Buckling on stanene: the role played by spin-orbit coupling and pseudo Jahn-Teller effect
Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, t...
Saved in:
Published in | MRS advances Vol. 2; no. 29; pp. 1563 - 1569 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Materials Research Society
01.01.2017
Springer International Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 2059-8521 2059-8521 |
DOI | 10.1557/adv.2017.137 |
Cover
Abstract | Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter δ increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn6H6. Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers. |
---|---|
AbstractList | Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter δ increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn6H6. Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers. Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Snbased stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter 8 increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn 6 H 6 . Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers. |
Author | Soto, J. R. Molina, B. Castro, J. J. |
Author_xml | – sequence: 1 givenname: J. R. surname: Soto fullname: Soto, J. R. email: jrsoto@unam.mx organization: Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F – sequence: 2 givenname: B. surname: Molina fullname: Molina, B. organization: Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F – sequence: 3 givenname: J. J. surname: Castro fullname: Castro, J. J. organization: Departamento de Física, CINVESTAV del IPN, Apdo. Postal 14-740, 07000 México D.F. México |
BookMark | eNqFkMlOwzAQQC1UJErpjQ_wB5DipY4bblCxqhKXcuAUeZm0Lqkd2QlS_56U9oCQEKeZw3sjzTtHAx88IHRJyYQKIa-V_ZwwQuWEcnmChoyIIpsJRgc_9jM0TmlDCOGM0hnnQ_R-15mP2vkVDh6nVnnwcIPbNeAYasBNrXZgsd7h1Difhahdi03omm9FeYubBJ0N-EWtfbaEuoaIoarAtBfotFJ1gvFxjtDbw_1y_pQtXh-f57eLzHDK2kyrShsQU2NBF1XOZZHLXFlNLMsLAzNaTUXOtbRSSk4LkMIYwwoljQBtSMFHiB3umhhSilCVxrWqdcG3Ubm6pKTc9yn7PuW-T9n36aWrX1IT3VbF3V94dsBTj_kVxHITuuj7t_7iJ8fzaqujsyv4R_gCHyGIoA |
CitedBy_id | crossref_primary_10_1007_s12034_018_1634_y crossref_primary_10_1088_2053_1583_ab2501 |
Cites_doi | 10.1103/PhysRevLett.108.155501 10.1021/cr300279n 10.1002/adma.201400909 10.1016/j.pmatsci.2016.04.001 10.1103/PhysRevB.84.195430 10.1103/PhysRevLett.111.136804 10.1103/PhysRevB.50.14916 10.1103/PhysRevLett.107.076802 10.1557/adv.2016.14 10.1103/PhysRevLett.108.245501 10.1063/1.4861857 10.1039/C4CP05912C 10.1021/nn103385p 10.1021/nl304347w 10.1038/nnano.2014.325 10.1103/PhysRevLett.102.236804 10.1017/CBO9780511524769 10.1038/nmat4384 10.1038/srep20714 10.1039/c3ra46463f 10.1088/1367-2630/16/9/095002 10.1103/PhysRevB.76.075131 10.1021/acs.nanolett.5b00085 |
ContentType | Journal Article |
Copyright | Copyright © Materials Research Society 2017 The Materials Research Society 2017 |
Copyright_xml | – notice: Copyright © Materials Research Society 2017 – notice: The Materials Research Society 2017 |
DBID | AAYXX CITATION |
DOI | 10.1557/adv.2017.137 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2059-8521 |
EndPage | 1569 |
ExternalDocumentID | 10_1557_adv_2017_137 |
GroupedDBID | 0R~ 406 8UJ AACDK AAHNG AAJBT AASML AATNV AAYZH ABAKF ABBRH ABDBE ABECU ABFSG ABGDZ ABJNI ABMQK ABRTQ ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACPIV ACQPF ACSTC ACZOJ AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGMZJ AGQEE AHPBZ AHWEU AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA DPUIP EBLON EBS EJD FIGPU IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS O9- RCA ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW AAYXX CITATION |
ID | FETCH-LOGICAL-c312t-bafbce54cdeb9f6379676adb0d269ce81f4563b7d777319e75ccc29a7c5ebc093 |
ISSN | 2059-8521 |
IngestDate | Thu Apr 24 23:08:29 EDT 2025 Tue Jul 01 03:22:23 EDT 2025 Fri Feb 21 02:36:42 EST 2025 Wed Sep 10 03:37:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | nanostructure electronic structure Sn |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-bafbce54cdeb9f6379676adb0d269ce81f4563b7d777319e75ccc29a7c5ebc093 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1557_adv_2017_137 crossref_primary_10_1557_adv_2017_137 springer_journals_10_1557_adv_2017_137 cambridge_journals_10_1557_adv_2017_137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Cham |
PublicationTitle | MRS advances |
PublicationTitleAbbrev | MRS Advances |
PublicationTitleAlternate | MRS Adv |
PublicationYear | 2017 |
Publisher | Materials Research Society Springer International Publishing |
Publisher_xml | – name: Materials Research Society – name: Springer International Publishing |
References | TakedaKShiraishiKPhysical Review B199450149161:CAS:528:DyaK2MXisVSku7c%3D10.1103/PhysRevB.50.14916 CahangirovSTopsakalMAktürkEŞahinHCiraciSPhysical Review Letters20091022368041:STN:280:DC%2BD1MrjvFCktg%3D%3D10.1103/PhysRevLett.102.236804 I. B. Bersuker, !Jahn-Teller Effect (Cambridge Univ Press, Cambridge, 2006). LiLLuS-zPanJQinZWangY-qWangYCaoG-yDuSGaoH-JAdvanced Materials20142648201:CAS:528:DC%2BC2cXot1Shtbc%3D10.1002/adma.201400909 AcunAJournal of Physics: Condensed Matter2015274430021:STN:280:DC%2BC28zhsl2htA%3D%3D SotoJRMolinaBCastroJJPhysical Chemistry Chemical Physics20151776241:CAS:528:DC%2BC2MXis1eis78%3D10.1039/C4CP05912C FleurenceAFriedleinROzakiTKawaiHWangYYamada-TakamuraYPhysical Review Letters201210824550110.1103/PhysRevLett.108.245501 LiuC-CFengWYaoYPhysical Review Letters201110707680210.1103/PhysRevLett.107.076802 SotoJRMolinaBCastroJJRSC Advances2014481571:CAS:528:DC%2BC2cXhtlags74%3D10.1039/c3ra46463f ZhuF-fNature Materials20151410201:CAS:528:DC%2BC2MXht1OqurjK10.1038/nmat4384 DávilaMEXianLCahangirovSRubioALayGLNew Journal of Physics20141609500210.1088/1367-2630/16/9/095002 KimUKimIParkYLeeK-YYimS-YParkJ-GAhnH-GParkS-HChoiH-JACS Nano2011521761:CAS:528:DC%2BC3MXhvFSqtbs%3D10.1021/nn103385p VogtPCapiodPBertheMRestaADe PadovaPBruhnTLe LayGGrandidierBApplied Physics Letters201410402160210.1063/1.4861857 DerivazMDentelDStephanRHanfMCMehdaouiASonnetPPirriCNano Letters20151525101:CAS:528:DC%2BC2MXkvF2hsL0%3D10.1021/acs.nanolett.5b00085 SotoJRMolinaBCastroJJMRS Advances2016115911:CAS:528:DC%2BC28XhsVymsrrP10.1557/adv.2016.14 Guzmán-VerriGGLew Yan VoonLCPhysical Review B20077607513110.1103/PhysRevB.76.075131 BersukerIBChemical Reviews201311313511:CAS:528:DC%2BC3sXms1yisg%3D%3D10.1021/cr300279n ZhaoIProgress in Materials Science201683241:CAS:528:DC%2BC28XntlyjsLg%3D10.1016/j.pmatsci.2016.04.001 VogtPDe PadovaPQuaresimaCAvilaJFrantzeskakisEAsensioMCRestaAEaletBLe LayGPhysical Review Letters201210815550110.1103/PhysRevLett.108.155501 XuYPhysical Review Letters201311113680410.1103/PhysRevLett.111.136804 ADF 2013, !SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands. Available at: http://www.scm.com (accessed 30 January 2017). TaoLCinquantaEChiappeDGrazianettiCFanciulliMDubeyMMolleAAkinwandeDNat Nanotechnol2015102271:CAS:528:DC%2BC2MXhvFCnurs%3D10.1038/nnano.2014.325 LiuC-CJiangHYaoYPhysical Review B20118419543010.1103/PhysRevB.84.195430 DavilaMELe LayGScientific Reports20166207141:CAS:528:DC%2BC28XisVamsLk%3D10.1038/srep20714 SaxenaSChaudharyRPShuklaSScientific Reports201662016 MengLNano letters2013136851:CAS:528:DC%2BC3sXhtFWrsrk%3D10.1021/nl304347w A Acun (2291563_CR12) 2015; 27 M Derivaz (2291563_CR10) 2015; 15 P Vogt (2291563_CR1) 2012; 108 C-C Liu (2291563_CR24) 2011; 107 A Fleurence (2291563_CR2) 2012; 108 L Meng (2291563_CR3) 2013; 13 L Tao (2291563_CR6) 2015; 10 U Kim (2291563_CR4) 2011; 5 GG Guzmán-Verri (2291563_CR16) 2007; 76 JR Soto (2291563_CR23) 2016; 1 2291563_CR26 P Vogt (2291563_CR5) 2014; 104 Y Xu (2291563_CR18) 2013; 111 ME Davila (2291563_CR11) 2016; 6 C-C Liu (2291563_CR25) 2011; 84 K Takeda (2291563_CR15) 1994; 50 S Cahangirov (2291563_CR17) 2009; 102 I Zhao (2291563_CR7) 2016; 83 S Saxena (2291563_CR14) 2016; 6 L Li (2291563_CR8) 2014; 26 JR Soto (2291563_CR21) 2015; 17 JR Soto (2291563_CR22) 2014; 4 F-f Zhu (2291563_CR13) 2015; 14 IB Bersuker (2291563_CR20) 2013; 113 2291563_CR19 ME Dávila (2291563_CR9) 2014; 16 |
References_xml | – reference: AcunAJournal of Physics: Condensed Matter2015274430021:STN:280:DC%2BC28zhsl2htA%3D%3D – reference: CahangirovSTopsakalMAktürkEŞahinHCiraciSPhysical Review Letters20091022368041:STN:280:DC%2BD1MrjvFCktg%3D%3D10.1103/PhysRevLett.102.236804 – reference: BersukerIBChemical Reviews201311313511:CAS:528:DC%2BC3sXms1yisg%3D%3D10.1021/cr300279n – reference: ZhuF-fNature Materials20151410201:CAS:528:DC%2BC2MXht1OqurjK10.1038/nmat4384 – reference: SotoJRMolinaBCastroJJMRS Advances2016115911:CAS:528:DC%2BC28XhsVymsrrP10.1557/adv.2016.14 – reference: TakedaKShiraishiKPhysical Review B199450149161:CAS:528:DyaK2MXisVSku7c%3D10.1103/PhysRevB.50.14916 – reference: MengLNano letters2013136851:CAS:528:DC%2BC3sXhtFWrsrk%3D10.1021/nl304347w – reference: Guzmán-VerriGGLew Yan VoonLCPhysical Review B20077607513110.1103/PhysRevB.76.075131 – reference: I. B. Bersuker, !Jahn-Teller Effect (Cambridge Univ Press, Cambridge, 2006). – reference: SaxenaSChaudharyRPShuklaSScientific Reports201662016 – reference: FleurenceAFriedleinROzakiTKawaiHWangYYamada-TakamuraYPhysical Review Letters201210824550110.1103/PhysRevLett.108.245501 – reference: LiLLuS-zPanJQinZWangY-qWangYCaoG-yDuSGaoH-JAdvanced Materials20142648201:CAS:528:DC%2BC2cXot1Shtbc%3D10.1002/adma.201400909 – reference: TaoLCinquantaEChiappeDGrazianettiCFanciulliMDubeyMMolleAAkinwandeDNat Nanotechnol2015102271:CAS:528:DC%2BC2MXhvFCnurs%3D10.1038/nnano.2014.325 – reference: ADF 2013, !SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands. Available at: http://www.scm.com (accessed 30 January 2017). – reference: LiuC-CFengWYaoYPhysical Review Letters201110707680210.1103/PhysRevLett.107.076802 – reference: DerivazMDentelDStephanRHanfMCMehdaouiASonnetPPirriCNano Letters20151525101:CAS:528:DC%2BC2MXkvF2hsL0%3D10.1021/acs.nanolett.5b00085 – reference: VogtPDe PadovaPQuaresimaCAvilaJFrantzeskakisEAsensioMCRestaAEaletBLe LayGPhysical Review Letters201210815550110.1103/PhysRevLett.108.155501 – reference: DavilaMELe LayGScientific Reports20166207141:CAS:528:DC%2BC28XisVamsLk%3D10.1038/srep20714 – reference: KimUKimIParkYLeeK-YYimS-YParkJ-GAhnH-GParkS-HChoiH-JACS Nano2011521761:CAS:528:DC%2BC3MXhvFSqtbs%3D10.1021/nn103385p – reference: SotoJRMolinaBCastroJJPhysical Chemistry Chemical Physics20151776241:CAS:528:DC%2BC2MXis1eis78%3D10.1039/C4CP05912C – reference: DávilaMEXianLCahangirovSRubioALayGLNew Journal of Physics20141609500210.1088/1367-2630/16/9/095002 – reference: ZhaoIProgress in Materials Science201683241:CAS:528:DC%2BC28XntlyjsLg%3D10.1016/j.pmatsci.2016.04.001 – reference: XuYPhysical Review Letters201311113680410.1103/PhysRevLett.111.136804 – reference: LiuC-CJiangHYaoYPhysical Review B20118419543010.1103/PhysRevB.84.195430 – reference: VogtPCapiodPBertheMRestaADe PadovaPBruhnTLe LayGGrandidierBApplied Physics Letters201410402160210.1063/1.4861857 – reference: SotoJRMolinaBCastroJJRSC Advances2014481571:CAS:528:DC%2BC2cXhtlags74%3D10.1039/c3ra46463f – volume: 108 start-page: 155501 year: 2012 ident: 2291563_CR1 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.108.155501 – volume: 113 start-page: 1351 year: 2013 ident: 2291563_CR20 publication-title: Chemical Reviews doi: 10.1021/cr300279n – volume: 26 start-page: 4820 year: 2014 ident: 2291563_CR8 publication-title: Advanced Materials doi: 10.1002/adma.201400909 – volume: 83 start-page: 24 year: 2016 ident: 2291563_CR7 publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2016.04.001 – volume: 84 start-page: 195430 year: 2011 ident: 2291563_CR25 publication-title: Physical Review B doi: 10.1103/PhysRevB.84.195430 – volume: 111 start-page: 136804 year: 2013 ident: 2291563_CR18 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.111.136804 – volume: 50 start-page: 14916 year: 1994 ident: 2291563_CR15 publication-title: Physical Review B doi: 10.1103/PhysRevB.50.14916 – volume: 107 start-page: 076802 year: 2011 ident: 2291563_CR24 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.107.076802 – volume: 1 start-page: 1591 year: 2016 ident: 2291563_CR23 publication-title: MRS Advances doi: 10.1557/adv.2016.14 – volume: 108 start-page: 245501 year: 2012 ident: 2291563_CR2 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.108.245501 – volume: 27 start-page: 443002 year: 2015 ident: 2291563_CR12 publication-title: Journal of Physics: Condensed Matter – volume: 104 start-page: 021602 year: 2014 ident: 2291563_CR5 publication-title: Applied Physics Letters doi: 10.1063/1.4861857 – volume: 17 start-page: 7624 year: 2015 ident: 2291563_CR21 publication-title: Physical Chemistry Chemical Physics doi: 10.1039/C4CP05912C – volume: 5 start-page: 2176 year: 2011 ident: 2291563_CR4 publication-title: ACS Nano doi: 10.1021/nn103385p – volume: 13 start-page: 685 year: 2013 ident: 2291563_CR3 publication-title: Nano letters doi: 10.1021/nl304347w – ident: 2291563_CR26 – volume: 10 start-page: 227 year: 2015 ident: 2291563_CR6 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2014.325 – volume: 102 start-page: 236804 year: 2009 ident: 2291563_CR17 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.102.236804 – ident: 2291563_CR19 doi: 10.1017/CBO9780511524769 – volume: 14 start-page: 1020 year: 2015 ident: 2291563_CR13 publication-title: Nature Materials doi: 10.1038/nmat4384 – volume: 6 start-page: 20714 year: 2016 ident: 2291563_CR11 publication-title: Scientific Reports doi: 10.1038/srep20714 – volume: 4 start-page: 8157 year: 2014 ident: 2291563_CR22 publication-title: RSC Advances doi: 10.1039/c3ra46463f – volume: 6 start-page: 2016 year: 2016 ident: 2291563_CR14 publication-title: Scientific Reports – volume: 16 start-page: 095002 year: 2014 ident: 2291563_CR9 publication-title: New Journal of Physics doi: 10.1088/1367-2630/16/9/095002 – volume: 76 start-page: 075131 year: 2007 ident: 2291563_CR16 publication-title: Physical Review B doi: 10.1103/PhysRevB.76.075131 – volume: 15 start-page: 2510 year: 2015 ident: 2291563_CR10 publication-title: Nano Letters doi: 10.1021/acs.nanolett.5b00085 |
SSID | ssj0003211833 |
Score | 2.0008173 |
Snippet | Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy.... Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Snbased stanene, have been recently synthesized by molecular beam epitaxy.... |
SourceID | crossref springer cambridge |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1563 |
SubjectTerms | Applied and Technical Physics Biomaterials Characterization and Evaluation of Materials Materials Engineering Materials Science Nanotechnology |
Title | Buckling on stanene: the role played by spin-orbit coupling and pseudo Jahn-Teller effect |
URI | https://www.cambridge.org/core/product/identifier/S2059852117001372/type/journal_article https://link.springer.com/article/10.1557/adv.2017.137 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2059-8521 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003211833 issn: 2059-8521 databaseCode: AFBBN dateStart: 20160101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay9LIdij2xrtugwx6HwF4ixVa0W1u0KAKkhyYFupOhl7ECgW0kzqH99aUsy1WLtOh2MRyBcWLxI0VSJIXQt5QyZuPGUaK4icaJVhGsijoaUiKUSUTOtA0NzM7S04vx9DK57PXmQdbSppaxutlaV_I_XIUx4Kutkv0HznYPhQG4B_7CFTgM12fxuNmYbdKWiyYmAHrL52k0WYPVUlw7C3NdXRVRuZJX9UCVm2rpSxOrtdnocjAVf4toYWP4qzbDIzRaZ-dznyvQWeDzsnZ7NvHgPO641pwA1ECmGzsS63rlSadxGGUYsQdRhpmo3bR1CYE-q9StI43CIkMbUkxcxbPXriQAURvbcKoSHEcaLLvwkW9V6UlzDjG8pc3DY_HI9Yh50CTbujJAmAFZZskyIHuBdghLU9JHOwcnh4dnXeiNgtM7obQtg4Cv_QqfHjbZuG-s3N8pbwyQxWu023oO-MDB4A3qmeItehX0k3yH_nhA4LLALSB-Y4ADtnDADg5YXuM7OGAPBwxwwA4OOIADdnB4jy5OjhdHp1F7dkak6IjUkRS5BFkbK20kz0EiecpSoeVQk5QrMxnlYDlTyTSzssoNS5RShAumEiPVkNMPqF-UhfmIMEkVIXmST8B1HjOlwMVmnGidC1gnRUr30M9uwrJWOtbZNo7soYGfzky1LejtSSjLR6i_d9SVa73yCN0Pz5mnf_7Ts__oPnp5JwSfUb9ebcwXMD5r-bUF0y0IjoUf |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+on+stanene%3A+the+role+played+by+spin-orbit+coupling+and+pseudo+Jahn-Teller+effect&rft.jtitle=MRS+advances&rft.au=Soto%2C+J.+R.&rft.au=Molina%2C+B.&rft.au=Castro%2C+J.+J.&rft.date=2017-01-01&rft.pub=Materials+Research+Society&rft.eissn=2059-8521&rft.volume=2&rft.issue=29&rft.spage=1563&rft.epage=1569&rft_id=info:doi/10.1557%2Fadv.2017.137&rft.externalDocID=10_1557_adv_2017_137 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-8521&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-8521&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-8521&client=summon |