Can the use of the Leggett–Garg inequality enhance security of the BB84 protocol?

Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure subject to the assumption of trusted devices, while the Leggett–Garg-type inequality (LGI) does not seem to be readily adaptable to the device i...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. A Vol. 381; no. 31; pp. 2478 - 2482
Main Authors Shenoy H., Akshata, Aravinda, S., Srikanth, R., Home, Dipankar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.08.2017
Subjects
Online AccessGet full text
ISSN0375-9601
1873-2429
DOI10.1016/j.physleta.2017.05.053

Cover

Abstract Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure subject to the assumption of trusted devices, while the Leggett–Garg-type inequality (LGI) does not seem to be readily adaptable to the device independent (DI) or semi-DI scenario. Nevertheless, interestingly, here we identify a specific device attack, which has been shown to render the standard BB84 protocol completely insecure, but against which our formulated LGI-assisted BB84 protocol (based on an appropriate form of LGI) is secure. •Quantum temporal correlations have limited usefulness in device-independent cryptography.•One reason is that they can violate “no-signaling in time.”•We point out another reason: they are less monogamous than spatial correlations, which are non-signaling.•Still, the Leggett–Garg inequality can protect quantum key distribution against a specific device attack.
AbstractList Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure subject to the assumption of trusted devices, while the Leggett–Garg-type inequality (LGI) does not seem to be readily adaptable to the device independent (DI) or semi-DI scenario. Nevertheless, interestingly, here we identify a specific device attack, which has been shown to render the standard BB84 protocol completely insecure, but against which our formulated LGI-assisted BB84 protocol (based on an appropriate form of LGI) is secure. •Quantum temporal correlations have limited usefulness in device-independent cryptography.•One reason is that they can violate “no-signaling in time.”•We point out another reason: they are less monogamous than spatial correlations, which are non-signaling.•Still, the Leggett–Garg inequality can protect quantum key distribution against a specific device attack.
Author Shenoy H., Akshata
Srikanth, R.
Home, Dipankar
Aravinda, S.
Author_xml – sequence: 1
  givenname: Akshata
  surname: Shenoy H.
  fullname: Shenoy H., Akshata
  organization: Group of Applied Physics, University of Geneva, CH-1211 Geneva, Switzerland
– sequence: 2
  givenname: S.
  surname: Aravinda
  fullname: Aravinda, S.
  organization: Institute of Mathematical Sciences, HBNI, C. I. T. Campus, Taramani, Chennai 600113, India
– sequence: 3
  givenname: R.
  surname: Srikanth
  fullname: Srikanth, R.
  email: srik@poornaprajna.org
  organization: Poornaprajna Institute of Scientific Research, Sadashivnagar, Bangalore, India
– sequence: 4
  givenname: Dipankar
  surname: Home
  fullname: Home, Dipankar
  organization: CAPSS, Dept. of Physics, Bose Institute, Salt Lake Campus, Kolkata 700 091, India
BookMark eNqFkN1KAzEQRoNUsK2-guwL7DrZbPYHBLVFq1DwQr0O2WS2TVk3NUmF3vkOvqFP4tbqjTeFgRk-OB_MGZFBZzsk5JxCQoHmF6tkvdz6FoNMUqBFArwfdkSGtCxYnGZpNSBDYAWPqxzoCRl5vwLoSaiG5GkquygsMdp4jGzzc85xscAQvj4-Z9ItItPh20a2Jmwj7JayUxh5VBu3C36JyaTMorWzwSrbXp2S40a2Hs9-95i83N0-T-_j-ePsYXozjxWjaYhrxaCWyFVds7Sghda15HXWUM11xkrdBwgSMsh1WtWspLzMSqp4qlA2MsvZmFzue5Wz3jtshDJBBmO74KRpBQWxEyRW4k-Q2AkSwPthPZ7_w9fOvEq3PQxe70Hsn3s36IRXBnsv2jhUQWhrDlV8AwQciMA
CitedBy_id crossref_primary_10_3390_quantum5020025
crossref_primary_10_1103_PhysRevA_98_022138
crossref_primary_10_1103_PhysRevA_100_042114
crossref_primary_10_1103_PRXQuantum_3_010307
crossref_primary_10_1016_j_optcom_2018_07_006
Cites_doi 10.1103/PhysicsPhysiqueFizika.1.195
10.1103/PhysRevLett.85.441
10.1103/PhysRevLett.54.857
10.1103/PhysRevLett.113.050401
10.1103/PhysRevA.87.052115
10.1103/PhysRevLett.99.180403
10.1038/nphys2334
10.1103/PhysRevLett.23.880
10.1103/PhysRevLett.68.557
10.1103/PhysRevA.65.012311
10.1109/TIT.1978.1055892
10.1126/science.290.5492.773
10.1103/PhysRevLett.105.230501
10.1103/PhysRevLett.106.200402
10.1088/0953-8984/14/15/201
10.1103/PhysRevLett.113.140501
10.1103/PhysRevLett.67.661
10.1142/S0219749911007368
10.1103/PhysRevLett.97.120405
10.1098/rspa.2008.0149
10.1103/PhysRevA.82.032313
10.1103/PhysRevA.56.1163
10.1103/PhysRevA.92.062120
10.1088/1751-8113/46/5/055301
10.1103/PhysRevA.74.022313
10.1103/PhysRevLett.101.090403
10.1103/PhysRevLett.108.160501
10.1103/PhysRevLett.115.150501
10.1103/RevModPhys.74.145
10.1103/PhysRevLett.107.130402
10.1103/PhysRevLett.87.117901
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physleta.2017.05.053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
EndPage 2482
ExternalDocumentID 10_1016_j_physleta_2017_05_053
S0375960116321946
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABLJU
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
~02
~G-
29O
5VS
6TJ
8WZ
A6W
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
WUQ
XJT
XOL
YYP
ZCG
~HD
ID FETCH-LOGICAL-c312t-bc30bae5cbb32717ddba5b4f1d5d438d7dde0a0406d29b38158481c52ceafa463
IEDL.DBID .~1
ISSN 0375-9601
IngestDate Thu Apr 24 22:55:45 EDT 2025
Wed Oct 01 02:24:01 EDT 2025
Fri Feb 23 02:22:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Quantum spatial correlations
Leggett–Garg inequality
Monogamy of correlations
Quantum cryptography
Quantum temporal correlations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-bc30bae5cbb32717ddba5b4f1d5d438d7dde0a0406d29b38158481c52ceafa463
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_physleta_2017_05_053
crossref_primary_10_1016_j_physleta_2017_05_053
elsevier_sciencedirect_doi_10_1016_j_physleta_2017_05_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-21
PublicationDateYYYYMMDD 2017-08-21
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-21
  day: 21
PublicationDecade 2010
PublicationTitle Physics letters. A
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fuchs, Gisin, Griffiths, Niu, Peres (br0350) 1997; 56
Qi, Fung, Lo, Ma (br0190) 2007; 7
Pathak, Banerjee (br0210) 2011; 9
Toner (br0420) 2009; 465
Shenoy (br0400) 2015
Pawłowski (br0430) 2010; 82
Woodhead, Lim, Pironio (br0260) 2012
Acín, Gisin, Masanes (br0090) 2006; 97
Aravinda, Srikanth (br0410) 2015; 15
Kofler, Brukner (br0110) 2013; 87
Scarani, Gisin (br0370) 2001; 87
Emary, Lambert, Nori (br0160) 2014; 77
Pawłowski (br0440) 2012; 85
Montina (br0120) 2012; 108
Barrett, Hardy, Kent (br0080) 2005; 95
Gallego, Brunner, Hadley, Acin (br0230) 2010; 105
Busch, Lahti, Mittelstaedt (br0360) 1996
Barrett, Colbeck, Kent (br0170) 2013; 110
Budroni, Emary (br0150) 2014; 113
Donohue, Wolfe (br0250) 2015; 92
Bell (br0030) 1964; 1
Brukner, Taylor, Cheung, Vedral (br0100)
Shor, Preskill (br0060) 2000; 85
Csizár, Körner (br0390) 1978; 24
Hänggi (br0070) 2010
Leggett (br0140) 2002; 14
Kofler, Brukner (br0340) 2008; 101
Gisin, Ribordy, Tittel, Zbinden (br0450) 2002; 74
Makarov, Anisimov, Skaar (br0180) 2006; 74
Bennett, Brassard, Mermin (br0050) 1992; 68
Lim, Portmann, Tomamichel, Renner, Gisin (br0270) 2013; 3
van der Wal, ter Haar, Wilhelm (br0300) 2000; 290
Roskov, Korotkov, Mizel (br0310) 2006; 96
Tomamichel, Hänggi (br0280) 2013; 46
Fedrizzi, Almeida, Broome (br0320) 2011; 106
Barrett, Hardy, Kent (br0460) 2005; 95
Woodhead, Pironio (br0220) 2015; 115
Scarani, Gisin (br0380) 2001; 65
Kofler, Brukner (br0290) 2007; 99
Clauser, Horne, Shimony, Holt (br0040) 1969; 23
Ekert (br0020) 1991; 67
Vazirani, Vidick (br0200) 2014; 113
Bennett, Brassard (br0010) 1984
Hendrych, Gallego, Micuda, Brunner, Acin, Torres (br0240) 2012; 8
Athalye, Roy, Mahesh (br0330) 2011; 107
Leggett, Garg (br0130) 1985; 54
Gallego (10.1016/j.physleta.2017.05.053_br0230) 2010; 105
Acín (10.1016/j.physleta.2017.05.053_br0090) 2006; 97
Woodhead (10.1016/j.physleta.2017.05.053_br0220) 2015; 115
Tomamichel (10.1016/j.physleta.2017.05.053_br0280) 2013; 46
Csizár (10.1016/j.physleta.2017.05.053_br0390) 1978; 24
Pathak (10.1016/j.physleta.2017.05.053_br0210) 2011; 9
Barrett (10.1016/j.physleta.2017.05.053_br0460) 2005; 95
Shor (10.1016/j.physleta.2017.05.053_br0060) 2000; 85
Donohue (10.1016/j.physleta.2017.05.053_br0250) 2015; 92
Bell (10.1016/j.physleta.2017.05.053_br0030) 1964; 1
Kofler (10.1016/j.physleta.2017.05.053_br0110) 2013; 87
van der Wal (10.1016/j.physleta.2017.05.053_br0300) 2000; 290
Roskov (10.1016/j.physleta.2017.05.053_br0310) 2006; 96
Makarov (10.1016/j.physleta.2017.05.053_br0180) 2006; 74
Bennett (10.1016/j.physleta.2017.05.053_br0010) 1984
Fuchs (10.1016/j.physleta.2017.05.053_br0350) 1997; 56
Qi (10.1016/j.physleta.2017.05.053_br0190) 2007; 7
Athalye (10.1016/j.physleta.2017.05.053_br0330) 2011; 107
Hendrych (10.1016/j.physleta.2017.05.053_br0240) 2012; 8
Scarani (10.1016/j.physleta.2017.05.053_br0370) 2001; 87
Fedrizzi (10.1016/j.physleta.2017.05.053_br0320) 2011; 106
Ekert (10.1016/j.physleta.2017.05.053_br0020) 1991; 67
Montina (10.1016/j.physleta.2017.05.053_br0120) 2012; 108
Shenoy (10.1016/j.physleta.2017.05.053_br0400) 2015
Toner (10.1016/j.physleta.2017.05.053_br0420) 2009; 465
Gisin (10.1016/j.physleta.2017.05.053_br0450) 2002; 74
Vazirani (10.1016/j.physleta.2017.05.053_br0200) 2014; 113
Clauser (10.1016/j.physleta.2017.05.053_br0040) 1969; 23
Pawłowski (10.1016/j.physleta.2017.05.053_br0430) 2010; 82
Leggett (10.1016/j.physleta.2017.05.053_br0130) 1985; 54
Hänggi (10.1016/j.physleta.2017.05.053_br0070) 2010
Brukner (10.1016/j.physleta.2017.05.053_br0100)
Budroni (10.1016/j.physleta.2017.05.053_br0150) 2014; 113
Scarani (10.1016/j.physleta.2017.05.053_br0380) 2001; 65
Barrett (10.1016/j.physleta.2017.05.053_br0080) 2005; 95
Bennett (10.1016/j.physleta.2017.05.053_br0050) 1992; 68
Emary (10.1016/j.physleta.2017.05.053_br0160) 2014; 77
Pawłowski (10.1016/j.physleta.2017.05.053_br0440) 2012; 85
Barrett (10.1016/j.physleta.2017.05.053_br0170) 2013; 110
Aravinda (10.1016/j.physleta.2017.05.053_br0410) 2015; 15
Leggett (10.1016/j.physleta.2017.05.053_br0140) 2002; 14
Kofler (10.1016/j.physleta.2017.05.053_br0340) 2008; 101
Lim (10.1016/j.physleta.2017.05.053_br0270) 2013; 3
Woodhead (10.1016/j.physleta.2017.05.053_br0260) 2012
Busch (10.1016/j.physleta.2017.05.053_br0360) 1996
Kofler (10.1016/j.physleta.2017.05.053_br0290) 2007; 99
References_xml – volume: 54
  start-page: 857
  year: 1985
  ident: br0130
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2008
  ident: br0340
  publication-title: Phys. Rev. Lett.
– volume: 82
  year: 2010
  ident: br0430
  publication-title: Phys. Rev. A
– volume: 107
  year: 2011
  ident: br0330
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 339
  year: 1978
  ident: br0390
  publication-title: IEEE Trans. Inf. Theory
– volume: 115
  year: 2015
  ident: br0220
  publication-title: Phys. Rev. Lett.
– volume: 95
  year: 2005
  ident: br0080
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2001
  ident: br0370
  publication-title: Phys. Rev. Lett.
– volume: 113
  year: 2014
  ident: br0150
  publication-title: Phys. Rev. Lett.
– volume: 3
  year: 2013
  ident: br0270
  publication-title: Phys. Rev. X
– volume: 290
  start-page: 773
  year: 2000
  ident: br0300
  publication-title: Science
– ident: br0100
– volume: 7
  year: 2007
  ident: br0190
  publication-title: Quantum Inf. Comput.
– volume: 92
  year: 2015
  ident: br0250
  publication-title: Phys. Rev. A
– volume: 99
  year: 2007
  ident: br0290
  publication-title: Phys. Rev. Lett.
– volume: 97
  year: 2006
  ident: br0090
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2013
  ident: br0110
  publication-title: Phys. Rev. A
– volume: 106
  year: 2011
  ident: br0320
  publication-title: Phys. Rev. Lett.
– volume: 110
  year: 2013
  ident: br0170
  publication-title: Phys. Rev. Lett.
– volume: 74
  start-page: 145
  year: 2002
  ident: br0450
  publication-title: Rev. Mod. Phys.
– start-page: 175
  year: 1984
  ident: br0010
  publication-title: IEEE Comp. Sys. and Sig. Process.
– year: 2010
  ident: br0070
– volume: 108
  year: 2012
  ident: br0120
  publication-title: Phys. Rev. Lett.
– volume: 74
  year: 2006
  ident: br0180
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 588
  year: 2012
  ident: br0240
  publication-title: Nat. Phys.
– volume: 1
  start-page: 195
  year: 1964
  ident: br0030
  publication-title: Physics
– volume: 85
  start-page: 441
  year: 2000
  ident: br0060
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 880
  year: 1969
  ident: br0040
  publication-title: Phys. Rev. Lett.
– volume: 77
  year: 2014
  ident: br0160
  publication-title: Rep. Prog. Phys.
– volume: 105
  year: 2010
  ident: br0230
  publication-title: Phys. Rev. Lett.
– year: 1996
  ident: br0360
  article-title: The Quantum Theory of Measurement
– start-page: 107
  year: 2012
  end-page: 115
  ident: br0260
  article-title: Theory of Quantum Computation, Communication, and Cryptography
– volume: 46
  year: 2013
  ident: br0280
  publication-title: J. Phys. A, Math. Theor.
– year: 2015
  ident: br0400
– volume: 465
  start-page: 59
  year: 2009
  ident: br0420
  publication-title: Proc. R. Soc. A
– volume: 95
  year: 2005
  ident: br0460
  publication-title: Phys. Rev. Lett.
– volume: 96
  year: 2006
  ident: br0310
  publication-title: Phys. Rev. Lett.
– volume: 113
  year: 2014
  ident: br0200
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: R415
  year: 2002
  ident: br0140
  publication-title: J. Phys. Condens. Matter
– volume: 9
  start-page: 389
  year: 2011
  ident: br0210
  publication-title: Int. J. Quantum Inf.
– volume: 15
  start-page: 308
  year: 2015
  ident: br0410
  publication-title: Quantum Inf. Comput.
– volume: 68
  start-page: 557
  year: 1992
  ident: br0050
  publication-title: Phys. Rev. Lett.
– volume: 56
  start-page: 1163
  year: 1997
  ident: br0350
  publication-title: Phys. Rev. A
– volume: 85
  year: 2012
  ident: br0440
  publication-title: Phys. Rev. A
– volume: 67
  start-page: 661
  year: 1991
  ident: br0020
  publication-title: Phys. Rev. Lett.
– volume: 65
  year: 2001
  ident: br0380
  publication-title: Phys. Rev. A
– volume: 1
  start-page: 195
  year: 1964
  ident: 10.1016/j.physleta.2017.05.053_br0030
  publication-title: Physics
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– volume: 85
  start-page: 441
  year: 2000
  ident: 10.1016/j.physleta.2017.05.053_br0060
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.441
– volume: 54
  start-page: 857
  year: 1985
  ident: 10.1016/j.physleta.2017.05.053_br0130
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.857
– volume: 113
  year: 2014
  ident: 10.1016/j.physleta.2017.05.053_br0150
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.050401
– volume: 96
  year: 2006
  ident: 10.1016/j.physleta.2017.05.053_br0310
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2013
  ident: 10.1016/j.physleta.2017.05.053_br0110
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.052115
– volume: 99
  year: 2007
  ident: 10.1016/j.physleta.2017.05.053_br0290
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.180403
– volume: 77
  year: 2014
  ident: 10.1016/j.physleta.2017.05.053_br0160
  publication-title: Rep. Prog. Phys.
– volume: 8
  start-page: 588
  year: 2012
  ident: 10.1016/j.physleta.2017.05.053_br0240
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2334
– volume: 23
  start-page: 880
  year: 1969
  ident: 10.1016/j.physleta.2017.05.053_br0040
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.23.880
– volume: 68
  start-page: 557
  year: 1992
  ident: 10.1016/j.physleta.2017.05.053_br0050
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.557
– volume: 95
  year: 2005
  ident: 10.1016/j.physleta.2017.05.053_br0080
  publication-title: Phys. Rev. Lett.
– volume: 65
  year: 2001
  ident: 10.1016/j.physleta.2017.05.053_br0380
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.012311
– volume: 24
  start-page: 339
  year: 1978
  ident: 10.1016/j.physleta.2017.05.053_br0390
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1978.1055892
– year: 2010
  ident: 10.1016/j.physleta.2017.05.053_br0070
– volume: 290
  start-page: 773
  year: 2000
  ident: 10.1016/j.physleta.2017.05.053_br0300
  publication-title: Science
  doi: 10.1126/science.290.5492.773
– volume: 105
  year: 2010
  ident: 10.1016/j.physleta.2017.05.053_br0230
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.230501
– volume: 106
  year: 2011
  ident: 10.1016/j.physleta.2017.05.053_br0320
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.200402
– volume: 15
  start-page: 308
  year: 2015
  ident: 10.1016/j.physleta.2017.05.053_br0410
  publication-title: Quantum Inf. Comput.
– volume: 14
  start-page: R415
  year: 2002
  ident: 10.1016/j.physleta.2017.05.053_br0140
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/15/201
– volume: 113
  year: 2014
  ident: 10.1016/j.physleta.2017.05.053_br0200
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.140501
– start-page: 107
  year: 2012
  ident: 10.1016/j.physleta.2017.05.053_br0260
– ident: 10.1016/j.physleta.2017.05.053_br0100
– start-page: 175
  year: 1984
  ident: 10.1016/j.physleta.2017.05.053_br0010
– volume: 67
  start-page: 661
  year: 1991
  ident: 10.1016/j.physleta.2017.05.053_br0020
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.661
– volume: 9
  start-page: 389
  year: 2011
  ident: 10.1016/j.physleta.2017.05.053_br0210
  publication-title: Int. J. Quantum Inf.
  doi: 10.1142/S0219749911007368
– year: 1996
  ident: 10.1016/j.physleta.2017.05.053_br0360
– volume: 3
  year: 2013
  ident: 10.1016/j.physleta.2017.05.053_br0270
  publication-title: Phys. Rev. X
– volume: 97
  year: 2006
  ident: 10.1016/j.physleta.2017.05.053_br0090
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.120405
– volume: 465
  start-page: 59
  year: 2009
  ident: 10.1016/j.physleta.2017.05.053_br0420
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2008.0149
– volume: 82
  year: 2010
  ident: 10.1016/j.physleta.2017.05.053_br0430
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.032313
– volume: 56
  start-page: 1163
  year: 1997
  ident: 10.1016/j.physleta.2017.05.053_br0350
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.56.1163
– year: 2015
  ident: 10.1016/j.physleta.2017.05.053_br0400
– volume: 92
  year: 2015
  ident: 10.1016/j.physleta.2017.05.053_br0250
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.062120
– volume: 46
  year: 2013
  ident: 10.1016/j.physleta.2017.05.053_br0280
  publication-title: J. Phys. A, Math. Theor.
  doi: 10.1088/1751-8113/46/5/055301
– volume: 74
  year: 2006
  ident: 10.1016/j.physleta.2017.05.053_br0180
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.022313
– volume: 101
  year: 2008
  ident: 10.1016/j.physleta.2017.05.053_br0340
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.090403
– volume: 7
  year: 2007
  ident: 10.1016/j.physleta.2017.05.053_br0190
  publication-title: Quantum Inf. Comput.
– volume: 110
  year: 2013
  ident: 10.1016/j.physleta.2017.05.053_br0170
  publication-title: Phys. Rev. Lett.
– volume: 108
  year: 2012
  ident: 10.1016/j.physleta.2017.05.053_br0120
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.160501
– volume: 115
  year: 2015
  ident: 10.1016/j.physleta.2017.05.053_br0220
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.150501
– volume: 95
  year: 2005
  ident: 10.1016/j.physleta.2017.05.053_br0460
  publication-title: Phys. Rev. Lett.
– volume: 74
  start-page: 145
  year: 2002
  ident: 10.1016/j.physleta.2017.05.053_br0450
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.145
– volume: 107
  year: 2011
  ident: 10.1016/j.physleta.2017.05.053_br0330
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.130402
– volume: 85
  year: 2012
  ident: 10.1016/j.physleta.2017.05.053_br0440
  publication-title: Phys. Rev. A
– volume: 87
  year: 2001
  ident: 10.1016/j.physleta.2017.05.053_br0370
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.117901
SSID ssj0001609
Score 2.2868395
Snippet Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2478
SubjectTerms Leggett–Garg inequality
Monogamy of correlations
Quantum cryptography
Quantum spatial correlations
Quantum temporal correlations
Title Can the use of the Leggett–Garg inequality enhance security of the BB84 protocol?
URI https://dx.doi.org/10.1016/j.physleta.2017.05.053
Volume 381
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: ACRLP
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: AIKHN
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: AKRWK
  dateStart: 19670102
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAiPrE-yh68pulmH0lO0hZrffVSC72F3WRTWyQtbXrwIv4H_6G_xNk8tILQg5BDsuxAmMzjyzLzDUKXDCxXRZJaDvOExYSKLSmIBo93uQ8IwZfZ1JLHvugN2d2IjyqoU_bCmLLKIvbnMT2L1sWKXWjTnk8m9sBMbwX8TQBRgNsxQ7vNmGumGDTefso8iMjLPGCzZXavdQlPG-b0ANRj-IdIzuDJ6d8Jai3pdPfQboEWcSt_oX1U0ckB2s6qNsPlIRp0ZIIBweHVUuNZnN0-6PFYp-nn-8eNXIwxgMi8b_IV6-TZfGK8LEbWlRLttsew4WuYgVFcHaFh9_qp07OKKQlWSImTWiqkTSU1D5WiDvycRZGSXLGYRDxi1ItgQTcl-KqIHF9BguaGQT_kTqhlLJmgx6iazBJ9gjDADUd4TkhizRmJiYpcDTnUp81Yu9IVNcRL1QRhQSFuJlm8BGWt2DQoVRoYlQZNDhetIftbbp6TaGyU8EvNB7_MIYBIv0H29B-yZ2jHPJlDY4eco2q6WOkLQB2pqmdmVUdbrdv7Xv8LX93YqA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60InoRn1ife_Aa030mOYkWtWrbSyt4C7vJprZIKjY9eBH_g__QX-JsHlpB6EHIIWx2IHw7j2-X2RmETjhoro4Vcyj3pcOlThwliQGL90QADCFQedeSTle27vntg3hYQM3qLoxNqyx9f-HTc29djrglmu7zcOj2bPdW4N8EGAWYHZeLaIkL6tkd2OnbT54HkUWeB8x27PSZa8KjU3t8APjYAkSkKOEp2N8RaibqXK2jtZIu4vPijzbQgkk30XKethlNtlCvqVIMFA5PJwaPk_y1bQYDk2Wf7x_X6mWAgUUWFydfsUkf7RrjSdmzrpK4uPA5tgUbxqAVZ9vo_uqy32w5ZZsEJ2KEZo6OWEMrIyKtGYXdWRxrJTRPSCxizvwYBkxDgbHKmAYaIrSwJfQjQSOjEsUl20G1dJyaXYSBb1Dp04gkRnCSEB17BoJowBqJ8ZQn60hU0IRRWUPctrJ4CqtksVFYQRpaSMOGgIfVkfst91xU0ZgrEVTIh7_0IQRXP0d27x-yx2il1e-0w_ZN924frdov9gSZkgNUy16m5hAoSKaPchX7AoS02j0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+the+use+of+the+Leggett%E2%80%93Garg+inequality+enhance+security+of+the+BB84+protocol%3F&rft.jtitle=Physics+letters.+A&rft.au=Shenoy+H.%2C+Akshata&rft.au=Aravinda%2C+S.&rft.au=Srikanth%2C+R.&rft.au=Home%2C+Dipankar&rft.date=2017-08-21&rft.pub=Elsevier+B.V&rft.issn=0375-9601&rft.eissn=1873-2429&rft.volume=381&rft.issue=31&rft.spage=2478&rft.epage=2482&rft_id=info:doi/10.1016%2Fj.physleta.2017.05.053&rft.externalDocID=S0375960116321946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon