Interpretable Dual-branch EMGNet: A transfer learning-based network for inter-subject lower limb motion intention recognition
Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention Recognition (LLMIR). Nevertheless, most deep learning algorithms have poor interpretability without special design or the help of other post...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 130; p. 107761 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-1976 1873-6769 |
DOI | 10.1016/j.engappai.2023.107761 |
Cover
Abstract | Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention Recognition (LLMIR). Nevertheless, most deep learning algorithms have poor interpretability without special design or the help of other post-hoc analysis tools, as well as unsatisfactory performance in cross-subject prediction. Hence, this paper presents a novel Interpretable Dual-Branch EMG Network (IDB-EMGNet), in which one branch is dedicated to lower limb motion recognition, and the other is able to predict knee joint angles in advance. The shallow feature extraction module of IDB-EMGNet is constructed using an ante-hoc interpretable SincNet technique, which enables the detection of the spectral range of EMG used for the LLMIR task. An improved bottleneck block with shuffle attention is designed for deep feature extraction, which enhances model performance with only a little increase in complexity. The performance of IDB-EMGNet in both intra-subject and inter-subject scenarios is investigated, where the latter integrates the transfer learning technique. Specifically, by conducting model pre-training on source-domain subjects and transferring the learned knowledge to target-domain subjects, satisfactory performance can be achieved even with less computing resource. Experimental results on two publicly available datasets indicate that the proposed approach exhibits superior applicability to both normal subjects and knee-pathology patients, showing a promising prospect in the controller design of human-robot collaborative exoskeletons.
•A novel IDB-EMGNet is proposed for simultaneous discrete and continuous lower limb motion intention recognition.•Interpretability of IDB-EMGNet is enhanced via an ante-hoc SincConv technique.•An IB-Neck block is designed to improve model prediction performance.•Transfer learning technique is utilized to improve model generalization in inter-subject prediction.•The proposed approach performs well for both normal subjects and knee-pathology patients. |
---|---|
AbstractList | Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention Recognition (LLMIR). Nevertheless, most deep learning algorithms have poor interpretability without special design or the help of other post-hoc analysis tools, as well as unsatisfactory performance in cross-subject prediction. Hence, this paper presents a novel Interpretable Dual-Branch EMG Network (IDB-EMGNet), in which one branch is dedicated to lower limb motion recognition, and the other is able to predict knee joint angles in advance. The shallow feature extraction module of IDB-EMGNet is constructed using an ante-hoc interpretable SincNet technique, which enables the detection of the spectral range of EMG used for the LLMIR task. An improved bottleneck block with shuffle attention is designed for deep feature extraction, which enhances model performance with only a little increase in complexity. The performance of IDB-EMGNet in both intra-subject and inter-subject scenarios is investigated, where the latter integrates the transfer learning technique. Specifically, by conducting model pre-training on source-domain subjects and transferring the learned knowledge to target-domain subjects, satisfactory performance can be achieved even with less computing resource. Experimental results on two publicly available datasets indicate that the proposed approach exhibits superior applicability to both normal subjects and knee-pathology patients, showing a promising prospect in the controller design of human-robot collaborative exoskeletons.
•A novel IDB-EMGNet is proposed for simultaneous discrete and continuous lower limb motion intention recognition.•Interpretability of IDB-EMGNet is enhanced via an ante-hoc SincConv technique.•An IB-Neck block is designed to improve model prediction performance.•Transfer learning technique is utilized to improve model generalization in inter-subject prediction.•The proposed approach performs well for both normal subjects and knee-pathology patients. |
ArticleNumber | 107761 |
Author | Wang, Xiaoyun Zhang, Changhe Deng, Chao Yu, Zidong Wang, Bingjin |
Author_xml | – sequence: 1 givenname: Changhe orcidid: 0000-0001-7046-9240 surname: Zhang fullname: Zhang, Changhe organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 2 givenname: Xiaoyun orcidid: 0009-0007-7198-0228 surname: Wang fullname: Wang, Xiaoyun organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 3 givenname: Zidong surname: Yu fullname: Yu, Zidong organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 4 givenname: Bingjin surname: Wang fullname: Wang, Bingjin email: wangbingjin@hust.edu.cn organization: Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China – sequence: 5 givenname: Chao orcidid: 0000-0002-5092-5277 surname: Deng fullname: Deng, Chao email: dengchao@hust.edu.cn organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China |
BookMark | eNqFkE1PAyEQhonRxPrxFwx_YCssLewaD5paaxM_LnomwA6VuoUGqI0H_7u7Vi9ePM1kZt438z5HaN8HDwidUTKkhPLz5RD8Qq3Xyg1LUrJuKASne2hAK8EKLni9jwakHpcFrQU_REcpLQkhrBrxAfqc-wxxHSEr3QK-2ai20FF584qnD7NHyBf4GudukCxE3IKK3vlFoVWCBnvI2xDfsA0Ru96nSBu9BJNxG7b9uVtpvArZBf-9999dBBMW3vX9CTqwqk1w-lOP0cvt9HlyV9w_zeaT6_vCMFrmQpuqEqaxjGnDR6CbkWV1bYFQpVRZG0PGQglryrImoDkr7ZhUo4Yry5pKCMqO0eXO18SQUgQrjcuq_6CL5lpJiexRyqX8RSl7lHKHspPzP_J1dCsVP_4XXu2E0IV7dxBlMg68gcZ1FLJsgvvP4gsxoJgK |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107254 crossref_primary_10_1016_j_bspc_2024_106551 crossref_primary_10_3390_s25051613 crossref_primary_10_1109_JSEN_2025_3527015 crossref_primary_10_1016_j_bspc_2024_106245 crossref_primary_10_1016_j_engappai_2024_109172 |
Cites_doi | 10.1109/TNSRE.2020.2966749 10.1016/j.inffus.2022.10.003 10.1016/j.bspc.2022.103487 10.1038/s41597-023-02263-3 10.1109/JBHI.2022.3207313 10.1016/j.engappai.2022.105702 10.1109/TSMC.2019.2932892 10.1109/JSEN.2021.3095594 10.1109/TIE.2021.3082067 10.1109/TNSRE.2022.3156786 10.1007/s00521-021-06292-0 10.1109/TBME.2019.2947089 10.1016/j.bspc.2021.102781 10.1109/TNSRE.2018.2796070 10.1016/j.compeleceng.2022.108067 10.1016/j.eswa.2022.117340 10.1016/j.eswa.2023.120257 10.1016/j.bspc.2023.104664 10.1016/j.knosys.2021.108053 10.1016/j.bspc.2022.104443 10.3390/s21134535 10.1109/JAS.2021.1003865 10.1109/TNSRE.2022.3156076 10.1109/JTEHM.2020.3023898 10.3390/s23063157 10.1038/s42256-021-00414-y 10.1109/TNSRE.2021.3090269 10.1007/s13246-021-01071-6 10.1109/ACCESS.2017.2746095 10.1109/TNSRE.2017.2703586 10.1016/j.neunet.2018.02.017 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2023.107761 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1873-6769 |
ExternalDocumentID | 10_1016_j_engappai_2023_107761 S0952197623019450 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-bc887cdf33bc64ebd4f399fe01aaa29cc057a7fc2290eb632f5084d6af3d87713 |
IEDL.DBID | AIKHN |
ISSN | 0952-1976 |
IngestDate | Thu Apr 24 22:51:35 EDT 2025 Tue Jul 01 02:23:42 EDT 2025 Sat Mar 23 16:41:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Joint angle prediction Surface electromyography Lower limb motion recognition Transfer learning Interpretable deep learning Dual-branch network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-bc887cdf33bc64ebd4f399fe01aaa29cc057a7fc2290eb632f5084d6af3d87713 |
ORCID | 0000-0002-5092-5277 0000-0001-7046-9240 0009-0007-7198-0228 |
ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2023_107761 crossref_primary_10_1016_j_engappai_2023_107761 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_107761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ravanelli, Bengio (bib19) 2018 Tu, Dai, Zhao, Huang (bib25) 2023; 81 Zhao, Xu, Wang, Wang, Qiu, Peng, Li, Jiang (bib45) 2023; 90 Wei, Wang, Hu, Zhou, Feng, Lu, Tang, Jia (bib34) 2022; 74 Gautam, Panwar, Biswas, Acharyya (bib3) 2020; 8 Zhang, Soselia, Wang, Gutierrez-Farewik (bib42) 2022; 30 Wei, Tan, Zhang, Mao, Fu, Samuel, Li (bib35) 2023; 10 Yoo, Jo, Ban (bib39) 2023; 23 Zhang, Li, Yu, Huang, Xu, Deng (bib40) 2023; 227 Sanchez, Sotelo, Gonzales, Hernandez (bib21) 2014; 2 Wang, Wen, Bi, Li, Sun (bib31) 2023; 83 Wu, Yuan, Zhang, Wang, Xu, Tao (bib36) 2021; 69 Park, Chung, Kim (bib18) 2019; 67 Shi, Wang, Li, Gao, Lv, Lv, Liu, Zhang, Luo, Che (bib23) 2020 Vinuesa, Sirmacek (bib28) 2021; 3 Wang, Chen, Zhang, Chen, Snoussi (bib32) 2017; 5 Wang, Dong, Chi, Wang, Miao, Gavrilov (bib33) 2021; 68 Khodabandelou, Moon, Amirat, Mohammed (bib9) 2023; 118 Wang, Lu, Fan, Ren, Geng (bib30) 2022; 93 Zhang, Zhu, Gutierrez-Farewik, Wang (bib43) 2022; 26 Zhang, Yang (bib44) 2021 Naik, Selvan, Arjunan, Acharyya, Kumar, Ramanujam, Nguyen (bib17) 2018; 26 Hu, Shen, Sun (bib7) 2018 Mundt, Johnson, Potthast, Markert, Mian, Alderson (bib16) 2021; 21 Fan, Jiang, Lin, Li, Fiaidhi, Ma, Wu (bib2) 2023; 35 Sun, Zhang, Liu, Shi, Wang (bib24) 2022; 1–18 Vijayvargiya, Gupta, Kumar, Dey, Tavares (bib26) 2021; 21 Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan (bib6) 2019 Mayor-Torres, Ravanelli, Medina-DeVilliers, Lerner, Riccardi (bib15) 2021 Liu, Xu, Chen, Long, Tao, Wu (bib11) 2019; 51 Ma, Zhang, Zheng, Sun (bib13) 2018 Martinez-Hernandez, Dehghani-Sanij (bib14) 2018; 102 Issa, Khaled (bib8) 2021 Gozzi, Malandri, Mercorio, Pedrocchi (bib4) 2022; 240 Wang, Ou, Xie, Wang, Yu, Fan, Chu (bib29) 2022; 101 Bai, Kolter, Koltun (bib1) 2018 Zhang, Wang, Silva, Fu (bib41) 2020; 28 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib22) 2017 Lu, Wang, Zhou, Wei, Xu (bib12) 2022; 203 Gui, Liu, Zhang (bib5) 2017; 25 Vijayvargiya, Kumar, Dey (bib27) 2021; 44 Wu, He (bib37) 2018 Liu, Jin, Daly, Li, Sun, Huang, Wang, Cichocki (bib10) 2022; 30 Samejima, Khorasani, Ranganathan, Nakahara, Tolley, Boissenin, Shalchyan, Daliri, Smith, Moritz (bib20) 2021; 29 Xiong, Zhang, Zhao, Zhao (bib38) 2021; 8 Samejima (10.1016/j.engappai.2023.107761_bib20) 2021; 29 Wei (10.1016/j.engappai.2023.107761_bib35) 2023; 10 Ravanelli (10.1016/j.engappai.2023.107761_bib19) 2018 Wang (10.1016/j.engappai.2023.107761_bib33) 2021; 68 Zhang (10.1016/j.engappai.2023.107761_bib42) 2022; 30 Zhang (10.1016/j.engappai.2023.107761_bib44) 2021 Gui (10.1016/j.engappai.2023.107761_bib5) 2017; 25 Wu (10.1016/j.engappai.2023.107761_bib36) 2021; 69 Bai (10.1016/j.engappai.2023.107761_bib1) 2018 Issa (10.1016/j.engappai.2023.107761_bib8) 2021 Sun (10.1016/j.engappai.2023.107761_bib24) 2022; 1–18 Liu (10.1016/j.engappai.2023.107761_bib10) 2022; 30 Tu (10.1016/j.engappai.2023.107761_bib25) 2023; 81 Vinuesa (10.1016/j.engappai.2023.107761_bib28) 2021; 3 Mundt (10.1016/j.engappai.2023.107761_bib16) 2021; 21 Wang (10.1016/j.engappai.2023.107761_bib32) 2017; 5 Vijayvargiya (10.1016/j.engappai.2023.107761_bib27) 2021; 44 Wang (10.1016/j.engappai.2023.107761_bib31) 2023; 83 Fan (10.1016/j.engappai.2023.107761_bib2) 2023; 35 Zhang (10.1016/j.engappai.2023.107761_bib43) 2022; 26 Wang (10.1016/j.engappai.2023.107761_bib29) 2022; 101 Xiong (10.1016/j.engappai.2023.107761_bib38) 2021; 8 Ma (10.1016/j.engappai.2023.107761_bib13) 2018 Lu (10.1016/j.engappai.2023.107761_bib12) 2022; 203 Park (10.1016/j.engappai.2023.107761_bib18) 2019; 67 Vijayvargiya (10.1016/j.engappai.2023.107761_bib26) 2021; 21 Yoo (10.1016/j.engappai.2023.107761_bib39) 2023; 23 Shi (10.1016/j.engappai.2023.107761_bib23) 2020 Liu (10.1016/j.engappai.2023.107761_bib11) 2019; 51 Naik (10.1016/j.engappai.2023.107761_bib17) 2018; 26 Zhang (10.1016/j.engappai.2023.107761_bib40) 2023; 227 Gozzi (10.1016/j.engappai.2023.107761_bib4) 2022; 240 Hu (10.1016/j.engappai.2023.107761_bib7) 2018 Wei (10.1016/j.engappai.2023.107761_bib34) 2022; 74 Howard (10.1016/j.engappai.2023.107761_bib6) 2019 Zhao (10.1016/j.engappai.2023.107761_bib45) 2023; 90 Gautam (10.1016/j.engappai.2023.107761_bib3) 2020; 8 Wang (10.1016/j.engappai.2023.107761_bib30) 2022; 93 Khodabandelou (10.1016/j.engappai.2023.107761_bib9) 2023; 118 Sanchez (10.1016/j.engappai.2023.107761_bib21) 2014; 2 Mayor-Torres (10.1016/j.engappai.2023.107761_bib15) 2021 Zhang (10.1016/j.engappai.2023.107761_bib41) 2020; 28 Wu (10.1016/j.engappai.2023.107761_bib37) 2018 Martinez-Hernandez (10.1016/j.engappai.2023.107761_bib14) 2018; 102 Selvaraju (10.1016/j.engappai.2023.107761_bib22) 2017 |
References_xml | – start-page: 1021 year: 2018 end-page: 1028 ident: bib19 article-title: Speaker recognition from raw waveform with sincnet publication-title: 2018 IEEE Spoken Language Technology Workshop (SLT) – volume: 3 start-page: 926 year: 2021 ident: bib28 article-title: Interpretable deep-learning models to help achieve the Sustainable Development Goals publication-title: Nat. Mach. Intell. – year: 2018 ident: bib1 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv Prepr – volume: 8 start-page: 512 year: 2021 end-page: 533 ident: bib38 article-title: Deep learning for EMG-based human-machine interaction: a review publication-title: IEEE/CAA J. Autom. Sin. – volume: 23 start-page: 3157 year: 2023 ident: bib39 article-title: Lite and efficient deep learning model for bearing fault diagnosis using the CWRU dataset publication-title: Sensors – volume: 21 start-page: 20431 year: 2021 end-page: 20439 ident: bib26 article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition publication-title: IEEE Sens. J. – start-page: 2235 year: 2021 end-page: 2239 ident: bib44 article-title: Sa-net: shuffle attention for deep convolutional neural networks publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 26 start-page: 5895 year: 2022 end-page: 5906 ident: bib43 article-title: Ankle joint torque prediction using an NMS solver informed-ANN model and transfer learning publication-title: IEEE J. Biomed. Heal. informatics – start-page: 1314 year: 2019 end-page: 1324 ident: bib6 article-title: Searching for mobilenetv3 publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 203 year: 2022 ident: bib12 article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models publication-title: Expert Syst. Appl. – volume: 240 year: 2022 ident: bib4 article-title: XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification publication-title: Knowledge-Based Syst. – volume: 28 start-page: 646 year: 2020 end-page: 657 ident: bib41 article-title: Unsupervised cross-subject Adaptation for predicting human Locomotion intent publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 3 year: 2018 end-page: 19 ident: bib37 article-title: Group normalization publication-title: Proceedings of the European Conference on Computer Vision – start-page: 618 year: 2017 end-page: 626 ident: bib22 article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 74 year: 2022 ident: bib34 article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition publication-title: Biomed. Signal Process Control – volume: 67 start-page: 1775 year: 2019 end-page: 1786 ident: bib18 article-title: Training-free Bayesian self-adaptive classification for sEMG pattern recognition including motion transition publication-title: IEEE Trans. Biomed. Eng. – volume: 68 year: 2021 ident: bib33 article-title: sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network publication-title: Biomed. Signal Process Control – volume: 30 start-page: 540 year: 2022 end-page: 549 ident: bib10 article-title: SincNet-based hybrid neural network for motor imagery EEG Decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 116 year: 2018 end-page: 131 ident: bib13 article-title: Shufflenet v2: Practical guidelines for efficient cnn architecture design publication-title: Proceedings of the European Conference on Computer Vision – volume: 102 start-page: 107 year: 2018 end-page: 119 ident: bib14 article-title: Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors publication-title: Neural Network. – volume: 90 start-page: 382 year: 2023 end-page: 391 ident: bib45 article-title: Analysis and evaluation of hemiplegic gait based on wearable sensor network publication-title: Inf. Fusion – volume: 69 start-page: 4999 year: 2021 end-page: 5008 ident: bib36 article-title: Gait phase classification for a lower limb exoskeleton system based on a graph convolutional network model publication-title: IEEE Trans. Ind. Electron. – volume: 44 start-page: 1297 year: 2021 end-page: 1309 ident: bib27 article-title: Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal publication-title: Phys. Eng. Sci. Med. – start-page: 412 year: 2021 end-page: 415 ident: bib15 article-title: Interpretable sincnet-based deep learning for emotion recognition from eeg brain activity publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 29 start-page: 1233 year: 2021 end-page: 1242 ident: bib20 article-title: Brain-computer-spinal interface restores upper limb function after spinal cord injury publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 51 start-page: 3759 year: 2019 end-page: 3770 ident: bib11 article-title: Vision-assisted autonomous lower-limb exoskeleton robot publication-title: IEEE Trans. Syst. man, Cybern. Syst. – volume: 8 start-page: 1 year: 2020 end-page: 10 ident: bib3 article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG publication-title: IEEE J. Transl. Eng. Heal. Med. – volume: 118 year: 2023 ident: bib9 article-title: A fuzzy convolutional attention-based GRU network for human activity recognition publication-title: Eng. Appl. Artif. Intell. – volume: 83 year: 2023 ident: bib31 article-title: A portable SSVEP-BCI system for rehabilitation exoskeleton in augmented reality environment publication-title: Biomed. Signal Process Control – volume: 25 start-page: 2054 year: 2017 end-page: 2066 ident: bib5 article-title: Toward multimodal human–robot interaction to enhance active participation of users in gait rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 93 year: 2022 ident: bib30 article-title: Continuous motion estimation of lower limbs based on deep belief networks and random forest publication-title: Rev. Sci. Instrum. – start-page: 7132 year: 2018 end-page: 7141 ident: bib7 article-title: Squeeze-and-excitation networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 1–18 year: 2022 ident: bib24 article-title: A multi-joint continuous motion estimation method of lower limb using least squares support vector machine and zeroing neural network based on sEMG signals publication-title: Neural Process. Lett. – volume: 21 start-page: 4535 year: 2021 ident: bib16 article-title: A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units publication-title: Sensors – start-page: 336 year: 2021 end-page: 345 ident: bib8 article-title: Lower limb movement recognition using EMG signals publication-title: International Conference on Intelligent Systems Design and Applications – start-page: 383 year: 2020 end-page: 388 ident: bib23 article-title: Prediction of continuous motion for lower limb joints based on semg signal publication-title: 2020 IEEE International Conference on Mechatronics and Automation (ICMA) – volume: 5 start-page: 17627 year: 2017 end-page: 17633 ident: bib32 article-title: Internal transfer learning for improving performance in human action recognition for small datasets publication-title: IEEE Access – volume: 10 start-page: 358 year: 2023 ident: bib35 article-title: Surface electromyogram, kinematic, and kinetic dataset of lower limb walking for movement intent recognition publication-title: Sci. Data – volume: 35 start-page: 16101 year: 2023 end-page: 16111 ident: bib2 article-title: Improving sEMG-based motion intention recognition for upper-limb amputees using transfer learning publication-title: Neural Comput. Appl. – volume: 2 year: 2014 ident: bib21 article-title: Emg dataset in lower limb data set publication-title: UCI Mach. Learn. Repos. – volume: 26 start-page: 675 year: 2018 end-page: 686 ident: bib17 article-title: An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 101 year: 2022 ident: bib29 article-title: Lower limb motion recognition based on surface electromyography signals and its experimental verification on a novel multi-posture lower limb rehabilitation robots publication-title: Comput. Electr. Eng. – volume: 81 year: 2023 ident: bib25 article-title: Lower limb motion recognition based on surface electromyography publication-title: Biomed. Signal Process Control – volume: 30 start-page: 600 year: 2022 end-page: 609 ident: bib42 article-title: Lower-limb joint torque prediction using LSTM neural networks and transfer learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 227 year: 2023 ident: bib40 article-title: An end-to-end lower limb activity recognition framework based on sEMG data augmentation and enhanced CapsNet publication-title: Expert Syst. Appl. – volume: 1–18 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib24 article-title: A multi-joint continuous motion estimation method of lower limb using least squares support vector machine and zeroing neural network based on sEMG signals publication-title: Neural Process. Lett. – volume: 28 start-page: 646 year: 2020 ident: 10.1016/j.engappai.2023.107761_bib41 article-title: Unsupervised cross-subject Adaptation for predicting human Locomotion intent publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2966749 – volume: 90 start-page: 382 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib45 article-title: Analysis and evaluation of hemiplegic gait based on wearable sensor network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.10.003 – volume: 74 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib34 article-title: Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2022.103487 – start-page: 383 year: 2020 ident: 10.1016/j.engappai.2023.107761_bib23 article-title: Prediction of continuous motion for lower limb joints based on semg signal – volume: 10 start-page: 358 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib35 article-title: Surface electromyogram, kinematic, and kinetic dataset of lower limb walking for movement intent recognition publication-title: Sci. Data doi: 10.1038/s41597-023-02263-3 – start-page: 3 year: 2018 ident: 10.1016/j.engappai.2023.107761_bib37 article-title: Group normalization – volume: 26 start-page: 5895 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib43 article-title: Ankle joint torque prediction using an NMS solver informed-ANN model and transfer learning publication-title: IEEE J. Biomed. Heal. informatics doi: 10.1109/JBHI.2022.3207313 – volume: 118 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib9 article-title: A fuzzy convolutional attention-based GRU network for human activity recognition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105702 – volume: 51 start-page: 3759 year: 2019 ident: 10.1016/j.engappai.2023.107761_bib11 article-title: Vision-assisted autonomous lower-limb exoskeleton robot publication-title: IEEE Trans. Syst. man, Cybern. Syst. doi: 10.1109/TSMC.2019.2932892 – volume: 2 year: 2014 ident: 10.1016/j.engappai.2023.107761_bib21 article-title: Emg dataset in lower limb data set publication-title: UCI Mach. Learn. Repos. – volume: 21 start-page: 20431 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib26 article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3095594 – start-page: 412 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib15 article-title: Interpretable sincnet-based deep learning for emotion recognition from eeg brain activity – volume: 69 start-page: 4999 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib36 article-title: Gait phase classification for a lower limb exoskeleton system based on a graph convolutional network model publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3082067 – start-page: 116 year: 2018 ident: 10.1016/j.engappai.2023.107761_bib13 article-title: Shufflenet v2: Practical guidelines for efficient cnn architecture design – volume: 30 start-page: 600 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib42 article-title: Lower-limb joint torque prediction using LSTM neural networks and transfer learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3156786 – volume: 35 start-page: 16101 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib2 article-title: Improving sEMG-based motion intention recognition for upper-limb amputees using transfer learning publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06292-0 – volume: 67 start-page: 1775 year: 2019 ident: 10.1016/j.engappai.2023.107761_bib18 article-title: Training-free Bayesian self-adaptive classification for sEMG pattern recognition including motion transition publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2947089 – volume: 68 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib33 article-title: sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2021.102781 – start-page: 1314 year: 2019 ident: 10.1016/j.engappai.2023.107761_bib6 article-title: Searching for mobilenetv3 – volume: 26 start-page: 675 year: 2018 ident: 10.1016/j.engappai.2023.107761_bib17 article-title: An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2796070 – volume: 101 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib29 article-title: Lower limb motion recognition based on surface electromyography signals and its experimental verification on a novel multi-posture lower limb rehabilitation robots publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108067 – volume: 203 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib12 article-title: Continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117340 – start-page: 1021 year: 2018 ident: 10.1016/j.engappai.2023.107761_bib19 article-title: Speaker recognition from raw waveform with sincnet – year: 2018 ident: 10.1016/j.engappai.2023.107761_bib1 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv Prepr – volume: 227 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib40 article-title: An end-to-end lower limb activity recognition framework based on sEMG data augmentation and enhanced CapsNet publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120257 – volume: 83 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib31 article-title: A portable SSVEP-BCI system for rehabilitation exoskeleton in augmented reality environment publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2023.104664 – volume: 240 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib4 article-title: XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2021.108053 – start-page: 336 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib8 article-title: Lower limb movement recognition using EMG signals – volume: 81 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib25 article-title: Lower limb motion recognition based on surface electromyography publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2022.104443 – volume: 21 start-page: 4535 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib16 article-title: A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units publication-title: Sensors doi: 10.3390/s21134535 – volume: 93 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib30 article-title: Continuous motion estimation of lower limbs based on deep belief networks and random forest publication-title: Rev. Sci. Instrum. – volume: 8 start-page: 512 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib38 article-title: Deep learning for EMG-based human-machine interaction: a review publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1003865 – volume: 30 start-page: 540 year: 2022 ident: 10.1016/j.engappai.2023.107761_bib10 article-title: SincNet-based hybrid neural network for motor imagery EEG Decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3156076 – start-page: 618 year: 2017 ident: 10.1016/j.engappai.2023.107761_bib22 article-title: Grad-cam: Visual explanations from deep networks via gradient-based localization – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2023.107761_bib3 article-title: MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG publication-title: IEEE J. Transl. Eng. Heal. Med. doi: 10.1109/JTEHM.2020.3023898 – volume: 23 start-page: 3157 year: 2023 ident: 10.1016/j.engappai.2023.107761_bib39 article-title: Lite and efficient deep learning model for bearing fault diagnosis using the CWRU dataset publication-title: Sensors doi: 10.3390/s23063157 – volume: 3 start-page: 926 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib28 article-title: Interpretable deep-learning models to help achieve the Sustainable Development Goals publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00414-y – volume: 29 start-page: 1233 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib20 article-title: Brain-computer-spinal interface restores upper limb function after spinal cord injury publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3090269 – volume: 44 start-page: 1297 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib27 article-title: Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-021-01071-6 – volume: 5 start-page: 17627 year: 2017 ident: 10.1016/j.engappai.2023.107761_bib32 article-title: Internal transfer learning for improving performance in human action recognition for small datasets publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2746095 – start-page: 2235 year: 2021 ident: 10.1016/j.engappai.2023.107761_bib44 article-title: Sa-net: shuffle attention for deep convolutional neural networks – start-page: 7132 year: 2018 ident: 10.1016/j.engappai.2023.107761_bib7 article-title: Squeeze-and-excitation networks – volume: 25 start-page: 2054 year: 2017 ident: 10.1016/j.engappai.2023.107761_bib5 article-title: Toward multimodal human–robot interaction to enhance active participation of users in gait rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2703586 – volume: 102 start-page: 107 year: 2018 ident: 10.1016/j.engappai.2023.107761_bib14 article-title: Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors publication-title: Neural Network. doi: 10.1016/j.neunet.2018.02.017 |
SSID | ssj0003846 |
Score | 2.4342902 |
Snippet | Currently, the fusion of surface Electromyography (EMG) and deep learning is gradually showing immense potential in the research of Lower Limb Motion Intention... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107761 |
SubjectTerms | Dual-branch network Interpretable deep learning Joint angle prediction Lower limb motion recognition Surface electromyography Transfer learning |
Title | Interpretable Dual-branch EMGNet: A transfer learning-based network for inter-subject lower limb motion intention recognition |
URI | https://dx.doi.org/10.1016/j.engappai.2023.107761 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgLCx8I8pH5YHVbRO7Sc1WlUKhogNQ0S2yHbsUhVBBOsJv55w4pUhIHZiiXHJS5LPvnqPnewid-4HQzTaLiTA-J8wXinCoQsRQwwGdCqHyPtt3w6A_Yrfj1ngNdcuzMJZW6XJ_kdPzbO0sDTeajdl02ngAcADLDRYzzFHO7L59w4dq366gjc7NoD9cJGTaLs7rwPvEOiwdFH6p63QiZjMxrVsdcTCGYeD9XaOW6s7VDtpygBF3im_aRWs63UPbDjxitzQ_wFTqM5S2ffT5wyiUicaXc5EQaYU0nnHv7nqoswvcwVmOXMHN6UdMiC1sMU4LfjgGUIttT4l38jGX9qcNTqywGk6mrxIXGkD585w1iRd8pLf0AI2ueo_dPnFyC0RRz8-IVJBwVGwolSpgWsbMAHoxuukJIXyuFEA7ERplO8RrGVDftGyUA2Fo3A5hs3uIKulbqo8QbhkhmedLw0PN7A5U0lBxJhnVTRWEvIpa5QBHyvUit5IYSVSSzl6iMjCRDUxUBKaKGgu_WdGNY6UHL-MX_ZpXEZSMFb7H__A9QZtw5zg-p6iSvc_1GcCXTNbQev3Lq7lJaq-D-6fBNzgc8-g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHPTi24jPHrxWYFt2qTeCIMjjoibeNm23Vcy6EliO_nenu13ExISD1-lO0nTama-br_MhdO35QtdbLCLCeJwwTyjCoQoRQw0HdCqEyvpsjyd-_5k9vDRfSqhTvIWxtEqX-_OcnmVrZ6m51azNptPaI4ADOG5wmGGPcmbv7RVmRa3LqNIeDPuTVUKmrfy9DnxPrMPaQ-H3G528itlMTG-sjjgYg8Bv_F2j1upObw_tOMCI2_mc9lFJJwdo14FH7I7mAkyFPkNhO0RfP4xCGWt8txQxkVZI4w13x_cTnd7iNk4z5ApuTj_ildjCFuEk54djALXY9pSYk8VS2p82OLbCajiefkicawBl4xlrEq_4SJ_JEXrudZ86feLkFoiiDS8lUkHCUZGhVCqfaRkxA-jF6HpDCOFxpQDaicAo2yFeS596pmmj7AtDo1YAl91jVE4-E32CcNMIyRqeNDzQzN5AJQ0UZ5JRXVd-wKuoWSxwqFwvciuJEYcF6ew9LAIT2sCEeWCqqLbym-XdODZ68CJ-4a99FULJ2OB7-g_fK7TVfxqPwtFgMjxD2zDi-D7nqJzOl_oCoEwqL91W_QZWyPQr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Dual-branch+EMGNet%3A+A+transfer+learning-based+network+for+inter-subject+lower+limb+motion+intention+recognition&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhang%2C+Changhe&rft.au=Wang%2C+Xiaoyun&rft.au=Yu%2C+Zidong&rft.au=Wang%2C+Bingjin&rft.date=2024-04-01&rft.issn=0952-1976&rft.volume=130&rft.spage=107761&rft_id=info:doi/10.1016%2Fj.engappai.2023.107761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_107761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |