Interpretable Dual-branch EMGNet: A transfer learning-based network for inter-subject lower limb motion intention recognition

Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention Recognition (LLMIR). Nevertheless, most deep learning algorithms have poor interpretability without special design or the help of other post...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 130; p. 107761
Main Authors Zhang, Changhe, Wang, Xiaoyun, Yu, Zidong, Wang, Bingjin, Deng, Chao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2023.107761

Cover

Abstract Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention Recognition (LLMIR). Nevertheless, most deep learning algorithms have poor interpretability without special design or the help of other post-hoc analysis tools, as well as unsatisfactory performance in cross-subject prediction. Hence, this paper presents a novel Interpretable Dual-Branch EMG Network (IDB-EMGNet), in which one branch is dedicated to lower limb motion recognition, and the other is able to predict knee joint angles in advance. The shallow feature extraction module of IDB-EMGNet is constructed using an ante-hoc interpretable SincNet technique, which enables the detection of the spectral range of EMG used for the LLMIR task. An improved bottleneck block with shuffle attention is designed for deep feature extraction, which enhances model performance with only a little increase in complexity. The performance of IDB-EMGNet in both intra-subject and inter-subject scenarios is investigated, where the latter integrates the transfer learning technique. Specifically, by conducting model pre-training on source-domain subjects and transferring the learned knowledge to target-domain subjects, satisfactory performance can be achieved even with less computing resource. Experimental results on two publicly available datasets indicate that the proposed approach exhibits superior applicability to both normal subjects and knee-pathology patients, showing a promising prospect in the controller design of human-robot collaborative exoskeletons. •A novel IDB-EMGNet is proposed for simultaneous discrete and continuous lower limb motion intention recognition.•Interpretability of IDB-EMGNet is enhanced via an ante-hoc SincConv technique.•An IB-Neck block is designed to improve model prediction performance.•Transfer learning technique is utilized to improve model generalization in inter-subject prediction.•The proposed approach performs well for both normal subjects and knee-pathology patients.
AbstractList Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention Recognition (LLMIR). Nevertheless, most deep learning algorithms have poor interpretability without special design or the help of other post-hoc analysis tools, as well as unsatisfactory performance in cross-subject prediction. Hence, this paper presents a novel Interpretable Dual-Branch EMG Network (IDB-EMGNet), in which one branch is dedicated to lower limb motion recognition, and the other is able to predict knee joint angles in advance. The shallow feature extraction module of IDB-EMGNet is constructed using an ante-hoc interpretable SincNet technique, which enables the detection of the spectral range of EMG used for the LLMIR task. An improved bottleneck block with shuffle attention is designed for deep feature extraction, which enhances model performance with only a little increase in complexity. The performance of IDB-EMGNet in both intra-subject and inter-subject scenarios is investigated, where the latter integrates the transfer learning technique. Specifically, by conducting model pre-training on source-domain subjects and transferring the learned knowledge to target-domain subjects, satisfactory performance can be achieved even with less computing resource. Experimental results on two publicly available datasets indicate that the proposed approach exhibits superior applicability to both normal subjects and knee-pathology patients, showing a promising prospect in the controller design of human-robot collaborative exoskeletons. •A novel IDB-EMGNet is proposed for simultaneous discrete and continuous lower limb motion intention recognition.•Interpretability of IDB-EMGNet is enhanced via an ante-hoc SincConv technique.•An IB-Neck block is designed to improve model prediction performance.•Transfer learning technique is utilized to improve model generalization in inter-subject prediction.•The proposed approach performs well for both normal subjects and knee-pathology patients.
ArticleNumber 107761
Author Wang, Xiaoyun
Zhang, Changhe
Deng, Chao
Yu, Zidong
Wang, Bingjin
Author_xml – sequence: 1
  givenname: Changhe
  orcidid: 0000-0001-7046-9240
  surname: Zhang
  fullname: Zhang, Changhe
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
– sequence: 2
  givenname: Xiaoyun
  orcidid: 0009-0007-7198-0228
  surname: Wang
  fullname: Wang, Xiaoyun
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
– sequence: 3
  givenname: Zidong
  surname: Yu
  fullname: Yu, Zidong
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
– sequence: 4
  givenname: Bingjin
  surname: Wang
  fullname: Wang, Bingjin
  email: wangbingjin@hust.edu.cn
  organization: Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
– sequence: 5
  givenname: Chao
  orcidid: 0000-0002-5092-5277
  surname: Deng
  fullname: Deng, Chao
  email: dengchao@hust.edu.cn
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
BookMark eNqFkE1PAyEQhonRxPrxFwx_YCssLewaD5paaxM_LnomwA6VuoUGqI0H_7u7Vi9ePM1kZt438z5HaN8HDwidUTKkhPLz5RD8Qq3Xyg1LUrJuKASne2hAK8EKLni9jwakHpcFrQU_REcpLQkhrBrxAfqc-wxxHSEr3QK-2ai20FF584qnD7NHyBf4GudukCxE3IKK3vlFoVWCBnvI2xDfsA0Ru96nSBu9BJNxG7b9uVtpvArZBf-9999dBBMW3vX9CTqwqk1w-lOP0cvt9HlyV9w_zeaT6_vCMFrmQpuqEqaxjGnDR6CbkWV1bYFQpVRZG0PGQglryrImoDkr7ZhUo4Yry5pKCMqO0eXO18SQUgQrjcuq_6CL5lpJiexRyqX8RSl7lHKHspPzP_J1dCsVP_4XXu2E0IV7dxBlMg68gcZ1FLJsgvvP4gsxoJgK
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107254
crossref_primary_10_1016_j_bspc_2024_106551
crossref_primary_10_3390_s25051613
crossref_primary_10_1109_JSEN_2025_3527015
crossref_primary_10_1016_j_bspc_2024_106245
crossref_primary_10_1016_j_engappai_2024_109172
Cites_doi 10.1109/TNSRE.2020.2966749
10.1016/j.inffus.2022.10.003
10.1016/j.bspc.2022.103487
10.1038/s41597-023-02263-3
10.1109/JBHI.2022.3207313
10.1016/j.engappai.2022.105702
10.1109/TSMC.2019.2932892
10.1109/JSEN.2021.3095594
10.1109/TIE.2021.3082067
10.1109/TNSRE.2022.3156786
10.1007/s00521-021-06292-0
10.1109/TBME.2019.2947089
10.1016/j.bspc.2021.102781
10.1109/TNSRE.2018.2796070
10.1016/j.compeleceng.2022.108067
10.1016/j.eswa.2022.117340
10.1016/j.eswa.2023.120257
10.1016/j.bspc.2023.104664
10.1016/j.knosys.2021.108053
10.1016/j.bspc.2022.104443
10.3390/s21134535
10.1109/JAS.2021.1003865
10.1109/TNSRE.2022.3156076
10.1109/JTEHM.2020.3023898
10.3390/s23063157
10.1038/s42256-021-00414-y
10.1109/TNSRE.2021.3090269
10.1007/s13246-021-01071-6
10.1109/ACCESS.2017.2746095
10.1109/TNSRE.2017.2703586
10.1016/j.neunet.2018.02.017
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.107761
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_107761
S0952197623019450
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-bc887cdf33bc64ebd4f399fe01aaa29cc057a7fc2290eb632f5084d6af3d87713
IEDL.DBID AIKHN
ISSN 0952-1976
IngestDate Thu Apr 24 22:51:35 EDT 2025
Tue Jul 01 02:23:42 EDT 2025
Sat Mar 23 16:41:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Joint angle prediction
Surface electromyography
Lower limb motion recognition
Transfer learning
Interpretable deep learning
Dual-branch network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-bc887cdf33bc64ebd4f399fe01aaa29cc057a7fc2290eb632f5084d6af3d87713
ORCID 0000-0002-5092-5277
0000-0001-7046-9240
0009-0007-7198-0228
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2023_107761
crossref_primary_10_1016_j_engappai_2023_107761
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_107761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ravanelli, Bengio (bib19) 2018
Tu, Dai, Zhao, Huang (bib25) 2023; 81
Zhao, Xu, Wang, Wang, Qiu, Peng, Li, Jiang (bib45) 2023; 90
Wei, Wang, Hu, Zhou, Feng, Lu, Tang, Jia (bib34) 2022; 74
Gautam, Panwar, Biswas, Acharyya (bib3) 2020; 8
Zhang, Soselia, Wang, Gutierrez-Farewik (bib42) 2022; 30
Wei, Tan, Zhang, Mao, Fu, Samuel, Li (bib35) 2023; 10
Yoo, Jo, Ban (bib39) 2023; 23
Zhang, Li, Yu, Huang, Xu, Deng (bib40) 2023; 227
Sanchez, Sotelo, Gonzales, Hernandez (bib21) 2014; 2
Wang, Wen, Bi, Li, Sun (bib31) 2023; 83
Wu, Yuan, Zhang, Wang, Xu, Tao (bib36) 2021; 69
Park, Chung, Kim (bib18) 2019; 67
Shi, Wang, Li, Gao, Lv, Lv, Liu, Zhang, Luo, Che (bib23) 2020
Vinuesa, Sirmacek (bib28) 2021; 3
Wang, Chen, Zhang, Chen, Snoussi (bib32) 2017; 5
Wang, Dong, Chi, Wang, Miao, Gavrilov (bib33) 2021; 68
Khodabandelou, Moon, Amirat, Mohammed (bib9) 2023; 118
Wang, Lu, Fan, Ren, Geng (bib30) 2022; 93
Zhang, Zhu, Gutierrez-Farewik, Wang (bib43) 2022; 26
Zhang, Yang (bib44) 2021
Naik, Selvan, Arjunan, Acharyya, Kumar, Ramanujam, Nguyen (bib17) 2018; 26
Hu, Shen, Sun (bib7) 2018
Mundt, Johnson, Potthast, Markert, Mian, Alderson (bib16) 2021; 21
Fan, Jiang, Lin, Li, Fiaidhi, Ma, Wu (bib2) 2023; 35
Sun, Zhang, Liu, Shi, Wang (bib24) 2022; 1–18
Vijayvargiya, Gupta, Kumar, Dey, Tavares (bib26) 2021; 21
Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan (bib6) 2019
Mayor-Torres, Ravanelli, Medina-DeVilliers, Lerner, Riccardi (bib15) 2021
Liu, Xu, Chen, Long, Tao, Wu (bib11) 2019; 51
Ma, Zhang, Zheng, Sun (bib13) 2018
Martinez-Hernandez, Dehghani-Sanij (bib14) 2018; 102
Issa, Khaled (bib8) 2021
Gozzi, Malandri, Mercorio, Pedrocchi (bib4) 2022; 240
Wang, Ou, Xie, Wang, Yu, Fan, Chu (bib29) 2022; 101
Bai, Kolter, Koltun (bib1) 2018
Zhang, Wang, Silva, Fu (bib41) 2020; 28
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib22) 2017
Lu, Wang, Zhou, Wei, Xu (bib12) 2022; 203
Gui, Liu, Zhang (bib5) 2017; 25
Vijayvargiya, Kumar, Dey (bib27) 2021; 44
Wu, He (bib37) 2018
Liu, Jin, Daly, Li, Sun, Huang, Wang, Cichocki (bib10) 2022; 30
Samejima, Khorasani, Ranganathan, Nakahara, Tolley, Boissenin, Shalchyan, Daliri, Smith, Moritz (bib20) 2021; 29
Xiong, Zhang, Zhao, Zhao (bib38) 2021; 8
Samejima (10.1016/j.engappai.2023.107761_bib20) 2021; 29
Wei (10.1016/j.engappai.2023.107761_bib35) 2023; 10
Ravanelli (10.1016/j.engappai.2023.107761_bib19) 2018
Wang (10.1016/j.engappai.2023.107761_bib33) 2021; 68
Zhang (10.1016/j.engappai.2023.107761_bib42) 2022; 30
Zhang (10.1016/j.engappai.2023.107761_bib44) 2021
Gui (10.1016/j.engappai.2023.107761_bib5) 2017; 25
Wu (10.1016/j.engappai.2023.107761_bib36) 2021; 69
Bai (10.1016/j.engappai.2023.107761_bib1) 2018
Issa (10.1016/j.engappai.2023.107761_bib8) 2021
Sun (10.1016/j.engappai.2023.107761_bib24) 2022; 1–18
Liu (10.1016/j.engappai.2023.107761_bib10) 2022; 30
Tu (10.1016/j.engappai.2023.107761_bib25) 2023; 81
Vinuesa (10.1016/j.engappai.2023.107761_bib28) 2021; 3
Mundt (10.1016/j.engappai.2023.107761_bib16) 2021; 21
Wang (10.1016/j.engappai.2023.107761_bib32) 2017; 5
Vijayvargiya (10.1016/j.engappai.2023.107761_bib27) 2021; 44
Wang (10.1016/j.engappai.2023.107761_bib31) 2023; 83
Fan (10.1016/j.engappai.2023.107761_bib2) 2023; 35
Zhang (10.1016/j.engappai.2023.107761_bib43) 2022; 26
Wang (10.1016/j.engappai.2023.107761_bib29) 2022; 101
Xiong (10.1016/j.engappai.2023.107761_bib38) 2021; 8
Ma (10.1016/j.engappai.2023.107761_bib13) 2018
Lu (10.1016/j.engappai.2023.107761_bib12) 2022; 203
Park (10.1016/j.engappai.2023.107761_bib18) 2019; 67
Vijayvargiya (10.1016/j.engappai.2023.107761_bib26) 2021; 21
Yoo (10.1016/j.engappai.2023.107761_bib39) 2023; 23
Shi (10.1016/j.engappai.2023.107761_bib23) 2020
Liu (10.1016/j.engappai.2023.107761_bib11) 2019; 51
Naik (10.1016/j.engappai.2023.107761_bib17) 2018; 26
Zhang (10.1016/j.engappai.2023.107761_bib40) 2023; 227
Gozzi (10.1016/j.engappai.2023.107761_bib4) 2022; 240
Hu (10.1016/j.engappai.2023.107761_bib7) 2018
Wei (10.1016/j.engappai.2023.107761_bib34) 2022; 74
Howard (10.1016/j.engappai.2023.107761_bib6) 2019
Zhao (10.1016/j.engappai.2023.107761_bib45) 2023; 90
Gautam (10.1016/j.engappai.2023.107761_bib3) 2020; 8
Wang (10.1016/j.engappai.2023.107761_bib30) 2022; 93
Khodabandelou (10.1016/j.engappai.2023.107761_bib9) 2023; 118
Sanchez (10.1016/j.engappai.2023.107761_bib21) 2014; 2
Mayor-Torres (10.1016/j.engappai.2023.107761_bib15) 2021
Zhang (10.1016/j.engappai.2023.107761_bib41) 2020; 28
Wu (10.1016/j.engappai.2023.107761_bib37) 2018
Martinez-Hernandez (10.1016/j.engappai.2023.107761_bib14) 2018; 102
Selvaraju (10.1016/j.engappai.2023.107761_bib22) 2017
References_xml – start-page: 1021
  year: 2018
  end-page: 1028
  ident: bib19
  article-title: Speaker recognition from raw waveform with sincnet
  publication-title: 2018 IEEE Spoken Language Technology Workshop (SLT)
– volume: 3
  start-page: 926
  year: 2021
  ident: bib28
  article-title: Interpretable deep-learning models to help achieve the Sustainable Development Goals
  publication-title: Nat. Mach. Intell.
– year: 2018
  ident: bib1
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv Prepr
– volume: 8
  start-page: 512
  year: 2021
  end-page: 533
  ident: bib38
  article-title: Deep learning for EMG-based human-machine interaction: a review
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 23
  start-page: 3157
  year: 2023
  ident: bib39
  article-title: Lite and efficient deep learning model for bearing fault diagnosis using the CWRU dataset
  publication-title: Sensors
– volume: 21
  start-page: 20431
  year: 2021
  end-page: 20439
  ident: bib26
  article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition
  publication-title: IEEE Sens. J.
– start-page: 2235
  year: 2021
  end-page: 2239
  ident: bib44
  article-title: Sa-net: shuffle attention for deep convolutional neural networks
  publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 26
  start-page: 5895
  year: 2022
  end-page: 5906
  ident: bib43
  article-title: Ankle joint torque prediction using an NMS solver informed-ANN model and transfer learning
  publication-title: IEEE J. Biomed. Heal. informatics
– start-page: 1314
  year: 2019
  end-page: 1324
  ident: bib6
  article-title: Searching for mobilenetv3
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 203
  year: 2022
  ident: bib12
  article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models
  publication-title: Expert Syst. Appl.
– volume: 240
  year: 2022
  ident: bib4
  article-title: XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification
  publication-title: Knowledge-Based Syst.
– volume: 28
  start-page: 646
  year: 2020
  end-page: 657
  ident: bib41
  article-title: Unsupervised cross-subject Adaptation for predicting human Locomotion intent
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 3
  year: 2018
  end-page: 19
  ident: bib37
  article-title: Group normalization
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib22
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 74
  year: 2022
  ident: bib34
  article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition
  publication-title: Biomed. Signal Process Control
– volume: 67
  start-page: 1775
  year: 2019
  end-page: 1786
  ident: bib18
  article-title: Training-free Bayesian self-adaptive classification for sEMG pattern recognition including motion transition
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 68
  year: 2021
  ident: bib33
  article-title: sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network
  publication-title: Biomed. Signal Process Control
– volume: 30
  start-page: 540
  year: 2022
  end-page: 549
  ident: bib10
  article-title: SincNet-based hybrid neural network for motor imagery EEG Decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 116
  year: 2018
  end-page: 131
  ident: bib13
  article-title: Shufflenet v2: Practical guidelines for efficient cnn architecture design
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 102
  start-page: 107
  year: 2018
  end-page: 119
  ident: bib14
  article-title: Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors
  publication-title: Neural Network.
– volume: 90
  start-page: 382
  year: 2023
  end-page: 391
  ident: bib45
  article-title: Analysis and evaluation of hemiplegic gait based on wearable sensor network
  publication-title: Inf. Fusion
– volume: 69
  start-page: 4999
  year: 2021
  end-page: 5008
  ident: bib36
  article-title: Gait phase classification for a lower limb exoskeleton system based on a graph convolutional network model
  publication-title: IEEE Trans. Ind. Electron.
– volume: 44
  start-page: 1297
  year: 2021
  end-page: 1309
  ident: bib27
  article-title: Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal
  publication-title: Phys. Eng. Sci. Med.
– start-page: 412
  year: 2021
  end-page: 415
  ident: bib15
  article-title: Interpretable sincnet-based deep learning for emotion recognition from eeg brain activity
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 29
  start-page: 1233
  year: 2021
  end-page: 1242
  ident: bib20
  article-title: Brain-computer-spinal interface restores upper limb function after spinal cord injury
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 51
  start-page: 3759
  year: 2019
  end-page: 3770
  ident: bib11
  article-title: Vision-assisted autonomous lower-limb exoskeleton robot
  publication-title: IEEE Trans. Syst. man, Cybern. Syst.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib3
  article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG
  publication-title: IEEE J. Transl. Eng. Heal. Med.
– volume: 118
  year: 2023
  ident: bib9
  article-title: A fuzzy convolutional attention-based GRU network for human activity recognition
  publication-title: Eng. Appl. Artif. Intell.
– volume: 83
  year: 2023
  ident: bib31
  article-title: A portable SSVEP-BCI system for rehabilitation exoskeleton in augmented reality environment
  publication-title: Biomed. Signal Process Control
– volume: 25
  start-page: 2054
  year: 2017
  end-page: 2066
  ident: bib5
  article-title: Toward multimodal human–robot interaction to enhance active participation of users in gait rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 93
  year: 2022
  ident: bib30
  article-title: Continuous motion estimation of lower limbs based on deep belief networks and random forest
  publication-title: Rev. Sci. Instrum.
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib7
  article-title: Squeeze-and-excitation networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 1–18
  year: 2022
  ident: bib24
  article-title: A multi-joint continuous motion estimation method of lower limb using least squares support vector machine and zeroing neural network based on sEMG signals
  publication-title: Neural Process. Lett.
– volume: 21
  start-page: 4535
  year: 2021
  ident: bib16
  article-title: A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units
  publication-title: Sensors
– start-page: 336
  year: 2021
  end-page: 345
  ident: bib8
  article-title: Lower limb movement recognition using EMG signals
  publication-title: International Conference on Intelligent Systems Design and Applications
– start-page: 383
  year: 2020
  end-page: 388
  ident: bib23
  article-title: Prediction of continuous motion for lower limb joints based on semg signal
  publication-title: 2020 IEEE International Conference on Mechatronics and Automation (ICMA)
– volume: 5
  start-page: 17627
  year: 2017
  end-page: 17633
  ident: bib32
  article-title: Internal transfer learning for improving performance in human action recognition for small datasets
  publication-title: IEEE Access
– volume: 10
  start-page: 358
  year: 2023
  ident: bib35
  article-title: Surface electromyogram, kinematic, and kinetic dataset of lower limb walking for movement intent recognition
  publication-title: Sci. Data
– volume: 35
  start-page: 16101
  year: 2023
  end-page: 16111
  ident: bib2
  article-title: Improving sEMG-based motion intention recognition for upper-limb amputees using transfer learning
  publication-title: Neural Comput. Appl.
– volume: 2
  year: 2014
  ident: bib21
  article-title: Emg dataset in lower limb data set
  publication-title: UCI Mach. Learn. Repos.
– volume: 26
  start-page: 675
  year: 2018
  end-page: 686
  ident: bib17
  article-title: An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 101
  year: 2022
  ident: bib29
  article-title: Lower limb motion recognition based on surface electromyography signals and its experimental verification on a novel multi-posture lower limb rehabilitation robots
  publication-title: Comput. Electr. Eng.
– volume: 81
  year: 2023
  ident: bib25
  article-title: Lower limb motion recognition based on surface electromyography
  publication-title: Biomed. Signal Process Control
– volume: 30
  start-page: 600
  year: 2022
  end-page: 609
  ident: bib42
  article-title: Lower-limb joint torque prediction using LSTM neural networks and transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 227
  year: 2023
  ident: bib40
  article-title: An end-to-end lower limb activity recognition framework based on sEMG data augmentation and enhanced CapsNet
  publication-title: Expert Syst. Appl.
– volume: 1–18
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib24
  article-title: A multi-joint continuous motion estimation method of lower limb using least squares support vector machine and zeroing neural network based on sEMG signals
  publication-title: Neural Process. Lett.
– volume: 28
  start-page: 646
  year: 2020
  ident: 10.1016/j.engappai.2023.107761_bib41
  article-title: Unsupervised cross-subject Adaptation for predicting human Locomotion intent
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2966749
– volume: 90
  start-page: 382
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib45
  article-title: Analysis and evaluation of hemiplegic gait based on wearable sensor network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.10.003
– volume: 74
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib34
  article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2022.103487
– start-page: 383
  year: 2020
  ident: 10.1016/j.engappai.2023.107761_bib23
  article-title: Prediction of continuous motion for lower limb joints based on semg signal
– volume: 10
  start-page: 358
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib35
  article-title: Surface electromyogram, kinematic, and kinetic dataset of lower limb walking for movement intent recognition
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02263-3
– start-page: 3
  year: 2018
  ident: 10.1016/j.engappai.2023.107761_bib37
  article-title: Group normalization
– volume: 26
  start-page: 5895
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib43
  article-title: Ankle joint torque prediction using an NMS solver informed-ANN model and transfer learning
  publication-title: IEEE J. Biomed. Heal. informatics
  doi: 10.1109/JBHI.2022.3207313
– volume: 118
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib9
  article-title: A fuzzy convolutional attention-based GRU network for human activity recognition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105702
– volume: 51
  start-page: 3759
  year: 2019
  ident: 10.1016/j.engappai.2023.107761_bib11
  article-title: Vision-assisted autonomous lower-limb exoskeleton robot
  publication-title: IEEE Trans. Syst. man, Cybern. Syst.
  doi: 10.1109/TSMC.2019.2932892
– volume: 2
  year: 2014
  ident: 10.1016/j.engappai.2023.107761_bib21
  article-title: Emg dataset in lower limb data set
  publication-title: UCI Mach. Learn. Repos.
– volume: 21
  start-page: 20431
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib26
  article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3095594
– start-page: 412
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib15
  article-title: Interpretable sincnet-based deep learning for emotion recognition from eeg brain activity
– volume: 69
  start-page: 4999
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib36
  article-title: Gait phase classification for a lower limb exoskeleton system based on a graph convolutional network model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3082067
– start-page: 116
  year: 2018
  ident: 10.1016/j.engappai.2023.107761_bib13
  article-title: Shufflenet v2: Practical guidelines for efficient cnn architecture design
– volume: 30
  start-page: 600
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib42
  article-title: Lower-limb joint torque prediction using LSTM neural networks and transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3156786
– volume: 35
  start-page: 16101
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib2
  article-title: Improving sEMG-based motion intention recognition for upper-limb amputees using transfer learning
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06292-0
– volume: 67
  start-page: 1775
  year: 2019
  ident: 10.1016/j.engappai.2023.107761_bib18
  article-title: Training-free Bayesian self-adaptive classification for sEMG pattern recognition including motion transition
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2947089
– volume: 68
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib33
  article-title: sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.102781
– start-page: 1314
  year: 2019
  ident: 10.1016/j.engappai.2023.107761_bib6
  article-title: Searching for mobilenetv3
– volume: 26
  start-page: 675
  year: 2018
  ident: 10.1016/j.engappai.2023.107761_bib17
  article-title: An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2796070
– volume: 101
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib29
  article-title: Lower limb motion recognition based on surface electromyography signals and its experimental verification on a novel multi-posture lower limb rehabilitation robots
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108067
– volume: 203
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib12
  article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117340
– start-page: 1021
  year: 2018
  ident: 10.1016/j.engappai.2023.107761_bib19
  article-title: Speaker recognition from raw waveform with sincnet
– year: 2018
  ident: 10.1016/j.engappai.2023.107761_bib1
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv Prepr
– volume: 227
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib40
  article-title: An end-to-end lower limb activity recognition framework based on sEMG data augmentation and enhanced CapsNet
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120257
– volume: 83
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib31
  article-title: A portable SSVEP-BCI system for rehabilitation exoskeleton in augmented reality environment
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2023.104664
– volume: 240
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib4
  article-title: XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2021.108053
– start-page: 336
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib8
  article-title: Lower limb movement recognition using EMG signals
– volume: 81
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib25
  article-title: Lower limb motion recognition based on surface electromyography
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2022.104443
– volume: 21
  start-page: 4535
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib16
  article-title: A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units
  publication-title: Sensors
  doi: 10.3390/s21134535
– volume: 93
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib30
  article-title: Continuous motion estimation of lower limbs based on deep belief networks and random forest
  publication-title: Rev. Sci. Instrum.
– volume: 8
  start-page: 512
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib38
  article-title: Deep learning for EMG-based human-machine interaction: a review
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1003865
– volume: 30
  start-page: 540
  year: 2022
  ident: 10.1016/j.engappai.2023.107761_bib10
  article-title: SincNet-based hybrid neural network for motor imagery EEG Decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3156076
– start-page: 618
  year: 2017
  ident: 10.1016/j.engappai.2023.107761_bib22
  article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.107761_bib3
  article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG
  publication-title: IEEE J. Transl. Eng. Heal. Med.
  doi: 10.1109/JTEHM.2020.3023898
– volume: 23
  start-page: 3157
  year: 2023
  ident: 10.1016/j.engappai.2023.107761_bib39
  article-title: Lite and efficient deep learning model for bearing fault diagnosis using the CWRU dataset
  publication-title: Sensors
  doi: 10.3390/s23063157
– volume: 3
  start-page: 926
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib28
  article-title: Interpretable deep-learning models to help achieve the Sustainable Development Goals
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00414-y
– volume: 29
  start-page: 1233
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib20
  article-title: Brain-computer-spinal interface restores upper limb function after spinal cord injury
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3090269
– volume: 44
  start-page: 1297
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib27
  article-title: Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-021-01071-6
– volume: 5
  start-page: 17627
  year: 2017
  ident: 10.1016/j.engappai.2023.107761_bib32
  article-title: Internal transfer learning for improving performance in human action recognition for small datasets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2746095
– start-page: 2235
  year: 2021
  ident: 10.1016/j.engappai.2023.107761_bib44
  article-title: Sa-net: shuffle attention for deep convolutional neural networks
– start-page: 7132
  year: 2018
  ident: 10.1016/j.engappai.2023.107761_bib7
  article-title: Squeeze-and-excitation networks
– volume: 25
  start-page: 2054
  year: 2017
  ident: 10.1016/j.engappai.2023.107761_bib5
  article-title: Toward multimodal human–robot interaction to enhance active participation of users in gait rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2703586
– volume: 102
  start-page: 107
  year: 2018
  ident: 10.1016/j.engappai.2023.107761_bib14
  article-title: Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2018.02.017
SSID ssj0003846
Score 2.4342902
Snippet Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107761
SubjectTerms Dual-branch network
Interpretable deep learning
Joint angle prediction
Lower limb motion recognition
Surface electromyography
Transfer learning
Title Interpretable Dual-branch EMGNet: A transfer learning-based network for inter-subject lower limb motion intention recognition
URI https://dx.doi.org/10.1016/j.engappai.2023.107761
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgLCx8I8pH5YHVbRO7Sc1WlUKhogNQ0S2yHbsUhVBBOsJv55w4pUhIHZiiXHJS5LPvnqPnewid-4HQzTaLiTA-J8wXinCoQsRQwwGdCqHyPtt3w6A_Yrfj1ngNdcuzMJZW6XJ_kdPzbO0sDTeajdl02ngAcADLDRYzzFHO7L59w4dq366gjc7NoD9cJGTaLs7rwPvEOiwdFH6p63QiZjMxrVsdcTCGYeD9XaOW6s7VDtpygBF3im_aRWs63UPbDjxitzQ_wFTqM5S2ffT5wyiUicaXc5EQaYU0nnHv7nqoswvcwVmOXMHN6UdMiC1sMU4LfjgGUIttT4l38jGX9qcNTqywGk6mrxIXGkD585w1iRd8pLf0AI2ueo_dPnFyC0RRz8-IVJBwVGwolSpgWsbMAHoxuukJIXyuFEA7ERplO8RrGVDftGyUA2Fo3A5hs3uIKulbqo8QbhkhmedLw0PN7A5U0lBxJhnVTRWEvIpa5QBHyvUit5IYSVSSzl6iMjCRDUxUBKaKGgu_WdGNY6UHL-MX_ZpXEZSMFb7H__A9QZtw5zg-p6iSvc_1GcCXTNbQev3Lq7lJaq-D-6fBNzgc8-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHPTi24jPHrxWYFt2qTeCIMjjoibeNm23Vcy6EliO_nenu13ExISD1-lO0nTama-br_MhdO35QtdbLCLCeJwwTyjCoQoRQw0HdCqEyvpsjyd-_5k9vDRfSqhTvIWxtEqX-_OcnmVrZ6m51azNptPaI4ADOG5wmGGPcmbv7RVmRa3LqNIeDPuTVUKmrfy9DnxPrMPaQ-H3G528itlMTG-sjjgYg8Bv_F2j1upObw_tOMCI2_mc9lFJJwdo14FH7I7mAkyFPkNhO0RfP4xCGWt8txQxkVZI4w13x_cTnd7iNk4z5ApuTj_ildjCFuEk54djALXY9pSYk8VS2p82OLbCajiefkicawBl4xlrEq_4SJ_JEXrudZ86feLkFoiiDS8lUkHCUZGhVCqfaRkxA-jF6HpDCOFxpQDaicAo2yFeS596pmmj7AtDo1YAl91jVE4-E32CcNMIyRqeNDzQzN5AJQ0UZ5JRXVd-wKuoWSxwqFwvciuJEYcF6ew9LAIT2sCEeWCqqLbym-XdODZ68CJ-4a99FULJ2OB7-g_fK7TVfxqPwtFgMjxD2zDi-D7nqJzOl_oCoEwqL91W_QZWyPQr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Dual-branch+EMGNet%3A+A+transfer+learning-based+network+for+inter-subject+lower+limb+motion+intention+recognition&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhang%2C+Changhe&rft.au=Wang%2C+Xiaoyun&rft.au=Yu%2C+Zidong&rft.au=Wang%2C+Bingjin&rft.date=2024-04-01&rft.issn=0952-1976&rft.volume=130&rft.spage=107761&rft_id=info:doi/10.1016%2Fj.engappai.2023.107761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_107761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon