Buckling on stanene: the role played by spin-orbit coupling and pseudo Jahn-Teller effect

Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, t...

Full description

Saved in:
Bibliographic Details
Published inMRS advances Vol. 2; no. 29; pp. 1563 - 1569
Main Authors Soto, J. R., Molina, B., Castro, J. J.
Format Journal Article
LanguageEnglish
Published New York, USA Materials Research Society 01.01.2017
Springer International Publishing
Subjects
Online AccessGet full text
ISSN2059-8521
2059-8521
DOI10.1557/adv.2017.137

Cover

Abstract Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter δ increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn6H6. Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers.
AbstractList Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter δ increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn6H6. Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers.
Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Snbased stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter 8 increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn 6 H 6 . Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers.
Author Soto, J. R.
Molina, B.
Castro, J. J.
Author_xml – sequence: 1
  givenname: J. R.
  surname: Soto
  fullname: Soto, J. R.
  email: jrsoto@unam.mx
  organization: Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F
– sequence: 2
  givenname: B.
  surname: Molina
  fullname: Molina, B.
  organization: Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F
– sequence: 3
  givenname: J. J.
  surname: Castro
  fullname: Castro, J. J.
  organization: Departamento de Física, CINVESTAV del IPN, Apdo. Postal 14-740, 07000 México D.F. México
BookMark eNqFkMlOwzAQQC1UJErpjQ_wB5DipY4bblCxqhKXcuAUeZm0Lqkd2QlS_56U9oCQEKeZw3sjzTtHAx88IHRJyYQKIa-V_ZwwQuWEcnmChoyIIpsJRgc_9jM0TmlDCOGM0hnnQ_R-15mP2vkVDh6nVnnwcIPbNeAYasBNrXZgsd7h1Difhahdi03omm9FeYubBJ0N-EWtfbaEuoaIoarAtBfotFJ1gvFxjtDbw_1y_pQtXh-f57eLzHDK2kyrShsQU2NBF1XOZZHLXFlNLMsLAzNaTUXOtbRSSk4LkMIYwwoljQBtSMFHiB3umhhSilCVxrWqdcG3Ubm6pKTc9yn7PuW-T9n36aWrX1IT3VbF3V94dsBTj_kVxHITuuj7t_7iJ8fzaqujsyv4R_gCHyGIoA
CitedBy_id crossref_primary_10_1007_s12034_018_1634_y
crossref_primary_10_1088_2053_1583_ab2501
Cites_doi 10.1103/PhysRevLett.108.155501
10.1021/cr300279n
10.1002/adma.201400909
10.1016/j.pmatsci.2016.04.001
10.1103/PhysRevB.84.195430
10.1103/PhysRevLett.111.136804
10.1103/PhysRevB.50.14916
10.1103/PhysRevLett.107.076802
10.1557/adv.2016.14
10.1103/PhysRevLett.108.245501
10.1063/1.4861857
10.1039/C4CP05912C
10.1021/nn103385p
10.1021/nl304347w
10.1038/nnano.2014.325
10.1103/PhysRevLett.102.236804
10.1017/CBO9780511524769
10.1038/nmat4384
10.1038/srep20714
10.1039/c3ra46463f
10.1088/1367-2630/16/9/095002
10.1103/PhysRevB.76.075131
10.1021/acs.nanolett.5b00085
ContentType Journal Article
Copyright Copyright © Materials Research Society 2017
The Materials Research Society 2017
Copyright_xml – notice: Copyright © Materials Research Society 2017
– notice: The Materials Research Society 2017
DBID AAYXX
CITATION
DOI 10.1557/adv.2017.137
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2059-8521
EndPage 1569
ExternalDocumentID 10_1557_adv_2017_137
GroupedDBID 0R~
406
8UJ
AACDK
AAHNG
AAJBT
AASML
AATNV
AAYZH
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABGDZ
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACPIV
ACQPF
ACSTC
ACZOJ
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGMZJ
AGQEE
AHPBZ
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
DPUIP
EBLON
EBS
EJD
FIGPU
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
O9-
RCA
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
AAYXX
CITATION
ID FETCH-LOGICAL-c312t-bafbce54cdeb9f6379676adb0d269ce81f4563b7d777319e75ccc29a7c5ebc093
ISSN 2059-8521
IngestDate Thu Apr 24 23:08:29 EDT 2025
Tue Jul 01 03:22:23 EDT 2025
Fri Feb 21 02:36:42 EST 2025
Wed Sep 10 03:37:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords nanostructure
electronic structure
Sn
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-bafbce54cdeb9f6379676adb0d269ce81f4563b7d777319e75ccc29a7c5ebc093
PageCount 7
ParticipantIDs crossref_citationtrail_10_1557_adv_2017_137
crossref_primary_10_1557_adv_2017_137
springer_journals_10_1557_adv_2017_137
cambridge_journals_10_1557_adv_2017_137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cham
PublicationTitle MRS advances
PublicationTitleAbbrev MRS Advances
PublicationTitleAlternate MRS Adv
PublicationYear 2017
Publisher Materials Research Society
Springer International Publishing
Publisher_xml – name: Materials Research Society
– name: Springer International Publishing
References TakedaKShiraishiKPhysical Review B199450149161:CAS:528:DyaK2MXisVSku7c%3D10.1103/PhysRevB.50.14916
CahangirovSTopsakalMAktürkEŞahinHCiraciSPhysical Review Letters20091022368041:STN:280:DC%2BD1MrjvFCktg%3D%3D10.1103/PhysRevLett.102.236804
I. B. Bersuker, !Jahn-Teller Effect (Cambridge Univ Press, Cambridge, 2006).
LiLLuS-zPanJQinZWangY-qWangYCaoG-yDuSGaoH-JAdvanced Materials20142648201:CAS:528:DC%2BC2cXot1Shtbc%3D10.1002/adma.201400909
AcunAJournal of Physics: Condensed Matter2015274430021:STN:280:DC%2BC28zhsl2htA%3D%3D
SotoJRMolinaBCastroJJPhysical Chemistry Chemical Physics20151776241:CAS:528:DC%2BC2MXis1eis78%3D10.1039/C4CP05912C
FleurenceAFriedleinROzakiTKawaiHWangYYamada-TakamuraYPhysical Review Letters201210824550110.1103/PhysRevLett.108.245501
LiuC-CFengWYaoYPhysical Review Letters201110707680210.1103/PhysRevLett.107.076802
SotoJRMolinaBCastroJJRSC Advances2014481571:CAS:528:DC%2BC2cXhtlags74%3D10.1039/c3ra46463f
ZhuF-fNature Materials20151410201:CAS:528:DC%2BC2MXht1OqurjK10.1038/nmat4384
DávilaMEXianLCahangirovSRubioALayGLNew Journal of Physics20141609500210.1088/1367-2630/16/9/095002
KimUKimIParkYLeeK-YYimS-YParkJ-GAhnH-GParkS-HChoiH-JACS Nano2011521761:CAS:528:DC%2BC3MXhvFSqtbs%3D10.1021/nn103385p
VogtPCapiodPBertheMRestaADe PadovaPBruhnTLe LayGGrandidierBApplied Physics Letters201410402160210.1063/1.4861857
DerivazMDentelDStephanRHanfMCMehdaouiASonnetPPirriCNano Letters20151525101:CAS:528:DC%2BC2MXkvF2hsL0%3D10.1021/acs.nanolett.5b00085
SotoJRMolinaBCastroJJMRS Advances2016115911:CAS:528:DC%2BC28XhsVymsrrP10.1557/adv.2016.14
Guzmán-VerriGGLew Yan VoonLCPhysical Review B20077607513110.1103/PhysRevB.76.075131
BersukerIBChemical Reviews201311313511:CAS:528:DC%2BC3sXms1yisg%3D%3D10.1021/cr300279n
ZhaoIProgress in Materials Science201683241:CAS:528:DC%2BC28XntlyjsLg%3D10.1016/j.pmatsci.2016.04.001
VogtPDe PadovaPQuaresimaCAvilaJFrantzeskakisEAsensioMCRestaAEaletBLe LayGPhysical Review Letters201210815550110.1103/PhysRevLett.108.155501
XuYPhysical Review Letters201311113680410.1103/PhysRevLett.111.136804
ADF 2013, !SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands. Available at: http://www.scm.com (accessed 30 January 2017).
TaoLCinquantaEChiappeDGrazianettiCFanciulliMDubeyMMolleAAkinwandeDNat Nanotechnol2015102271:CAS:528:DC%2BC2MXhvFCnurs%3D10.1038/nnano.2014.325
LiuC-CJiangHYaoYPhysical Review B20118419543010.1103/PhysRevB.84.195430
DavilaMELe LayGScientific Reports20166207141:CAS:528:DC%2BC28XisVamsLk%3D10.1038/srep20714
SaxenaSChaudharyRPShuklaSScientific Reports201662016
MengLNano letters2013136851:CAS:528:DC%2BC3sXhtFWrsrk%3D10.1021/nl304347w
A Acun (2291563_CR12) 2015; 27
M Derivaz (2291563_CR10) 2015; 15
P Vogt (2291563_CR1) 2012; 108
C-C Liu (2291563_CR24) 2011; 107
A Fleurence (2291563_CR2) 2012; 108
L Meng (2291563_CR3) 2013; 13
L Tao (2291563_CR6) 2015; 10
U Kim (2291563_CR4) 2011; 5
GG Guzmán-Verri (2291563_CR16) 2007; 76
JR Soto (2291563_CR23) 2016; 1
2291563_CR26
P Vogt (2291563_CR5) 2014; 104
Y Xu (2291563_CR18) 2013; 111
ME Davila (2291563_CR11) 2016; 6
C-C Liu (2291563_CR25) 2011; 84
K Takeda (2291563_CR15) 1994; 50
S Cahangirov (2291563_CR17) 2009; 102
I Zhao (2291563_CR7) 2016; 83
S Saxena (2291563_CR14) 2016; 6
L Li (2291563_CR8) 2014; 26
JR Soto (2291563_CR21) 2015; 17
JR Soto (2291563_CR22) 2014; 4
F-f Zhu (2291563_CR13) 2015; 14
IB Bersuker (2291563_CR20) 2013; 113
2291563_CR19
ME Dávila (2291563_CR9) 2014; 16
References_xml – reference: AcunAJournal of Physics: Condensed Matter2015274430021:STN:280:DC%2BC28zhsl2htA%3D%3D
– reference: CahangirovSTopsakalMAktürkEŞahinHCiraciSPhysical Review Letters20091022368041:STN:280:DC%2BD1MrjvFCktg%3D%3D10.1103/PhysRevLett.102.236804
– reference: BersukerIBChemical Reviews201311313511:CAS:528:DC%2BC3sXms1yisg%3D%3D10.1021/cr300279n
– reference: ZhuF-fNature Materials20151410201:CAS:528:DC%2BC2MXht1OqurjK10.1038/nmat4384
– reference: SotoJRMolinaBCastroJJMRS Advances2016115911:CAS:528:DC%2BC28XhsVymsrrP10.1557/adv.2016.14
– reference: TakedaKShiraishiKPhysical Review B199450149161:CAS:528:DyaK2MXisVSku7c%3D10.1103/PhysRevB.50.14916
– reference: MengLNano letters2013136851:CAS:528:DC%2BC3sXhtFWrsrk%3D10.1021/nl304347w
– reference: Guzmán-VerriGGLew Yan VoonLCPhysical Review B20077607513110.1103/PhysRevB.76.075131
– reference: I. B. Bersuker, !Jahn-Teller Effect (Cambridge Univ Press, Cambridge, 2006).
– reference: SaxenaSChaudharyRPShuklaSScientific Reports201662016
– reference: FleurenceAFriedleinROzakiTKawaiHWangYYamada-TakamuraYPhysical Review Letters201210824550110.1103/PhysRevLett.108.245501
– reference: LiLLuS-zPanJQinZWangY-qWangYCaoG-yDuSGaoH-JAdvanced Materials20142648201:CAS:528:DC%2BC2cXot1Shtbc%3D10.1002/adma.201400909
– reference: TaoLCinquantaEChiappeDGrazianettiCFanciulliMDubeyMMolleAAkinwandeDNat Nanotechnol2015102271:CAS:528:DC%2BC2MXhvFCnurs%3D10.1038/nnano.2014.325
– reference: ADF 2013, !SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands. Available at: http://www.scm.com (accessed 30 January 2017).
– reference: LiuC-CFengWYaoYPhysical Review Letters201110707680210.1103/PhysRevLett.107.076802
– reference: DerivazMDentelDStephanRHanfMCMehdaouiASonnetPPirriCNano Letters20151525101:CAS:528:DC%2BC2MXkvF2hsL0%3D10.1021/acs.nanolett.5b00085
– reference: VogtPDe PadovaPQuaresimaCAvilaJFrantzeskakisEAsensioMCRestaAEaletBLe LayGPhysical Review Letters201210815550110.1103/PhysRevLett.108.155501
– reference: DavilaMELe LayGScientific Reports20166207141:CAS:528:DC%2BC28XisVamsLk%3D10.1038/srep20714
– reference: KimUKimIParkYLeeK-YYimS-YParkJ-GAhnH-GParkS-HChoiH-JACS Nano2011521761:CAS:528:DC%2BC3MXhvFSqtbs%3D10.1021/nn103385p
– reference: SotoJRMolinaBCastroJJPhysical Chemistry Chemical Physics20151776241:CAS:528:DC%2BC2MXis1eis78%3D10.1039/C4CP05912C
– reference: DávilaMEXianLCahangirovSRubioALayGLNew Journal of Physics20141609500210.1088/1367-2630/16/9/095002
– reference: ZhaoIProgress in Materials Science201683241:CAS:528:DC%2BC28XntlyjsLg%3D10.1016/j.pmatsci.2016.04.001
– reference: XuYPhysical Review Letters201311113680410.1103/PhysRevLett.111.136804
– reference: LiuC-CJiangHYaoYPhysical Review B20118419543010.1103/PhysRevB.84.195430
– reference: VogtPCapiodPBertheMRestaADe PadovaPBruhnTLe LayGGrandidierBApplied Physics Letters201410402160210.1063/1.4861857
– reference: SotoJRMolinaBCastroJJRSC Advances2014481571:CAS:528:DC%2BC2cXhtlags74%3D10.1039/c3ra46463f
– volume: 108
  start-page: 155501
  year: 2012
  ident: 2291563_CR1
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.108.155501
– volume: 113
  start-page: 1351
  year: 2013
  ident: 2291563_CR20
  publication-title: Chemical Reviews
  doi: 10.1021/cr300279n
– volume: 26
  start-page: 4820
  year: 2014
  ident: 2291563_CR8
  publication-title: Advanced Materials
  doi: 10.1002/adma.201400909
– volume: 83
  start-page: 24
  year: 2016
  ident: 2291563_CR7
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2016.04.001
– volume: 84
  start-page: 195430
  year: 2011
  ident: 2291563_CR25
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.84.195430
– volume: 111
  start-page: 136804
  year: 2013
  ident: 2291563_CR18
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.111.136804
– volume: 50
  start-page: 14916
  year: 1994
  ident: 2291563_CR15
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.50.14916
– volume: 107
  start-page: 076802
  year: 2011
  ident: 2291563_CR24
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.107.076802
– volume: 1
  start-page: 1591
  year: 2016
  ident: 2291563_CR23
  publication-title: MRS Advances
  doi: 10.1557/adv.2016.14
– volume: 108
  start-page: 245501
  year: 2012
  ident: 2291563_CR2
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.108.245501
– volume: 27
  start-page: 443002
  year: 2015
  ident: 2291563_CR12
  publication-title: Journal of Physics: Condensed Matter
– volume: 104
  start-page: 021602
  year: 2014
  ident: 2291563_CR5
  publication-title: Applied Physics Letters
  doi: 10.1063/1.4861857
– volume: 17
  start-page: 7624
  year: 2015
  ident: 2291563_CR21
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/C4CP05912C
– volume: 5
  start-page: 2176
  year: 2011
  ident: 2291563_CR4
  publication-title: ACS Nano
  doi: 10.1021/nn103385p
– volume: 13
  start-page: 685
  year: 2013
  ident: 2291563_CR3
  publication-title: Nano letters
  doi: 10.1021/nl304347w
– ident: 2291563_CR26
– volume: 10
  start-page: 227
  year: 2015
  ident: 2291563_CR6
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2014.325
– volume: 102
  start-page: 236804
  year: 2009
  ident: 2291563_CR17
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.102.236804
– ident: 2291563_CR19
  doi: 10.1017/CBO9780511524769
– volume: 14
  start-page: 1020
  year: 2015
  ident: 2291563_CR13
  publication-title: Nature Materials
  doi: 10.1038/nmat4384
– volume: 6
  start-page: 20714
  year: 2016
  ident: 2291563_CR11
  publication-title: Scientific Reports
  doi: 10.1038/srep20714
– volume: 4
  start-page: 8157
  year: 2014
  ident: 2291563_CR22
  publication-title: RSC Advances
  doi: 10.1039/c3ra46463f
– volume: 6
  start-page: 2016
  year: 2016
  ident: 2291563_CR14
  publication-title: Scientific Reports
– volume: 16
  start-page: 095002
  year: 2014
  ident: 2291563_CR9
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/16/9/095002
– volume: 76
  start-page: 075131
  year: 2007
  ident: 2291563_CR16
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.76.075131
– volume: 15
  start-page: 2510
  year: 2015
  ident: 2291563_CR10
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.5b00085
SSID ssj0003211833
Score 2.0008173
Snippet Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy....
Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Snbased stanene, have been recently synthesized by molecular beam epitaxy....
SourceID crossref
springer
cambridge
SourceType Enrichment Source
Index Database
Publisher
StartPage 1563
SubjectTerms Applied and Technical Physics
Biomaterials
Characterization and Evaluation of Materials
Materials Engineering
Materials Science
Nanotechnology
Title Buckling on stanene: the role played by spin-orbit coupling and pseudo Jahn-Teller effect
URI https://www.cambridge.org/core/product/identifier/S2059852117001372/type/journal_article
https://link.springer.com/article/10.1557/adv.2017.137
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2059-8521
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003211833
  issn: 2059-8521
  databaseCode: AFBBN
  dateStart: 20160101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay9LIdij2xrtugwx6HwF4ixVa0W1u0KAKkhyYFupOhl7ECgW0kzqH99aUsy1WLtOh2MRyBcWLxI0VSJIXQt5QyZuPGUaK4icaJVhGsijoaUiKUSUTOtA0NzM7S04vx9DK57PXmQdbSppaxutlaV_I_XIUx4Kutkv0HznYPhQG4B_7CFTgM12fxuNmYbdKWiyYmAHrL52k0WYPVUlw7C3NdXRVRuZJX9UCVm2rpSxOrtdnocjAVf4toYWP4qzbDIzRaZ-dznyvQWeDzsnZ7NvHgPO641pwA1ECmGzsS63rlSadxGGUYsQdRhpmo3bR1CYE-q9StI43CIkMbUkxcxbPXriQAURvbcKoSHEcaLLvwkW9V6UlzDjG8pc3DY_HI9Yh50CTbujJAmAFZZskyIHuBdghLU9JHOwcnh4dnXeiNgtM7obQtg4Cv_QqfHjbZuG-s3N8pbwyQxWu023oO-MDB4A3qmeItehX0k3yH_nhA4LLALSB-Y4ADtnDADg5YXuM7OGAPBwxwwA4OOIADdnB4jy5OjhdHp1F7dkak6IjUkRS5BFkbK20kz0EiecpSoeVQk5QrMxnlYDlTyTSzssoNS5RShAumEiPVkNMPqF-UhfmIMEkVIXmST8B1HjOlwMVmnGidC1gnRUr30M9uwrJWOtbZNo7soYGfzky1LejtSSjLR6i_d9SVa73yCN0Pz5mnf_7Ts__oPnp5JwSfUb9ebcwXMD5r-bUF0y0IjoUf
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+on+stanene%3A+the+role+played+by+spin-orbit+coupling+and+pseudo+Jahn-Teller+effect&rft.jtitle=MRS+advances&rft.au=Soto%2C+J.+R.&rft.au=Molina%2C+B.&rft.au=Castro%2C+J.+J.&rft.date=2017-01-01&rft.pub=Materials+Research+Society&rft.eissn=2059-8521&rft.volume=2&rft.issue=29&rft.spage=1563&rft.epage=1569&rft_id=info:doi/10.1557%2Fadv.2017.137&rft.externalDocID=10_1557_adv_2017_137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-8521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-8521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-8521&client=summon