: 2022 end-page: 19588 ident: b18 article-title: CCIBA*: An improved BA* based collaborative coverage path planning method for multiple unmanned surface mapping vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 85 start-page: 1 year: 2015 end-page: 7 ident: b12 article-title: Global stable tracking control of underactuated ships with input saturation publication-title: Systems Control Lett. – volume: 45 start-page: 442 year: 2018 end-page: 450 ident: b43 article-title: Global robust adaptive trajectory tracking control for surface ships under input saturation publication-title: IEEE J. Ocean. Eng. – volume: 130 start-page: 277 year: 2022 end-page: 292 ident: b24 article-title: Disturbance observer-based adaptive reinforcement learning for perturbed uncertain surface vessels publication-title: ISA Trans. – volume: 318 start-page: 201 year: 2018 end-page: 212 ident: b10 article-title: Robust adaptive NN control of dynamically positioned vessels under input constraints publication-title: Neurocomputing – volume: 68 start-page: 3402 year: 2021 end-page: 3412 ident: b23 article-title: Event-triggered dynamic surface control of an underactuated autonomous surface vehicle for target enclosing publication-title: IEEE Trans. Ind. Electron. – volume: 22 start-page: 1143 year: 2017 end-page: 1153 ident: b28 article-title: Adaptive path following control for an unmanned surface vessel using an identified dynamic model publication-title: IEEE/ASME Trans. Mechatronics – volume: 159 start-page: 219 year: 2018 end-page: 227 ident: b7 article-title: Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances publication-title: Ocean Eng. – volume: 70 start-page: 2994 year: 2021 end-page: 3006 ident: b49 article-title: Adaptive neural output feedback control for MSVs with predefined performance publication-title: IEEE Trans. Veh. Technol. – year: 2022 ident: b48 article-title: Dynamic event-triggered adaptive neural output feedback control for MSVs using composite learning publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 14 year: 2022 ident: b30 article-title: Finite-time extended state observer-based area keeping and heading control for turret-moored vessels with uncertainties and unavailable velocities publication-title: Int. J. Nav. Archit. Ocean Eng. – volume: 355 start-page: 7548 year: 2018 end-page: 7569 ident: b44 article-title: Command filtered robust adaptive NN control for a class of uncertain strict-feedback nonlinear systems under input saturation publication-title: J. Franklin Inst. B – volume: 32 start-page: 575 year: 2021 end-page: 5583 ident: b6 article-title: Composite learning control of overactuated manned submersible vehicle with disturbance/uncertainty and measurement noise publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 213 year: 2020 ident: b16 article-title: Event-triggered fuzzy control of networked nonlinear underactuated unmanned surface vehicle publication-title: Ocean Eng. – volume: 36 start-page: 267 year: 2012 end-page: 283 ident: b1 article-title: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres publication-title: Annu. Rev. Control – volume: 213 year: 2020 ident: b17 article-title: Event-triggered fuzzy control of networked nonlinear underactuated unmanned surface vehicle publication-title: Ocean Eng. – volume: 253 year: 2022 ident: b35 article-title: Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer publication-title: Ocean Eng. – volume: 26 start-page: 541 year: 2021 end-page: 554 ident: b26 article-title: Path following algorithm application to automatic berthing control publication-title: J. Mar. Sci. Technol. – volume: 114 start-page: 57 year: 2021 end-page: 71 ident: b47 article-title: Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles publication-title: ISA Trans. – volume: 45 start-page: 442 issue: 2 year: 2018 ident: 10.1016/j.oceaneng.2023.114312_b43 article-title: Global robust adaptive trajectory tracking control for surface ships under input saturation publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2018.2877895 – volume: 51 start-page: 2327 issue: 5 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b37 article-title: Composite neural learning fault-tolerant control for underactuated vehicles with event-triggered input publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3005800 – volume: 318 start-page: 201 year: 2018 ident: 10.1016/j.oceaneng.2023.114312_b10 article-title: Robust adaptive NN control of dynamically positioned vessels under input constraints publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.056 – volume: 26 start-page: 542 issue: 3 year: 2016 ident: 10.1016/j.oceaneng.2023.114312_b2 article-title: Actuator fault-tolerant control of ocean surface vessels with input saturation publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.3324 – volume: 213 year: 2020 ident: 10.1016/j.oceaneng.2023.114312_b17 article-title: Event-triggered fuzzy control of networked nonlinear underactuated unmanned surface vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107540 – volume: 44 start-page: 2626 issue: 12 year: 2014 ident: 10.1016/j.oceaneng.2023.114312_b34 article-title: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2311824 – volume: 41 start-page: 71 year: 2016 ident: 10.1016/j.oceaneng.2023.114312_b15 article-title: Unmanned surface vehicles: An overview of developments and challenges publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2016.04.018 – volume: 32 start-page: 5468 issue: 12 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b40 article-title: USV formation and path-following control via deep reinforcement learning with random braking publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3068762 – ident: 10.1016/j.oceaneng.2023.114312_b9 doi: 10.1109/CDC.2012.6425820 – volume: 127 start-page: 305 year: 2016 ident: 10.1016/j.oceaneng.2023.114312_b25 article-title: Station-keeping control of an unmanned surface vehicle exposed to current and wind disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.09.037 – volume: 28 start-page: 5312 issue: 17 year: 2018 ident: 10.1016/j.oceaneng.2023.114312_b42 article-title: Event-triggered control for a saturated nonlinear system with prescribed performance and finite-time convergence publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.4314 – volume: 186 year: 2019 ident: 10.1016/j.oceaneng.2023.114312_b4 article-title: Event-triggered robust fuzzy path following control for underactuated ships with input saturation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106122 – volume: 22 start-page: 1143 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2023.114312_b28 article-title: Adaptive path following control for an unmanned surface vessel using an identified dynamic model publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2017.2651057 – volume: 186 year: 2019 ident: 10.1016/j.oceaneng.2023.114312_b38 article-title: Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.05.078 – volume: 260 year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b5 article-title: Adaptive prescribed performance second-order sliding mode tracking control of autonomous underwater vehicle using neural network-based disturbance observer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111939 – volume: 36 start-page: 267 issue: 2 year: 2012 ident: 10.1016/j.oceaneng.2023.114312_b1 article-title: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.008 – volume: 159 start-page: 219 year: 2018 ident: 10.1016/j.oceaneng.2023.114312_b7 article-title: Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.04.016 – volume: 11 start-page: 17 issue: 2 year: 2019 ident: 10.1016/j.oceaneng.2023.114312_b19 article-title: Error-driven-based nonlinear feedback recursive design for aadaptive nn trajectory tracking control of surface ships with input saturation publication-title: IEEE Intell. Transp. Syst. Mag. – year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b50 article-title: Event-triggered neuroadaptive predefined practical finite-time control for dynamic positioning vessels: A time-based generator approach publication-title: Fundam. Res. – volume: 355 start-page: 7548 issue: 15 year: 2018 ident: 10.1016/j.oceaneng.2023.114312_b44 article-title: Command filtered robust adaptive NN control for a class of uncertain strict-feedback nonlinear systems under input saturation publication-title: J. Franklin Inst. B doi: 10.1016/j.jfranklin.2018.07.033 – volume: 224 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b20 article-title: Concise robust fuzzy nonlinear feedback track keeping control for ships using multi-technique improved LOS guidance publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108734 – volume: 23 start-page: 5470 issue: 6 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b11 article-title: Robust synchronization for under-actuated vessels based on disturbance observer publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3054177 – volume: 45 start-page: 1893 issue: 10 year: 2000 ident: 10.1016/j.oceaneng.2023.114312_b29 article-title: Dynamic surface control for a class of nonlinear systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2000.880994 – volume: 253 year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b35 article-title: Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111169 – volume: 10 start-page: 14440 year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b22 article-title: Event-triggered composite learning finite-time trajectory tracking control for underactuated MSVs subject to uncertainties publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146315 – volume: 68 start-page: 3402 issue: 4 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b23 article-title: Event-triggered dynamic surface control of an underactuated autonomous surface vehicle for target enclosing publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2978713 – volume: 130 start-page: 277 year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b24 article-title: Disturbance observer-based adaptive reinforcement learning for perturbed uncertain surface vessels publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.03.027 – volume: 213 year: 2020 ident: 10.1016/j.oceaneng.2023.114312_b16 article-title: Event-triggered fuzzy control of networked nonlinear underactuated unmanned surface vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107540 – volume: 64 start-page: 5640 issue: 7 year: 2017 ident: 10.1016/j.oceaneng.2023.114312_b32 article-title: Artificial potential based adaptive h synchronized tracking control for accommodation vessel publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2677330 – volume: 23 start-page: 19578 issue: 10 year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b18 article-title: CCIBA*: An improved BA* based collaborative coverage path planning method for multiple unmanned surface mapping vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3170322 – volume: 22 start-page: 1121 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2023.114312_b27 article-title: Advanced control in marine mechatronic systems: A survey publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2017.2660528 – volume: 114 start-page: 57 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b47 article-title: Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.059 – volume: 93 start-page: 145 year: 2019 ident: 10.1016/j.oceaneng.2023.114312_b39 article-title: Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.03.007 – volume: 365 start-page: 125 year: 2019 ident: 10.1016/j.oceaneng.2023.114312_b46 article-title: Robust adaptive NN tracking control for MIMO uncertain nonlinear systems with completely unknown control gains under input saturations publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.007 – volume: 90 start-page: 30 year: 2019 ident: 10.1016/j.oceaneng.2023.114312_b31 article-title: An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.12.047 – volume: 56 start-page: 1672 issue: 7 year: 2011 ident: 10.1016/j.oceaneng.2023.114312_b33 article-title: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2122730 – volume: 32 start-page: 575 issue: 12 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b6 article-title: Composite learning control of overactuated manned submersible vehicle with disturbance/uncertainty and measurement noise publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3053292 – volume: 253 year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b36 article-title: Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111169 – volume: 70 start-page: 2994 issue: 4 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b49 article-title: Adaptive neural output feedback control for MSVs with predefined performance publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3063687 – ident: 10.1016/j.oceaneng.2023.114312_b13 doi: 10.1109/.2005.1469806 – volume: 26 start-page: 541 issue: 2 year: 2021 ident: 10.1016/j.oceaneng.2023.114312_b26 article-title: Path following algorithm application to automatic berthing control publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-020-00758-x – volume: 26 start-page: 1851 issue: 5 year: 2017 ident: 10.1016/j.oceaneng.2023.114312_b41 article-title: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2017.2728518 – volume: 32 start-page: 143 issue: 3 year: 1997 ident: 10.1016/j.oceaneng.2023.114312_b3 article-title: Stochastic nonlinear stabilization-i: A backstepping design publication-title: Syst. Control Lett. doi: 10.1016/S0167-6911(97)00068-6 – volume: 14 year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b30 article-title: Finite-time extended state observer-based area keeping and heading control for turret-moored vessels with uncertainties and unavailable velocities publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2021.11.005 – volume: 357 start-page: 8591 issue: 13 year: 2020 ident: 10.1016/j.oceaneng.2023.114312_b45 article-title: Robust adaptive neural trajectory tracking control of surface vessels under input and output constraints publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.06.010 – year: 2022 ident: 10.1016/j.oceaneng.2023.114312_b48 article-title: Dynamic event-triggered adaptive neural output feedback control for MSVs using composite learning publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 209 year: 2020 ident: 10.1016/j.oceaneng.2023.114312_b14 article-title: Event-triggered extended state observers design for dynamic positioning vessels subject to unknown sea loads publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107242 – volume: 34 start-page: 2074 issue: 14 year: 2007 ident: 10.1016/j.oceaneng.2023.114312_b21 article-title: Path following control system for a tanker ship model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2007.02.005 – volume: 85 start-page: 1 year: 2015 ident: 10.1016/j.oceaneng.2023.114312_b12 article-title: Global stable tracking control of underactuated ships with input saturation publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2015.07.002 – volume: 60 start-page: 1992 issue: 7 year: 2014 ident: 10.1016/j.oceaneng.2023.114312_b8 article-title: Dynamic triggering mechanisms for event-triggered control publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2014.2366855 |
SSID | ssj0006603 |
Score | 2.3781161 |
Snippet | This article investigates the control issue of marine surface vehicles (MSVs) subject to uncertainties and input saturation. To ensure the smooth... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114312 |
SubjectTerms | Adaptive neural control Composite learning Dynamic event-triggered mechanism Internal and external uncertainty Marine surface vehicles |
Title | Dynamic event-triggered control for MSVs via composite-learning-based adaptive neural approach |
URI | https://dx.doi.org/10.1016/j.oceaneng.2023.114312 |
Volume | 278 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5258 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVQWQAJQQFRPioPrG6dL6ceq0JVQC0DFHUicuxL1QqFCgIjvx1f40CRkDowJspFzsW5e3bevSPkIpIBSo74zAPcuok0sLQjM5bGkQDI7JpoKfY8HInBOLyZRJMN0qtqYZBW6WJ_GdOX0dqdaTtvthezGdb4-tLGV_xTxIUF4ljBHgqk9bU-f2geQvCgonng1StVwvOWTREqh3zawibiKJsbeP7fCWol6fT3yK5Di7RbDmifbEBeJ9srGoJ1snOHd3fC0wfk6bJsMU-XykyssIvvKbbjpI6TTi1IpcP7xzf6MVMUCeXI2gLmukdMGaY1Q5VRCwyEFPUu7Qgq6fFDMu5fPfQGzPVQYNo-S8E0j8F-xtLoODUdP1OejhXCspj7aZiZQHHFU08YBSCA-8qmby_QXBgIU81lcERq-UsOx4TqDLTQWioJfggSVKSMTL0YwGJEJeIGiSrHJdoJjGOfi-ekYpLNk8rhCTo8KR3eIO1vu0UpsbHWQlbvJfk1WRKbB9bYnvzD9pRs4REyxbzojNSK13c4t5ikSJvLSdckm93r28HoC8aN4vs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2V9sAiISggdnzgaupsDj4ioCp04UCLOBE5zqQqQqGCwvfjaRxUJCQOXBNN5EycN8_J8xuA00gFZDnicw_p001kkKfnKudpHEnE3K6J5mbP_YHsjMLbx-ixBpfVXhiSVTrsLzF9jtbuSMtlszWdTGiPr68svtKfIiEtEV-CRhhZTK5D4-Km2xl8A7KUIqiUHhSwsFH4-cxWCV1gMT6jPuLknBt4_u81aqHutDdg3RFGdlGOaRNqWDRhdcFGsAlrd3R15z29BU9XZZd5Njdn4jO7_h5TR07mZOnM8lTWv394Z58TzUhTTsIt5K6BxJhTZcuYzvSUsJCR5aUdQeU-vg2j9vXwssNdGwVu7L3MuBEx2jdZZSZOs3M_156JNTGzWPhpmGeBFlqknsw0okTha1vBvcAImWGYGqGCHagXrwXuAjM5GmmM0gr9EBXqSGcq9WJESxO1jPcgqhKXGOcxTq0uXpJKTPacVAlPKOFJmfA9aH3HTUuXjT8jVPVckh_zJbGl4I_Y_X_EnsByZ9jvJb2bQfcAVugMCce86BDqs7cPPLIUZZYeuyn4BYAm5aY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+event-triggered+control+for+MSVs+via+composite-learning-based+adaptive+neural+approach&rft.jtitle=Ocean+engineering&rft.au=Shi%2C+Jiahui&rft.au=Liu%2C+Zhengjiang&rft.au=Zhu%2C+Guibing&rft.date=2023-06-15&rft.issn=0029-8018&rft.volume=278&rft.spage=114312&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.114312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2023_114312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |