Can the use of the Leggett–Garg inequality enhance security of the BB84 protocol?
Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure subject to the assumption of trusted devices, while the Leggett–Garg-type inequality (LGI) does not seem to be readily adaptable to the device i...
Saved in:
| Published in | Physics letters. A Vol. 381; no. 31; pp. 2478 - 2482 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
21.08.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0375-9601 1873-2429 |
| DOI | 10.1016/j.physleta.2017.05.053 |
Cover
| Abstract | Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure subject to the assumption of trusted devices, while the Leggett–Garg-type inequality (LGI) does not seem to be readily adaptable to the device independent (DI) or semi-DI scenario. Nevertheless, interestingly, here we identify a specific device attack, which has been shown to render the standard BB84 protocol completely insecure, but against which our formulated LGI-assisted BB84 protocol (based on an appropriate form of LGI) is secure.
•Quantum temporal correlations have limited usefulness in device-independent cryptography.•One reason is that they can violate “no-signaling in time.”•We point out another reason: they are less monogamous than spatial correlations, which are non-signaling.•Still, the Leggett–Garg inequality can protect quantum key distribution against a specific device attack. |
|---|---|
| AbstractList | Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure subject to the assumption of trusted devices, while the Leggett–Garg-type inequality (LGI) does not seem to be readily adaptable to the device independent (DI) or semi-DI scenario. Nevertheless, interestingly, here we identify a specific device attack, which has been shown to render the standard BB84 protocol completely insecure, but against which our formulated LGI-assisted BB84 protocol (based on an appropriate form of LGI) is secure.
•Quantum temporal correlations have limited usefulness in device-independent cryptography.•One reason is that they can violate “no-signaling in time.”•We point out another reason: they are less monogamous than spatial correlations, which are non-signaling.•Still, the Leggett–Garg inequality can protect quantum key distribution against a specific device attack. |
| Author | Shenoy H., Akshata Srikanth, R. Home, Dipankar Aravinda, S. |
| Author_xml | – sequence: 1 givenname: Akshata surname: Shenoy H. fullname: Shenoy H., Akshata organization: Group of Applied Physics, University of Geneva, CH-1211 Geneva, Switzerland – sequence: 2 givenname: S. surname: Aravinda fullname: Aravinda, S. organization: Institute of Mathematical Sciences, HBNI, C. I. T. Campus, Taramani, Chennai 600113, India – sequence: 3 givenname: R. surname: Srikanth fullname: Srikanth, R. email: srik@poornaprajna.org organization: Poornaprajna Institute of Scientific Research, Sadashivnagar, Bangalore, India – sequence: 4 givenname: Dipankar surname: Home fullname: Home, Dipankar organization: CAPSS, Dept. of Physics, Bose Institute, Salt Lake Campus, Kolkata 700 091, India |
| BookMark | eNqFkN1KAzEQRoNUsK2-guwL7DrZbPYHBLVFq1DwQr0O2WS2TVk3NUmF3vkOvqFP4tbqjTeFgRk-OB_MGZFBZzsk5JxCQoHmF6tkvdz6FoNMUqBFArwfdkSGtCxYnGZpNSBDYAWPqxzoCRl5vwLoSaiG5GkquygsMdp4jGzzc85xscAQvj4-Z9ItItPh20a2Jmwj7JayUxh5VBu3C36JyaTMorWzwSrbXp2S40a2Hs9-95i83N0-T-_j-ePsYXozjxWjaYhrxaCWyFVds7Sghda15HXWUM11xkrdBwgSMsh1WtWspLzMSqp4qlA2MsvZmFzue5Wz3jtshDJBBmO74KRpBQWxEyRW4k-Q2AkSwPthPZ7_w9fOvEq3PQxe70Hsn3s36IRXBnsv2jhUQWhrDlV8AwQciMA |
| CitedBy_id | crossref_primary_10_3390_quantum5020025 crossref_primary_10_1103_PhysRevA_98_022138 crossref_primary_10_1103_PhysRevA_100_042114 crossref_primary_10_1103_PRXQuantum_3_010307 crossref_primary_10_1016_j_optcom_2018_07_006 |
| Cites_doi | 10.1103/PhysicsPhysiqueFizika.1.195 10.1103/PhysRevLett.85.441 10.1103/PhysRevLett.54.857 10.1103/PhysRevLett.113.050401 10.1103/PhysRevA.87.052115 10.1103/PhysRevLett.99.180403 10.1038/nphys2334 10.1103/PhysRevLett.23.880 10.1103/PhysRevLett.68.557 10.1103/PhysRevA.65.012311 10.1109/TIT.1978.1055892 10.1126/science.290.5492.773 10.1103/PhysRevLett.105.230501 10.1103/PhysRevLett.106.200402 10.1088/0953-8984/14/15/201 10.1103/PhysRevLett.113.140501 10.1103/PhysRevLett.67.661 10.1142/S0219749911007368 10.1103/PhysRevLett.97.120405 10.1098/rspa.2008.0149 10.1103/PhysRevA.82.032313 10.1103/PhysRevA.56.1163 10.1103/PhysRevA.92.062120 10.1088/1751-8113/46/5/055301 10.1103/PhysRevA.74.022313 10.1103/PhysRevLett.101.090403 10.1103/PhysRevLett.108.160501 10.1103/PhysRevLett.115.150501 10.1103/RevModPhys.74.145 10.1103/PhysRevLett.107.130402 10.1103/PhysRevLett.87.117901 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.physleta.2017.05.053 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-2429 |
| EndPage | 2482 |
| ExternalDocumentID | 10_1016_j_physleta_2017_05_053 S0375960116321946 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SPG SSQ SSZ T5K TN5 WH7 ~02 ~G- 29O 5VS 6TJ 8WZ A6W AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW WUQ XJT XOL YYP ZCG ~HD |
| ID | FETCH-LOGICAL-c312t-bc30bae5cbb32717ddba5b4f1d5d438d7dde0a0406d29b38158481c52ceafa463 |
| IEDL.DBID | .~1 |
| ISSN | 0375-9601 |
| IngestDate | Thu Apr 24 22:55:45 EDT 2025 Wed Oct 01 02:24:01 EDT 2025 Fri Feb 23 02:22:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 31 |
| Keywords | Quantum spatial correlations Leggett–Garg inequality Monogamy of correlations Quantum cryptography Quantum temporal correlations |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-bc30bae5cbb32717ddba5b4f1d5d438d7dde0a0406d29b38158481c52ceafa463 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_physleta_2017_05_053 crossref_primary_10_1016_j_physleta_2017_05_053 elsevier_sciencedirect_doi_10_1016_j_physleta_2017_05_053 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-21 |
| PublicationDateYYYYMMDD | 2017-08-21 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationTitle | Physics letters. A |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Fuchs, Gisin, Griffiths, Niu, Peres (br0350) 1997; 56 Qi, Fung, Lo, Ma (br0190) 2007; 7 Pathak, Banerjee (br0210) 2011; 9 Toner (br0420) 2009; 465 Shenoy (br0400) 2015 Pawłowski (br0430) 2010; 82 Woodhead, Lim, Pironio (br0260) 2012 Acín, Gisin, Masanes (br0090) 2006; 97 Aravinda, Srikanth (br0410) 2015; 15 Kofler, Brukner (br0110) 2013; 87 Scarani, Gisin (br0370) 2001; 87 Emary, Lambert, Nori (br0160) 2014; 77 Pawłowski (br0440) 2012; 85 Montina (br0120) 2012; 108 Barrett, Hardy, Kent (br0080) 2005; 95 Gallego, Brunner, Hadley, Acin (br0230) 2010; 105 Busch, Lahti, Mittelstaedt (br0360) 1996 Barrett, Colbeck, Kent (br0170) 2013; 110 Budroni, Emary (br0150) 2014; 113 Donohue, Wolfe (br0250) 2015; 92 Bell (br0030) 1964; 1 Brukner, Taylor, Cheung, Vedral (br0100) Shor, Preskill (br0060) 2000; 85 Csizár, Körner (br0390) 1978; 24 Hänggi (br0070) 2010 Leggett (br0140) 2002; 14 Kofler, Brukner (br0340) 2008; 101 Gisin, Ribordy, Tittel, Zbinden (br0450) 2002; 74 Makarov, Anisimov, Skaar (br0180) 2006; 74 Bennett, Brassard, Mermin (br0050) 1992; 68 Lim, Portmann, Tomamichel, Renner, Gisin (br0270) 2013; 3 van der Wal, ter Haar, Wilhelm (br0300) 2000; 290 Roskov, Korotkov, Mizel (br0310) 2006; 96 Tomamichel, Hänggi (br0280) 2013; 46 Fedrizzi, Almeida, Broome (br0320) 2011; 106 Barrett, Hardy, Kent (br0460) 2005; 95 Woodhead, Pironio (br0220) 2015; 115 Scarani, Gisin (br0380) 2001; 65 Kofler, Brukner (br0290) 2007; 99 Clauser, Horne, Shimony, Holt (br0040) 1969; 23 Ekert (br0020) 1991; 67 Vazirani, Vidick (br0200) 2014; 113 Bennett, Brassard (br0010) 1984 Hendrych, Gallego, Micuda, Brunner, Acin, Torres (br0240) 2012; 8 Athalye, Roy, Mahesh (br0330) 2011; 107 Leggett, Garg (br0130) 1985; 54 Gallego (10.1016/j.physleta.2017.05.053_br0230) 2010; 105 Acín (10.1016/j.physleta.2017.05.053_br0090) 2006; 97 Woodhead (10.1016/j.physleta.2017.05.053_br0220) 2015; 115 Tomamichel (10.1016/j.physleta.2017.05.053_br0280) 2013; 46 Csizár (10.1016/j.physleta.2017.05.053_br0390) 1978; 24 Pathak (10.1016/j.physleta.2017.05.053_br0210) 2011; 9 Barrett (10.1016/j.physleta.2017.05.053_br0460) 2005; 95 Shor (10.1016/j.physleta.2017.05.053_br0060) 2000; 85 Donohue (10.1016/j.physleta.2017.05.053_br0250) 2015; 92 Bell (10.1016/j.physleta.2017.05.053_br0030) 1964; 1 Kofler (10.1016/j.physleta.2017.05.053_br0110) 2013; 87 van der Wal (10.1016/j.physleta.2017.05.053_br0300) 2000; 290 Roskov (10.1016/j.physleta.2017.05.053_br0310) 2006; 96 Makarov (10.1016/j.physleta.2017.05.053_br0180) 2006; 74 Bennett (10.1016/j.physleta.2017.05.053_br0010) 1984 Fuchs (10.1016/j.physleta.2017.05.053_br0350) 1997; 56 Qi (10.1016/j.physleta.2017.05.053_br0190) 2007; 7 Athalye (10.1016/j.physleta.2017.05.053_br0330) 2011; 107 Hendrych (10.1016/j.physleta.2017.05.053_br0240) 2012; 8 Scarani (10.1016/j.physleta.2017.05.053_br0370) 2001; 87 Fedrizzi (10.1016/j.physleta.2017.05.053_br0320) 2011; 106 Ekert (10.1016/j.physleta.2017.05.053_br0020) 1991; 67 Montina (10.1016/j.physleta.2017.05.053_br0120) 2012; 108 Shenoy (10.1016/j.physleta.2017.05.053_br0400) 2015 Toner (10.1016/j.physleta.2017.05.053_br0420) 2009; 465 Gisin (10.1016/j.physleta.2017.05.053_br0450) 2002; 74 Vazirani (10.1016/j.physleta.2017.05.053_br0200) 2014; 113 Clauser (10.1016/j.physleta.2017.05.053_br0040) 1969; 23 Pawłowski (10.1016/j.physleta.2017.05.053_br0430) 2010; 82 Leggett (10.1016/j.physleta.2017.05.053_br0130) 1985; 54 Hänggi (10.1016/j.physleta.2017.05.053_br0070) 2010 Brukner (10.1016/j.physleta.2017.05.053_br0100) Budroni (10.1016/j.physleta.2017.05.053_br0150) 2014; 113 Scarani (10.1016/j.physleta.2017.05.053_br0380) 2001; 65 Barrett (10.1016/j.physleta.2017.05.053_br0080) 2005; 95 Bennett (10.1016/j.physleta.2017.05.053_br0050) 1992; 68 Emary (10.1016/j.physleta.2017.05.053_br0160) 2014; 77 Pawłowski (10.1016/j.physleta.2017.05.053_br0440) 2012; 85 Barrett (10.1016/j.physleta.2017.05.053_br0170) 2013; 110 Aravinda (10.1016/j.physleta.2017.05.053_br0410) 2015; 15 Leggett (10.1016/j.physleta.2017.05.053_br0140) 2002; 14 Kofler (10.1016/j.physleta.2017.05.053_br0340) 2008; 101 Lim (10.1016/j.physleta.2017.05.053_br0270) 2013; 3 Woodhead (10.1016/j.physleta.2017.05.053_br0260) 2012 Busch (10.1016/j.physleta.2017.05.053_br0360) 1996 Kofler (10.1016/j.physleta.2017.05.053_br0290) 2007; 99 |
| References_xml | – volume: 54 start-page: 857 year: 1985 ident: br0130 publication-title: Phys. Rev. Lett. – volume: 101 year: 2008 ident: br0340 publication-title: Phys. Rev. Lett. – volume: 82 year: 2010 ident: br0430 publication-title: Phys. Rev. A – volume: 107 year: 2011 ident: br0330 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 339 year: 1978 ident: br0390 publication-title: IEEE Trans. Inf. Theory – volume: 115 year: 2015 ident: br0220 publication-title: Phys. Rev. Lett. – volume: 95 year: 2005 ident: br0080 publication-title: Phys. Rev. Lett. – volume: 87 year: 2001 ident: br0370 publication-title: Phys. Rev. Lett. – volume: 113 year: 2014 ident: br0150 publication-title: Phys. Rev. Lett. – volume: 3 year: 2013 ident: br0270 publication-title: Phys. Rev. X – volume: 290 start-page: 773 year: 2000 ident: br0300 publication-title: Science – ident: br0100 – volume: 7 year: 2007 ident: br0190 publication-title: Quantum Inf. Comput. – volume: 92 year: 2015 ident: br0250 publication-title: Phys. Rev. A – volume: 99 year: 2007 ident: br0290 publication-title: Phys. Rev. Lett. – volume: 97 year: 2006 ident: br0090 publication-title: Phys. Rev. Lett. – volume: 87 year: 2013 ident: br0110 publication-title: Phys. Rev. A – volume: 106 year: 2011 ident: br0320 publication-title: Phys. Rev. Lett. – volume: 110 year: 2013 ident: br0170 publication-title: Phys. Rev. Lett. – volume: 74 start-page: 145 year: 2002 ident: br0450 publication-title: Rev. Mod. Phys. – start-page: 175 year: 1984 ident: br0010 publication-title: IEEE Comp. Sys. and Sig. Process. – year: 2010 ident: br0070 – volume: 108 year: 2012 ident: br0120 publication-title: Phys. Rev. Lett. – volume: 74 year: 2006 ident: br0180 publication-title: Phys. Rev. A – volume: 8 start-page: 588 year: 2012 ident: br0240 publication-title: Nat. Phys. – volume: 1 start-page: 195 year: 1964 ident: br0030 publication-title: Physics – volume: 85 start-page: 441 year: 2000 ident: br0060 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 880 year: 1969 ident: br0040 publication-title: Phys. Rev. Lett. – volume: 77 year: 2014 ident: br0160 publication-title: Rep. Prog. Phys. – volume: 105 year: 2010 ident: br0230 publication-title: Phys. Rev. Lett. – year: 1996 ident: br0360 article-title: The Quantum Theory of Measurement – start-page: 107 year: 2012 end-page: 115 ident: br0260 article-title: Theory of Quantum Computation, Communication, and Cryptography – volume: 46 year: 2013 ident: br0280 publication-title: J. Phys. A, Math. Theor. – year: 2015 ident: br0400 – volume: 465 start-page: 59 year: 2009 ident: br0420 publication-title: Proc. R. Soc. A – volume: 95 year: 2005 ident: br0460 publication-title: Phys. Rev. Lett. – volume: 96 year: 2006 ident: br0310 publication-title: Phys. Rev. Lett. – volume: 113 year: 2014 ident: br0200 publication-title: Phys. Rev. Lett. – volume: 14 start-page: R415 year: 2002 ident: br0140 publication-title: J. Phys. Condens. Matter – volume: 9 start-page: 389 year: 2011 ident: br0210 publication-title: Int. J. Quantum Inf. – volume: 15 start-page: 308 year: 2015 ident: br0410 publication-title: Quantum Inf. Comput. – volume: 68 start-page: 557 year: 1992 ident: br0050 publication-title: Phys. Rev. Lett. – volume: 56 start-page: 1163 year: 1997 ident: br0350 publication-title: Phys. Rev. A – volume: 85 year: 2012 ident: br0440 publication-title: Phys. Rev. A – volume: 67 start-page: 661 year: 1991 ident: br0020 publication-title: Phys. Rev. Lett. – volume: 65 year: 2001 ident: br0380 publication-title: Phys. Rev. A – volume: 1 start-page: 195 year: 1964 ident: 10.1016/j.physleta.2017.05.053_br0030 publication-title: Physics doi: 10.1103/PhysicsPhysiqueFizika.1.195 – volume: 85 start-page: 441 year: 2000 ident: 10.1016/j.physleta.2017.05.053_br0060 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.441 – volume: 54 start-page: 857 year: 1985 ident: 10.1016/j.physleta.2017.05.053_br0130 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.857 – volume: 113 year: 2014 ident: 10.1016/j.physleta.2017.05.053_br0150 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.050401 – volume: 96 year: 2006 ident: 10.1016/j.physleta.2017.05.053_br0310 publication-title: Phys. Rev. Lett. – volume: 87 year: 2013 ident: 10.1016/j.physleta.2017.05.053_br0110 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.052115 – volume: 99 year: 2007 ident: 10.1016/j.physleta.2017.05.053_br0290 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.180403 – volume: 77 year: 2014 ident: 10.1016/j.physleta.2017.05.053_br0160 publication-title: Rep. Prog. Phys. – volume: 8 start-page: 588 year: 2012 ident: 10.1016/j.physleta.2017.05.053_br0240 publication-title: Nat. Phys. doi: 10.1038/nphys2334 – volume: 23 start-page: 880 year: 1969 ident: 10.1016/j.physleta.2017.05.053_br0040 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.23.880 – volume: 68 start-page: 557 year: 1992 ident: 10.1016/j.physleta.2017.05.053_br0050 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.557 – volume: 95 year: 2005 ident: 10.1016/j.physleta.2017.05.053_br0080 publication-title: Phys. Rev. Lett. – volume: 65 year: 2001 ident: 10.1016/j.physleta.2017.05.053_br0380 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.012311 – volume: 24 start-page: 339 year: 1978 ident: 10.1016/j.physleta.2017.05.053_br0390 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1978.1055892 – year: 2010 ident: 10.1016/j.physleta.2017.05.053_br0070 – volume: 290 start-page: 773 year: 2000 ident: 10.1016/j.physleta.2017.05.053_br0300 publication-title: Science doi: 10.1126/science.290.5492.773 – volume: 105 year: 2010 ident: 10.1016/j.physleta.2017.05.053_br0230 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.230501 – volume: 106 year: 2011 ident: 10.1016/j.physleta.2017.05.053_br0320 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.200402 – volume: 15 start-page: 308 year: 2015 ident: 10.1016/j.physleta.2017.05.053_br0410 publication-title: Quantum Inf. Comput. – volume: 14 start-page: R415 year: 2002 ident: 10.1016/j.physleta.2017.05.053_br0140 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/15/201 – volume: 113 year: 2014 ident: 10.1016/j.physleta.2017.05.053_br0200 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.140501 – start-page: 107 year: 2012 ident: 10.1016/j.physleta.2017.05.053_br0260 – ident: 10.1016/j.physleta.2017.05.053_br0100 – start-page: 175 year: 1984 ident: 10.1016/j.physleta.2017.05.053_br0010 – volume: 67 start-page: 661 year: 1991 ident: 10.1016/j.physleta.2017.05.053_br0020 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.661 – volume: 9 start-page: 389 year: 2011 ident: 10.1016/j.physleta.2017.05.053_br0210 publication-title: Int. J. Quantum Inf. doi: 10.1142/S0219749911007368 – year: 1996 ident: 10.1016/j.physleta.2017.05.053_br0360 – volume: 3 year: 2013 ident: 10.1016/j.physleta.2017.05.053_br0270 publication-title: Phys. Rev. X – volume: 97 year: 2006 ident: 10.1016/j.physleta.2017.05.053_br0090 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.120405 – volume: 465 start-page: 59 year: 2009 ident: 10.1016/j.physleta.2017.05.053_br0420 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2008.0149 – volume: 82 year: 2010 ident: 10.1016/j.physleta.2017.05.053_br0430 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.032313 – volume: 56 start-page: 1163 year: 1997 ident: 10.1016/j.physleta.2017.05.053_br0350 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.56.1163 – year: 2015 ident: 10.1016/j.physleta.2017.05.053_br0400 – volume: 92 year: 2015 ident: 10.1016/j.physleta.2017.05.053_br0250 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.062120 – volume: 46 year: 2013 ident: 10.1016/j.physleta.2017.05.053_br0280 publication-title: J. Phys. A, Math. Theor. doi: 10.1088/1751-8113/46/5/055301 – volume: 74 year: 2006 ident: 10.1016/j.physleta.2017.05.053_br0180 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.022313 – volume: 101 year: 2008 ident: 10.1016/j.physleta.2017.05.053_br0340 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.090403 – volume: 7 year: 2007 ident: 10.1016/j.physleta.2017.05.053_br0190 publication-title: Quantum Inf. Comput. – volume: 110 year: 2013 ident: 10.1016/j.physleta.2017.05.053_br0170 publication-title: Phys. Rev. Lett. – volume: 108 year: 2012 ident: 10.1016/j.physleta.2017.05.053_br0120 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.160501 – volume: 115 year: 2015 ident: 10.1016/j.physleta.2017.05.053_br0220 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.150501 – volume: 95 year: 2005 ident: 10.1016/j.physleta.2017.05.053_br0460 publication-title: Phys. Rev. Lett. – volume: 74 start-page: 145 year: 2002 ident: 10.1016/j.physleta.2017.05.053_br0450 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.145 – volume: 107 year: 2011 ident: 10.1016/j.physleta.2017.05.053_br0330 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.130402 – volume: 85 year: 2012 ident: 10.1016/j.physleta.2017.05.053_br0440 publication-title: Phys. Rev. A – volume: 87 year: 2001 ident: 10.1016/j.physleta.2017.05.053_br0370 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.117901 |
| SSID | ssj0001609 |
| Score | 2.2868395 |
| Snippet | Prima facie, there are good reasons to answer in the negative the question posed in the title: the Bennett–Brassard 1984 (BB84) protocol is provably secure... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2478 |
| SubjectTerms | Leggett–Garg inequality Monogamy of correlations Quantum cryptography Quantum spatial correlations Quantum temporal correlations |
| Title | Can the use of the Leggett–Garg inequality enhance security of the BB84 protocol? |
| URI | https://dx.doi.org/10.1016/j.physleta.2017.05.053 |
| Volume | 381 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609 issn: 0375-9601 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609 issn: 0375-9601 databaseCode: ACRLP dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609 issn: 0375-9601 databaseCode: AIKHN dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609 issn: 0375-9601 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609 issn: 0375-9601 databaseCode: AKRWK dateStart: 19670102 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAiPrE-yh68pulmH0lO0hZrffVSC72F3WRTWyQtbXrwIv4H_6G_xNk8tILQg5BDsuxAmMzjyzLzDUKXDCxXRZJaDvOExYSKLSmIBo93uQ8IwZfZ1JLHvugN2d2IjyqoU_bCmLLKIvbnMT2L1sWKXWjTnk8m9sBMbwX8TQBRgNsxQ7vNmGumGDTefso8iMjLPGCzZXavdQlPG-b0ANRj-IdIzuDJ6d8Jai3pdPfQboEWcSt_oX1U0ckB2s6qNsPlIRp0ZIIBweHVUuNZnN0-6PFYp-nn-8eNXIwxgMi8b_IV6-TZfGK8LEbWlRLttsew4WuYgVFcHaFh9_qp07OKKQlWSImTWiqkTSU1D5WiDvycRZGSXLGYRDxi1ItgQTcl-KqIHF9BguaGQT_kTqhlLJmgx6iazBJ9gjDADUd4TkhizRmJiYpcDTnUp81Yu9IVNcRL1QRhQSFuJlm8BGWt2DQoVRoYlQZNDhetIftbbp6TaGyU8EvNB7_MIYBIv0H29B-yZ2jHPJlDY4eco2q6WOkLQB2pqmdmVUdbrdv7Xv8LX93YqA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60InoRn1ife_Aa030mOYkWtWrbSyt4C7vJprZIKjY9eBH_g__QX-JsHlpB6EHIIWx2IHw7j2-X2RmETjhoro4Vcyj3pcOlThwliQGL90QADCFQedeSTle27vntg3hYQM3qLoxNqyx9f-HTc29djrglmu7zcOj2bPdW4N8EGAWYHZeLaIkL6tkd2OnbT54HkUWeB8x27PSZa8KjU3t8APjYAkSkKOEp2N8RaibqXK2jtZIu4vPijzbQgkk30XKethlNtlCvqVIMFA5PJwaPk_y1bQYDk2Wf7x_X6mWAgUUWFydfsUkf7RrjSdmzrpK4uPA5tgUbxqAVZ9vo_uqy32w5ZZsEJ2KEZo6OWEMrIyKtGYXdWRxrJTRPSCxizvwYBkxDgbHKmAYaIrSwJfQjQSOjEsUl20G1dJyaXYSBb1Dp04gkRnCSEB17BoJowBqJ8ZQn60hU0IRRWUPctrJ4CqtksVFYQRpaSMOGgIfVkfst91xU0ZgrEVTIh7_0IQRXP0d27x-yx2il1e-0w_ZN924frdov9gSZkgNUy16m5hAoSKaPchX7AoS02j0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+the+use+of+the+Leggett%E2%80%93Garg+inequality+enhance+security+of+the+BB84+protocol%3F&rft.jtitle=Physics+letters.+A&rft.au=Shenoy+H.%2C+Akshata&rft.au=Aravinda%2C+S.&rft.au=Srikanth%2C+R.&rft.au=Home%2C+Dipankar&rft.date=2017-08-21&rft.pub=Elsevier+B.V&rft.issn=0375-9601&rft.eissn=1873-2429&rft.volume=381&rft.issue=31&rft.spage=2478&rft.epage=2482&rft_id=info:doi/10.1016%2Fj.physleta.2017.05.053&rft.externalDocID=S0375960116321946 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon |