Mathematical model of biohydrogen production in microbial electrolysis cell: A review
Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to re...
Saved in:
| Published in | International journal of hydrogen energy Vol. 46; no. 75; pp. 37174 - 37191 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
29.10.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-3199 1879-3487 |
| DOI | 10.1016/j.ijhydene.2021.09.021 |
Cover
| Abstract | Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to record the non-linearity of the dynamic behavior for biohydrogen processes in an MEC has led to the introduction of computational approach that has the potential to reduce time constraints and optimize experimental costs. Reviews of comparative studies on bioelectrochemical models are widely reported, but there is less emphasis on the MEC model. Therefore, in this paper, a comprehensive review of the MEC mathematical model will be further discussed. The classification of the model with respect to the assumptions, model improvement, and extensive studies based on the model application will be critically analyzed to establish a methodology algorithm flow chart as a guideline for future implementation.
[Display omitted]
•Advancement of MEC mathematical models.•Classification of MEC mathematical models.•Proposed guideline for the MEC mathematical model implementation. |
|---|---|
| AbstractList | Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to record the non-linearity of the dynamic behavior for biohydrogen processes in an MEC has led to the introduction of computational approach that has the potential to reduce time constraints and optimize experimental costs. Reviews of comparative studies on bioelectrochemical models are widely reported, but there is less emphasis on the MEC model. Therefore, in this paper, a comprehensive review of the MEC mathematical model will be further discussed. The classification of the model with respect to the assumptions, model improvement, and extensive studies based on the model application will be critically analyzed to establish a methodology algorithm flow chart as a guideline for future implementation.
[Display omitted]
•Advancement of MEC mathematical models.•Classification of MEC mathematical models.•Proposed guideline for the MEC mathematical model implementation. |
| Author | Lai, Josephine Chang Hui Mohd Asrul, Mohamad Afiq Abdul Halim Yun, Hafizah Atan, Mohd Farid |
| Author_xml | – sequence: 1 givenname: Mohamad Afiq orcidid: 0000-0003-3242-2569 surname: Mohd Asrul fullname: Mohd Asrul, Mohamad Afiq organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia – sequence: 2 givenname: Mohd Farid orcidid: 0000-0002-4968-1957 surname: Atan fullname: Atan, Mohd Farid email: amfarid@unimas.my organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia – sequence: 3 givenname: Hafizah orcidid: 0000-0002-6009-7575 surname: Abdul Halim Yun fullname: Abdul Halim Yun, Hafizah organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia – sequence: 4 givenname: Josephine Chang Hui orcidid: 0000-0001-5305-0261 surname: Lai fullname: Lai, Josephine Chang Hui organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia |
| BookMark | eNqFkMtOwzAQRS1UJNrCLyD_QIIfSRwjFlQVL6mIDV1bjjOhjty4sgOof4-rwoZNV3cz5-rOmaHJ4AdA6JqSnBJa3fS57Tf7FgbIGWE0JzJPcYamtBYy40UtJmhKeEUyTqW8QLMYe0KoIIWcovWrHjew1aM12uGtb8Fh3-HG-lQZ_AcMeBd8-2lG6wdsB7y1JvjGpmNwYMbg3T7aiA04d4sXOMCXhe9LdN5pF-HqN-do_fjwvnzOVm9PL8vFKjOcsjHTQsu6boSsgREgEoqWgWYdq8qu4KIRmhupgXKiS2YqrhmpOyF5WRaiNYzxObo79qZNMQbolLGjPkwdg7ZOUaIOilSv_hSpgyJFpEqR8Oofvgt2q8P-NHh_BCE9lx4OKhoLg4HWhiRFtd6eqvgB3TqIkA |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2022_11_153 crossref_primary_10_3390_fractalfract6120736 crossref_primary_10_1016_j_ijhydene_2022_03_120 crossref_primary_10_1016_j_ijhydene_2022_03_197 crossref_primary_10_1016_j_biortech_2022_127641 crossref_primary_10_1016_j_biortech_2021_126498 crossref_primary_10_3390_en15114179 crossref_primary_10_1016_j_ijhydene_2022_06_317 crossref_primary_10_1016_j_clwas_2022_100039 crossref_primary_10_1016_j_ijhydene_2022_10_224 crossref_primary_10_1016_j_ijhydene_2024_12_242 crossref_primary_10_1016_j_ijhydene_2025_01_299 crossref_primary_10_1016_j_cep_2024_109707 crossref_primary_10_1016_j_ijhydene_2022_10_182 crossref_primary_10_1016_j_scenv_2025_100224 crossref_primary_10_1016_j_ijhydene_2023_04_184 |
| Cites_doi | 10.1016/j.biortech.2018.01.133 10.1016/j.ijhydene.2009.03.005 10.1016/j.biortech.2014.04.044 10.1016/j.cej.2015.11.112 10.1007/s00253-009-2378-9 10.1016/j.jenvman.2020.111869 10.1038/nrmicro2113 10.1016/j.biortech.2018.01.071 10.1002/jctb.5898 10.1021/es800970w 10.1016/S0043-1354(98)00415-1 10.1016/j.bej.2020.107714 10.1007/s10800-015-0864-6 10.1016/j.biortech.2014.12.096 10.1002/er.3780 10.1021/es0605016 10.1016/j.bioelechem.2009.04.009 10.3934/mbe.2020329 10.1016/j.enconman.2019.04.060 10.1038/nrmicro2422 10.1016/j.jpowsour.2017.03.109 10.1016/j.bios.2009.03.024 10.1016/j.renene.2014.05.052 10.1016/j.biortech.2010.10.137 10.4155/bfs.13.69 10.1016/j.ijhydene.2005.12.006 10.1016/j.ijhydene.2011.05.162 10.1016/j.copbio.2013.12.008 10.1016/j.chemosphere.2017.01.128 10.48175/IJARSCT-694 10.1016/j.watres.2014.02.031 10.1002/bit.10036 10.1016/j.electacta.2016.04.167 10.1016/j.jpowsour.2017.02.087 10.1039/C8EE03673J 10.1016/j.jpowsour.2009.06.101 10.1016/j.watres.2008.06.015 10.1016/j.jprocont.2012.04.005 10.1016/j.watres.2007.01.019 10.1016/j.rser.2015.11.015 10.1021/es801553z 10.1002/er.3273 10.1080/00986445.2019.1605360 10.1021/es104268g 10.1007/BF00872193 10.1016/j.bej.2013.01.012 10.1016/j.electacta.2017.01.041 10.1016/S0045-7825(99)00018-3 10.1016/j.biortech.2016.03.034 10.1016/j.rser.2016.12.069 10.1016/j.biortech.2017.02.104 10.1016/j.jpowsour.2010.03.061 10.3390/en9020111 10.1137/18M1172223 10.1111/j.1574-6976.2009.00191.x 10.2166/wst.2006.107 10.2166/wst.1997.0312 10.1021/es303837j 10.1007/s11157-015-9382-6 10.1039/C5CP00904A 10.1016/j.biortech.2011.04.051 10.1016/j.tibtech.2014.10.004 10.1016/j.jcou.2017.11.013 10.1088/1757-899X/1101/1/012040 10.1016/j.biotechadv.2013.10.001 10.1016/j.renene.2016.03.002 10.1016/j.apenergy.2019.113938 10.1016/j.ijhydene.2008.02.046 10.1016/j.cej.2015.02.076 10.1016/j.jpowsour.2017.11.001 10.1016/j.watres.2017.12.026 10.4155/bfs.09.9 10.1021/es050244p 10.2166/wst.2002.0292 10.1016/0043-1354(86)90189-2 10.1039/C9CP01288E 10.1016/j.rser.2016.04.017 10.1002/bit.21533 10.1016/j.ijhydene.2016.09.166 10.35940/ijitee.D1613.029420 10.1002/cssc.201100732 10.1016/j.fuel.2020.118463 10.1016/j.rser.2015.12.029 10.1016/j.biortech.2010.01.122 10.3390/pr7040183 10.1016/j.jcou.2017.05.011 10.1007/s00253-007-1198-z 10.1016/j.cej.2018.03.005 10.1016/j.biortech.2014.09.083 10.1016/j.jbiotec.2011.07.030 |
| ContentType | Journal Article |
| Copyright | 2021 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2021 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2021.09.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3487 |
| EndPage | 37191 |
| ExternalDocumentID | 10_1016_j_ijhydene_2021_09_021 S0360319921035011 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-a7a988b798e20e09e4d2ea2f265f437b7a3c9ae130a52c63a208f7935547dc223 |
| IEDL.DBID | .~1 |
| ISSN | 0360-3199 |
| IngestDate | Thu Oct 09 00:16:34 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Fri Feb 23 02:43:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 75 |
| Keywords | Microbial electrolysis cell Biohydrogen process Mathematical model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-a7a988b798e20e09e4d2ea2f265f437b7a3c9ae130a52c63a208f7935547dc223 |
| ORCID | 0000-0001-5305-0261 0000-0003-3242-2569 0000-0002-4968-1957 0000-0002-6009-7575 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2021_09_021 crossref_primary_10_1016_j_ijhydene_2021_09_021 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_09_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-29 |
| PublicationDateYYYYMMDD | 2021-10-29 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xiang, Liu, Zhang, Lu, Luo (bib10) 2017; 233 Logan (bib69) 2010; 85 Sleutels, Ter Heijne, Buisman, Hamelers (bib70) 2012; 5 Dudley, Lu, Ren, Bortz (bib40) 2019; 18 Sun, Yang, Wen, Zhang, Sun (bib29) 2018; 24 ThamizhSuganya, Balaganesan, Rajendran (bib100) 2021; 1 Lu, Hou, Fang, Huang, Ren (bib9) 2016; 206 Guo, Yang (bib19) 2020 Zou, He (bib43) 2018; 131 Batstone, Keller, Angelidaki, Kalyuzhnyi, Pavlostathis, Rozzi, Sanders, Siegrist, Vavilin (bib37) 2002; 45 Alcaraz–Gonzalez, Rodriguez–Valenzuela, Gomez–Martinez, Dotto, Flores–Estrella (bib58) 2021; 281 Hernández-García, Cercado, Rivero, Rivera (bib25) 2020; 279 Marone, Ayala-Campos, Trably, Carmona-Martínez, Moscoviz, Latrille, Steyer, Alcaraz-Gonzalez, Bernet (bib64) 2017; 42 Then, Ramesh, Asrul, Atan, Yun, Lai, Rahman, Abdullah, Wahab (bib98) 2021; 1101 Rabaey, Rozendal (bib36) 2010; 8 Gadkari, Shemfe, Modestra, Mohan, Sadhukhan (bib20) 2019; 21 Wang, Liu, Cheng, Xing, Zhou, Logan (bib56) 2009; 34 Krieg, Sydow, Schröder, Schrader, Holtmann (bib53) 2014; 32 Pinto, Tartakovsky, Srinivasan (bib97) 2012; 22 Bernard, Hadj-Sadok, Dochain, Genovesi, Steyer (bib79) 2001; 75 Torres, Kato Marcus, Rittmann (bib91) 2007; 77 Torres, Marcus, Parameswaran, Rittmann (bib92) 2008; 42 Aboelela, Soliman, Moustafa, Ashour (bib4) 2020; 9 Kato Marcus, Torres, Rittmann (bib93) 2007; 98 Hua, Li, Li, Zhou, Ondon (bib49) 2019; 94 Luo, Sun, Ping, Jin, He (bib71) 2016; 9 Dudley, Ren, Bortz (bib17) 2019; 17 Rivera, Buitrón, Bakonyi, Nemestóthy, Bélafi-Bakó (bib95) 2015; 45 Kumar, Singh, Zularisam (bib45) 2016; 56 Mardanpour, Yaghmaei (bib72) 2017; 227 Recio-Garrido, Perrier, Tartakovsky (bib48) 2016; 289 Modestra, Mohan (bib35) 2017; 20 Costa, Clarke, Philipp, Gescher, Louro, Paquete (bib33) 2018; 255 Escapa, San-Martín, Mateos, Morán (bib52) 2015; 180 Brenan, Campbell, Petzold (bib88) 1996; 14 Pinto, Srinivasan, Escapa, Tartakovsky (bib13) 2011; 45 Varanasi, Veerubhotla, Pandit, Das (bib23) 2018 Lu, Vakki, Aguiar, Xiao, Hurst, Fairchild, Chen, Yang, Gu, Ren (bib18) 2019; 12 Moletta (bib82) 1986; 20 Liu, Wang, Ren, Zhao, Liu, Yu, Lee (bib14) 2008; vol. 22 Guwy, Dinsdale, Kim, Massanet-Nicolau, Premier (bib24) 2011; 102 Rozendal, Hamelers, Euverink, Metz, Buisman (bib12) 2006; 31 Kadier, Simayi, Kalil, Abdeshahian, Hamid (bib2) 2014; 71 Reddy, Chandrasekhar, Mohan (bib3) 2011; 155 Xia, Zhang, Pedrycz, Zhu, Guo (bib75) 2018; 373 Gadkari, Gu, Sadhukhan (bib22) 2018; 343 Logan (bib44) 2008 Pinto, Srinivasan, Manuel, Tartakovsky (bib78) 2010; 101 Torres (bib65) 2014; 27 Rozendal, Hamelers, Molenkamp, Buisman (bib16) 2007; 41 Bajracharya, Sharma, Mohanakrishna, Dominguez Benneton, Strik, Sarma, Pant (bib38) 2016; 98 Kadier, Kalil, Abdeshahian, Chandrasekhar, Mohamed, Azman, Logroño, Simayi, Hamid (bib39) 2016; 61 Ortiz-Martínez, Salar-García, de los Ríos, Hernández-Fernández, Egea, Lozano (bib47) 2015; 271 He (bib101) 1999; 178 Liu, Grot, Logan (bib11) 2005; 39 Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib42) 2006; 40 Gong, Ebrahim, Feist, Embree, Zhang, Lovley, Zengler (bib34) 2013; 47 Picioreanu, van Loosdrecht, Curtis, Scott (bib86) 2010; 78 Tartakovsky, Mehta, Santoyo, Guiot (bib68) 2011; 36 Steyer, Bernard, Batstone, Angelidaki (bib73) 2006; 53 He, Du, Chen, Lu, Cheng, Chang, Wang (bib1) 2017; 71 Oliveira, Simões, Melo, Pinto (bib46) 2013; 73 Kazemi, Biria, Rismani-Yazdi (bib76) 2015; 17 Hernández-García, Cercado, Rodríguez, Rivera, Rivero (bib26) 2020; 162 Azwar, Wahab, Hussain (bib85) 2013; 32 Brown, Harnisch, Wirth, Wahlandt, Dockhorn, Dichtl, Schröder (bib63) 2014; 163 Yahya, Hussain, Abdul Wahab (bib7) 2015; 39 Flores-Estrella, de Jesús Garza-Rubalcava, Haarstrick, Alcaraz-González (bib30) 2019; 7 Rittmann, McCarty (bib94) 2001 Rauch, Vanhooren, Vanrolleghem (bib80) 1999; 33 Sadhukhan, Lloyd, Scott, Premier, Eileen, Curtis, Head (bib59) 2016; 56 Wang, Ren (bib6) 2013; 31 Kumar, Singh, Zularisam, Hai (bib61) 2018; 42 Rousseau, Etcheverry, Roubaud, Basséguy, Délia, Bergel (bib55) 2020; 257 Torres, Marcus, Lee, Parameswaran, Krajmalnik-Brown, Rittmann (bib102) 2010; 34 Wang, Sun, Cao, Wang, Ren, Wu, Logan (bib57) 2011; 102 Khalil (bib90) 2002 Gadhamshetty, Sukumaran, Nirmalakhandan, Theinmyint (bib99) 2008; 33 Baeza, Martínez-Miró, Guerrero, Ruiz, Guisasola (bib50) 2017; 356 Rivera, Bakonyi, Cuautle-Marín, Buitrón (bib96) 2017; 174 Logan, Call, Cheng, Hamelers, Sleutels, Jeremiasse, Rozendal (bib5) 2008; 42 Flores-Estrella, Rodríguez-Valenzuela, Ramírez-Landeros, Alcaraz-González, González-Álvarez (bib89) 2020; 207 Xing, Yang, Li, Cui, Ma, Cai, Gu (bib27) 2020 Hu, Fan, Liu (bib84) 2008; 42 Heidrich, Edwards, Dolfing, Cotterill, Curtis (bib66) 2014; 173 Lettinga (bib81) 1995; 67 Santoro, Arbizzani, Erable, Ieropoulos (bib32) 2017; 356 Logan (bib41) 2009; 7 Chookaew, Prasertsan, Ren (bib21) 2014; 31 Lu, Ren, Xing, Logan (bib15) 2009; 24 Zeng, Choo, Kim, Wu (bib87) 2010; 195 Hallenbeck (bib60) 2012 Liu, Hu, Chignell, Fan (bib28) 2010; 1 Shemfe, Gadkari, Yu, Rasul, Scott, Head, Gu, Sadhukhan (bib77) 2018; 255 Jeyaseelan (bib83) 1997; 35 Cardeña, Cercado, Buitrón (bib31) 2019 Chen, Xu, Wu, E, Lu, Wang, Zuo (bib51) 2019; 193 Manuel, Neburchilov, Wang, Guiot, Tartakovsky (bib67) 2010; 195 Jimenez, Latrille, Harmand, Robles, Ferrer, Gaida, Wolf, Mairet, Bernard, Alcaraz-Gonzalez, Mendez-Acosta, Zitomer, Totzke, Spanjers, Jacobi, Guwy, Dinsdale, Premier, Mazhegrane, Ruiz-Filippi, Seco, Ribeiro, Pauss, Steyer (bib74) 2015; 14 Janicek, Fan, Liu (bib54) 2014; 5 Zhang, Angelidaki (bib8) 2014; 56 Lu, Ren (bib62) 2016; 215 Batstone (10.1016/j.ijhydene.2021.09.021_bib37) 2002; 45 Hua (10.1016/j.ijhydene.2021.09.021_bib49) 2019; 94 Lu (10.1016/j.ijhydene.2021.09.021_bib62) 2016; 215 Wang (10.1016/j.ijhydene.2021.09.021_bib56) 2009; 34 Pinto (10.1016/j.ijhydene.2021.09.021_bib78) 2010; 101 Liu (10.1016/j.ijhydene.2021.09.021_bib28) 2010; 1 Hu (10.1016/j.ijhydene.2021.09.021_bib84) 2008; 42 Sleutels (10.1016/j.ijhydene.2021.09.021_bib70) 2012; 5 Kazemi (10.1016/j.ijhydene.2021.09.021_bib76) 2015; 17 Khalil (10.1016/j.ijhydene.2021.09.021_bib90) 2002 Chookaew (10.1016/j.ijhydene.2021.09.021_bib21) 2014; 31 Kumar (10.1016/j.ijhydene.2021.09.021_bib61) 2018; 42 Lu (10.1016/j.ijhydene.2021.09.021_bib15) 2009; 24 Sadhukhan (10.1016/j.ijhydene.2021.09.021_bib59) 2016; 56 Lu (10.1016/j.ijhydene.2021.09.021_bib9) 2016; 206 Heidrich (10.1016/j.ijhydene.2021.09.021_bib66) 2014; 173 Flores-Estrella (10.1016/j.ijhydene.2021.09.021_bib30) 2019; 7 Pinto (10.1016/j.ijhydene.2021.09.021_bib97) 2012; 22 Baeza (10.1016/j.ijhydene.2021.09.021_bib50) 2017; 356 Gadhamshetty (10.1016/j.ijhydene.2021.09.021_bib99) 2008; 33 Kadier (10.1016/j.ijhydene.2021.09.021_bib39) 2016; 61 Shemfe (10.1016/j.ijhydene.2021.09.021_bib77) 2018; 255 Rittmann (10.1016/j.ijhydene.2021.09.021_bib94) 2001 Manuel (10.1016/j.ijhydene.2021.09.021_bib67) 2010; 195 Zhang (10.1016/j.ijhydene.2021.09.021_bib8) 2014; 56 Reddy (10.1016/j.ijhydene.2021.09.021_bib3) 2011; 155 Torres (10.1016/j.ijhydene.2021.09.021_bib92) 2008; 42 Gadkari (10.1016/j.ijhydene.2021.09.021_bib20) 2019; 21 Guwy (10.1016/j.ijhydene.2021.09.021_bib24) 2011; 102 Moletta (10.1016/j.ijhydene.2021.09.021_bib82) 1986; 20 Liu (10.1016/j.ijhydene.2021.09.021_bib11) 2005; 39 Torres (10.1016/j.ijhydene.2021.09.021_bib65) 2014; 27 Janicek (10.1016/j.ijhydene.2021.09.021_bib54) 2014; 5 He (10.1016/j.ijhydene.2021.09.021_bib1) 2017; 71 Kumar (10.1016/j.ijhydene.2021.09.021_bib45) 2016; 56 Rauch (10.1016/j.ijhydene.2021.09.021_bib80) 1999; 33 Hernández-García (10.1016/j.ijhydene.2021.09.021_bib25) 2020; 279 Aboelela (10.1016/j.ijhydene.2021.09.021_bib4) 2020; 9 Logan (10.1016/j.ijhydene.2021.09.021_bib41) 2009; 7 Luo (10.1016/j.ijhydene.2021.09.021_bib71) 2016; 9 Chen (10.1016/j.ijhydene.2021.09.021_bib51) 2019; 193 Torres (10.1016/j.ijhydene.2021.09.021_bib102) 2010; 34 Rabaey (10.1016/j.ijhydene.2021.09.021_bib36) 2010; 8 Modestra (10.1016/j.ijhydene.2021.09.021_bib35) 2017; 20 Yahya (10.1016/j.ijhydene.2021.09.021_bib7) 2015; 39 Logan (10.1016/j.ijhydene.2021.09.021_bib44) 2008 Bernard (10.1016/j.ijhydene.2021.09.021_bib79) 2001; 75 He (10.1016/j.ijhydene.2021.09.021_bib101) 1999; 178 Steyer (10.1016/j.ijhydene.2021.09.021_bib73) 2006; 53 Wang (10.1016/j.ijhydene.2021.09.021_bib6) 2013; 31 Liu (10.1016/j.ijhydene.2021.09.021_bib14) 2008; vol. 22 Santoro (10.1016/j.ijhydene.2021.09.021_bib32) 2017; 356 Wang (10.1016/j.ijhydene.2021.09.021_bib57) 2011; 102 Xia (10.1016/j.ijhydene.2021.09.021_bib75) 2018; 373 Flores-Estrella (10.1016/j.ijhydene.2021.09.021_bib89) 2020; 207 Escapa (10.1016/j.ijhydene.2021.09.021_bib52) 2015; 180 Cardeña (10.1016/j.ijhydene.2021.09.021_bib31) 2019 Lu (10.1016/j.ijhydene.2021.09.021_bib18) 2019; 12 Krieg (10.1016/j.ijhydene.2021.09.021_bib53) 2014; 32 Logan (10.1016/j.ijhydene.2021.09.021_bib42) 2006; 40 Zou (10.1016/j.ijhydene.2021.09.021_bib43) 2018; 131 Azwar (10.1016/j.ijhydene.2021.09.021_bib85) 2013; 32 Rivera (10.1016/j.ijhydene.2021.09.021_bib96) 2017; 174 Rozendal (10.1016/j.ijhydene.2021.09.021_bib16) 2007; 41 Zeng (10.1016/j.ijhydene.2021.09.021_bib87) 2010; 195 Marone (10.1016/j.ijhydene.2021.09.021_bib64) 2017; 42 Xiang (10.1016/j.ijhydene.2021.09.021_bib10) 2017; 233 Hernández-García (10.1016/j.ijhydene.2021.09.021_bib26) 2020; 162 Costa (10.1016/j.ijhydene.2021.09.021_bib33) 2018; 255 Tartakovsky (10.1016/j.ijhydene.2021.09.021_bib68) 2011; 36 Logan (10.1016/j.ijhydene.2021.09.021_bib69) 2010; 85 Dudley (10.1016/j.ijhydene.2021.09.021_bib17) 2019; 17 Xing (10.1016/j.ijhydene.2021.09.021_bib27) 2020 Rousseau (10.1016/j.ijhydene.2021.09.021_bib55) 2020; 257 Lettinga (10.1016/j.ijhydene.2021.09.021_bib81) 1995; 67 Ortiz-Martínez (10.1016/j.ijhydene.2021.09.021_bib47) 2015; 271 Gong (10.1016/j.ijhydene.2021.09.021_bib34) 2013; 47 Logan (10.1016/j.ijhydene.2021.09.021_bib5) 2008; 42 Dudley (10.1016/j.ijhydene.2021.09.021_bib40) 2019; 18 Mardanpour (10.1016/j.ijhydene.2021.09.021_bib72) 2017; 227 Sun (10.1016/j.ijhydene.2021.09.021_bib29) 2018; 24 Pinto (10.1016/j.ijhydene.2021.09.021_bib13) 2011; 45 Bajracharya (10.1016/j.ijhydene.2021.09.021_bib38) 2016; 98 Recio-Garrido (10.1016/j.ijhydene.2021.09.021_bib48) 2016; 289 Oliveira (10.1016/j.ijhydene.2021.09.021_bib46) 2013; 73 Hallenbeck (10.1016/j.ijhydene.2021.09.021_bib60) 2012 Torres (10.1016/j.ijhydene.2021.09.021_bib91) 2007; 77 Brenan (10.1016/j.ijhydene.2021.09.021_bib88) 1996; 14 Then (10.1016/j.ijhydene.2021.09.021_bib98) 2021; 1101 Gadkari (10.1016/j.ijhydene.2021.09.021_bib22) 2018; 343 Varanasi (10.1016/j.ijhydene.2021.09.021_bib23) 2018 Rivera (10.1016/j.ijhydene.2021.09.021_bib95) 2015; 45 Rozendal (10.1016/j.ijhydene.2021.09.021_bib12) 2006; 31 Kato Marcus (10.1016/j.ijhydene.2021.09.021_bib93) 2007; 98 Brown (10.1016/j.ijhydene.2021.09.021_bib63) 2014; 163 Jeyaseelan (10.1016/j.ijhydene.2021.09.021_bib83) 1997; 35 Kadier (10.1016/j.ijhydene.2021.09.021_bib2) 2014; 71 Jimenez (10.1016/j.ijhydene.2021.09.021_bib74) 2015; 14 Picioreanu (10.1016/j.ijhydene.2021.09.021_bib86) 2010; 78 Guo (10.1016/j.ijhydene.2021.09.021_bib19) 2020 ThamizhSuganya (10.1016/j.ijhydene.2021.09.021_bib100) 2021; 1 Alcaraz–Gonzalez (10.1016/j.ijhydene.2021.09.021_bib58) 2021; 281 |
| References_xml | – volume: 17 start-page: 12561 year: 2015 end-page: 12574 ident: bib76 article-title: Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO 2 and H 2 O publication-title: Phys Chem Chem Phys – start-page: 39 year: 2020 end-page: 70 ident: bib27 article-title: Hydrogen production from waste stream with microbial electrolysis cells publication-title: Bioelectrosynthesis – volume: 180 start-page: 72 year: 2015 end-page: 78 ident: bib52 article-title: Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations1 publication-title: Bioresour Technol – volume: 27 start-page: 107 year: 2014 end-page: 114 ident: bib65 article-title: On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications publication-title: Curr Opin Biotechnol – volume: 42 start-page: 1609 year: 2017 end-page: 1621 ident: bib64 article-title: Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework publication-title: Int J Hydrogen Energy – volume: 73 start-page: 53 year: 2013 end-page: 64 ident: bib46 article-title: Overview on the developments of microbial fuel cells publication-title: Biochem Eng J – volume: 45 start-page: 65 year: 2002 end-page: 73 ident: bib37 article-title: The IWA anaerobic digestion model No 1 (ADM1) publication-title: Water Sci Technol – volume: 373 start-page: 119 year: 2018 end-page: 131 ident: bib75 article-title: Models for microbial fuel cells: a critical review publication-title: J Power Sources – volume: 5 start-page: 79 year: 2014 end-page: 92 ident: bib54 article-title: Design of microbial fuel cells for practical application: a review and analysis of scale-up studies publication-title: Biofuels – volume: 102 start-page: 4137 year: 2011 end-page: 4143 ident: bib57 article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell publication-title: Bioresour Technol – volume: 5 start-page: 1012 year: 2012 end-page: 1019 ident: bib70 article-title: Bioelectrochemical systems: an outlook for practical applications publication-title: ChemSusChem – start-page: 843 year: 2018 end-page: 869 ident: bib23 article-title: Biohydrogen production using microbial electrolysis cell: recent advances and future prospects publication-title: Biomass, biofuels – volume: 215 start-page: 254 year: 2016 end-page: 264 ident: bib62 article-title: Microbial electrolysis cells for waste biorefinery: a state of the art review publication-title: Bioresour Technol – volume: 75 start-page: 424 year: 2001 end-page: 438 ident: bib79 article-title: Dynamical model development and parameter identification for an anaerobic wastewater treatment process publication-title: Biotechnol Bioeng – volume: 77 start-page: 689 year: 2007 end-page: 697 ident: bib91 article-title: Kinetics of consumption of fermentation products by anode-respiring bacteria publication-title: Appl Microbiol Biotechnol – volume: 85 start-page: 1665 year: 2010 end-page: 1671 ident: bib69 article-title: Scaling up microbial fuel cells and other bioelectrochemical systems publication-title: Appl Microbiol Biotechnol – volume: 162 start-page: 107714 year: 2020 ident: bib26 article-title: Modeling 3D current and potential distribution in a microbial electrolysis cell with augmented anode surface and non-ideal flow pattern publication-title: Biochem Eng J – volume: 78 start-page: 8 year: 2010 end-page: 24 ident: bib86 article-title: Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance publication-title: Bioelectrochemistry – year: 2008 ident: bib44 article-title: Microbial fuel cells – volume: 17 start-page: 6217 year: 2019 end-page: 6239 ident: bib17 article-title: Competitive exclusion in a DAE model for microbial electrolysis cells publication-title: Math Biosci Eng – volume: 18 start-page: 709 year: 2019 end-page: 728 ident: bib40 article-title: Sensitivity and bifurcation analysis of a differential-algebraic equation model for a microbial electrolysis cell publication-title: SIAM J Appl Dyn Syst – volume: 56 start-page: 1322 year: 2016 end-page: 1336 ident: bib45 article-title: Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications publication-title: Renew Sustain Energy Rev – volume: 56 start-page: 11 year: 2014 end-page: 25 ident: bib8 article-title: Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges publication-title: Water Res – volume: 36 start-page: 10557 year: 2011 end-page: 10564 ident: bib68 article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage publication-title: Int J Hydrogen Energy – volume: 33 start-page: 2148 year: 1999 end-page: 2162 ident: bib80 article-title: A simplified mixed-culture biofilm model publication-title: Water Res – volume: 255 start-page: 308 year: 2018 end-page: 317 ident: bib33 article-title: Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins publication-title: Bioresour Technol – volume: 94 start-page: 1697 year: 2019 end-page: 1711 ident: bib49 article-title: Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge publication-title: J Chem Technol Biotechnol – volume: 8 start-page: 706 year: 2010 end-page: 716 ident: bib36 article-title: Microbial electrosynthesis - revisiting the electrical route for microbial production publication-title: Nat Rev Microbiol – year: 2001 ident: bib94 article-title: Environmental biotechnology: principles and applications – volume: 178 start-page: 257 year: 1999 end-page: 262 ident: bib101 article-title: Homotopy perturbation technique publication-title: Comput Methods Appl Mech Eng – volume: 206 start-page: 381 year: 2016 end-page: 387 ident: bib9 article-title: Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells publication-title: Electrochim Acta – volume: 155 start-page: 387 year: 2011 end-page: 395 ident: bib3 article-title: Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment publication-title: J Biotechnol – volume: 56 start-page: 116 year: 2016 end-page: 132 ident: bib59 article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2 publication-title: Renew Sustain Energy Rev – volume: 9 start-page: 111 year: 2016 ident: bib71 article-title: A review of modeling bioelectrochemical systems: engineering and statistical aspects publication-title: Energies – volume: 7 start-page: 375 year: 2009 end-page: 381 ident: bib41 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat Rev Microbiol – volume: 98 start-page: 1171 year: 2007 end-page: 1182 ident: bib93 article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell publication-title: Biotechnol Bioeng – volume: vol. 22 start-page: 159 year: 2008 end-page: 163 ident: bib14 article-title: Electrochemically assisted biohydrogen production from acetate publication-title: Energy and fuels – volume: 1101 year: 2021 ident: bib98 article-title: Dynamic modeling of hydrogen production from photo-fermentation in microbial electrolysis cell using sago waste publication-title: IOP Conf Ser Mater Sci Eng – volume: 35 year: 1997 ident: bib83 article-title: A simple mathematical model for anaerobic digestion process publication-title: Water Sci Technol – volume: 22 start-page: 1079 year: 2012 end-page: 1086 ident: bib97 article-title: Optimizing energy productivity of microbial electrochemical cells publication-title: J Process Contr – volume: 102 start-page: 8534 year: 2011 end-page: 8542 ident: bib24 article-title: Fermentative biohydrogen production systems integration publication-title: Bioresour Technol – volume: 32 start-page: 727 year: 2013 end-page: 732 ident: bib85 article-title: Optimal production of biohydrogen gas via microbial electrolysis cells (MEC) in a controlled batch reactor system publication-title: Chem. Eng. Trans. – volume: 20 start-page: 427 year: 1986 end-page: 434 ident: bib82 article-title: Dynamic modelling of anaerobic digestion publication-title: Water Res – volume: 12 start-page: 1088 year: 2019 end-page: 1099 ident: bib18 article-title: Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode publication-title: Energy Environ Sci – volume: 33 start-page: 2138 year: 2008 end-page: 2146 ident: bib99 article-title: Photofermentation of malate for biohydrogen production— a modeling approach publication-title: Int J Hydrogen Energy – volume: 279 start-page: 118463 year: 2020 ident: bib25 article-title: Theoretical and experimental evaluation of the potential-current distribution and the recirculation flow rate effect in the performance of a porous electrode microbial electrolysis cell (MEC) publication-title: Fuel – volume: 31 start-page: 179 year: 2014 end-page: 184 ident: bib21 article-title: Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell publication-title: Nat Biotechnol – volume: 21 start-page: 10761 year: 2019 end-page: 10772 ident: bib20 article-title: Understanding the interdependence of operating parameters in microbial electrosynthesis: a numerical investigation publication-title: Phys Chem Chem Phys – volume: 173 start-page: 87 year: 2014 end-page: 95 ident: bib66 article-title: Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period publication-title: Bioresour Technol – volume: 45 start-page: 1223 year: 2015 end-page: 1229 ident: bib95 article-title: Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent publication-title: J Appl Electrochem – volume: 20 start-page: 190 year: 2017 end-page: 199 ident: bib35 article-title: Microbial electrosynthesis of carboxylic acids through CO2 reduction with selectively enriched biocatalyst: microbial dynamics publication-title: J CO2 Util. – volume: 343 start-page: 303 year: 2018 end-page: 316 ident: bib22 article-title: Towards automated design of bioelectrochemical systems: a comprehensive review of mathematical models publication-title: Chem Eng J – volume: 289 start-page: 180 year: 2016 end-page: 190 ident: bib48 article-title: Modeling, optimization and control of bioelectrochemical systems publication-title: Chem Eng J – volume: 1 start-page: 91 year: 2021 end-page: 100 ident: bib100 article-title: Mathematical modeling of bio hydrogen production in microbial electrolysis cell reactor publication-title: Int J Adv Res Sci Commun Technol – volume: 45 start-page: 5039 year: 2011 end-page: 5046 ident: bib13 article-title: Multi-population model of a microbial electrolysis cell publication-title: Environ Sci Technol – year: 2002 ident: bib90 article-title: Nonlinear systems – volume: 193 start-page: 52 year: 2019 end-page: 63 ident: bib51 article-title: System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater publication-title: Energy Convers Manag – volume: 67 start-page: 3 year: 1995 end-page: 28 ident: bib81 article-title: Anaerobic digestion and wastewater treatment systems publication-title: Antonie Leeuwenhoek – volume: 47 start-page: 568 year: 2013 end-page: 573 ident: bib34 article-title: Sulfide-driven microbial electrosynthesis publication-title: Environ Sci Technol – volume: 356 start-page: 225 year: 2017 end-page: 244 ident: bib32 article-title: Microbial fuel cells: from fundamentals to applications. A review publication-title: J Power Sources – volume: 1 start-page: 129 year: 2010 end-page: 142 ident: bib28 article-title: Microbial electrolysis: novel technology for hydrogen production from biomass publication-title: Biofuels – volume: 42 start-page: 4172 year: 2008 end-page: 4178 ident: bib84 article-title: Hydrogen production using single-chamber membrane-free microbial electrolysis cells publication-title: Water Res – volume: 163 start-page: 206 year: 2014 end-page: 213 ident: bib63 article-title: Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell publication-title: Bioresour Technol – volume: 34 start-page: 3 year: 2010 end-page: 17 ident: bib102 article-title: A kinetic perspective on extracellular electron transfer by anode-respiring bacteria publication-title: FEMS Microbiol Rev – volume: 281 start-page: 111869 year: 2021 ident: bib58 article-title: Hydrogen production automatic control in continuous microbial electrolysis cells reactors used in wastewater treatment publication-title: J Environ Manag – volume: 101 start-page: 5256 year: 2010 end-page: 5265 ident: bib78 article-title: A two-population bio-electrochemical model of a microbial fuel cell publication-title: Bioresour Technol – volume: 9 start-page: 1724 year: 2020 end-page: 1730 ident: bib4 article-title: A reduced model for microbial electrolysis cells publication-title: Int J Innovative Technol Explor Eng – volume: 233 start-page: 227 year: 2017 end-page: 235 ident: bib10 article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane publication-title: Bioresour Technol – volume: 39 start-page: 4317 year: 2005 end-page: 4320 ident: bib11 article-title: Electrochemically assisted microbial production of hydrogen from acetate publication-title: Environ Sci Technol – volume: 61 start-page: 501 year: 2016 end-page: 525 ident: bib39 article-title: Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals publication-title: Renew Sustain Energy Rev – volume: 40 start-page: 5181 year: 2006 end-page: 5192 ident: bib42 article-title: Microbial fuel cells: methodology and technology publication-title: Environ Sci Technol – volume: 42 start-page: 8630 year: 2008 end-page: 8640 ident: bib5 article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ Sci Technol – start-page: 363 year: 2020 end-page: 394 ident: bib19 article-title: Microbial metabolism kinetics and interactions in bioelectrosynthesis system publication-title: Bioelectrosynthesis – volume: 255 start-page: 39 year: 2018 end-page: 49 ident: bib77 article-title: Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: a case of formic acid synthesis publication-title: Bioresour Technol – volume: 41 start-page: 1984 year: 2007 end-page: 1994 ident: bib16 article-title: Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes publication-title: Water Res – volume: 31 start-page: 1632 year: 2006 end-page: 1640 ident: bib12 article-title: Principle and perspectives of hydrogen production through biocatalyzed electrolysis publication-title: Int J Hydrogen Energy – volume: 227 start-page: 317 year: 2017 end-page: 329 ident: bib72 article-title: Dynamical analysis of microfluidic microbial electrolysis cell via integrated experimental investigation and mathematical modeling publication-title: Electrochim Acta – volume: 356 start-page: 500 year: 2017 end-page: 509 ident: bib50 article-title: Bioelectrochemical hydrogen production from urban wastewater on a pilot scale publication-title: J Power Sources – volume: 24 start-page: 10 year: 2018 end-page: 21 ident: bib29 article-title: Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor publication-title: J. CO2 Util. – volume: 7 start-page: 183 year: 2019 ident: bib30 article-title: A dynamic biofilm model for a microbial electrolysis cell publication-title: Processes – volume: 42 start-page: 369 year: 2018 end-page: 394 ident: bib61 article-title: Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances publication-title: Int J Energy Res – volume: 98 start-page: 153 year: 2016 end-page: 170 ident: bib38 article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond publication-title: Renew Energy – start-page: 159 year: 2019 end-page: 185 ident: bib31 article-title: Microbial electrolysis cell for biohydrogen production publication-title: Biohydrogen – volume: 71 start-page: 466 year: 2014 end-page: 472 ident: bib2 article-title: A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas publication-title: Renew Energy – volume: 195 start-page: 5514 year: 2010 end-page: 5519 ident: bib67 article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes publication-title: J Power Sources – volume: 257 start-page: 113938 year: 2020 ident: bib55 article-title: Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint publication-title: Appl Energy – volume: 174 start-page: 253 year: 2017 end-page: 259 ident: bib96 article-title: Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production publication-title: Chemosphere – volume: 32 start-page: 645 year: 2014 end-page: 655 ident: bib53 article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion publication-title: Trends Biotechnol – volume: 14 start-page: 615 year: 2015 end-page: 648 ident: bib74 article-title: Instrumentation and control of anaerobic digestion processes: a review and some research challenges publication-title: Rev Environ Sci Bio/Technol – volume: 207 start-page: 493 year: 2020 end-page: 505 ident: bib89 article-title: A simple microbial electrochemical cell model and dynamic analysis towards control design publication-title: Chem Eng Commun – volume: 42 start-page: 6593 year: 2008 end-page: 6597 ident: bib92 article-title: Kinetic experiments for evaluating the Nernst−Monod model for anode-respiring bacteria (ARB) in a biofilm anode publication-title: Environ Sci Technol – volume: 31 start-page: 1796 year: 2013 end-page: 1807 ident: bib6 article-title: A comprehensive review of microbial electrochemical systems as a platform technology publication-title: Biotechnol Adv – volume: 271 start-page: 50 year: 2015 end-page: 60 ident: bib47 article-title: Developments in microbial fuel cell modeling publication-title: Chem Eng J – volume: 14 year: 1996 ident: bib88 article-title: Numerical solution of initial-value problems in differential-algebraic equations publication-title: SIAM – volume: 39 start-page: 557 year: 2015 end-page: 572 ident: bib7 article-title: Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas publication-title: Int J Energy Res – volume: 53 start-page: 25 year: 2006 end-page: 33 ident: bib73 article-title: Lessons learnt from 15 years of ICA in anaerobic digesters publication-title: Water Sci Technol – volume: 24 start-page: 3055 year: 2009 end-page: 3060 ident: bib15 article-title: Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell publication-title: Biosens Bioelectron – volume: 195 start-page: 79 year: 2010 end-page: 89 ident: bib87 article-title: Modelling and simulation of two-chamber microbial fuel cell publication-title: J Power Sources – volume: 131 start-page: 62 year: 2018 end-page: 73 ident: bib43 article-title: Efficiently “pumping out” value-added resources from wastewater by bioelectrochemical systems: a review from energy perspectives publication-title: Water Res – volume: 71 start-page: 388 year: 2017 end-page: 403 ident: bib1 article-title: Advances in microbial fuel cells for wastewater treatment publication-title: Renew Sustain Energy Rev – start-page: 15 year: 2012 end-page: 28 ident: bib60 article-title: Hydrogen production by cyanobacteria publication-title: Microbial technologies in advanced biofuels production 9781461412083 – volume: 34 start-page: 3653 year: 2009 end-page: 3658 ident: bib56 article-title: Source of methane and methods to control its formation in single chamber microbial electrolysis cells publication-title: Int J Hydrogen Energy – volume: 255 start-page: 308 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib33 article-title: Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.01.133 – volume: 34 start-page: 3653 issue: 9 year: 2009 ident: 10.1016/j.ijhydene.2021.09.021_bib56 article-title: Source of methane and methods to control its formation in single chamber microbial electrolysis cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.03.005 – volume: 163 start-page: 206 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib63 article-title: Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.04.044 – volume: 289 start-page: 180 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib48 article-title: Modeling, optimization and control of bioelectrochemical systems publication-title: Chem Eng J doi: 10.1016/j.cej.2015.11.112 – start-page: 363 year: 2020 ident: 10.1016/j.ijhydene.2021.09.021_bib19 article-title: Microbial metabolism kinetics and interactions in bioelectrosynthesis system – volume: 85 start-page: 1665 issue: 6 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib69 article-title: Scaling up microbial fuel cells and other bioelectrochemical systems publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2378-9 – volume: 281 start-page: 111869 year: 2021 ident: 10.1016/j.ijhydene.2021.09.021_bib58 article-title: Hydrogen production automatic control in continuous microbial electrolysis cells reactors used in wastewater treatment publication-title: J Environ Manag doi: 10.1016/j.jenvman.2020.111869 – volume: 7 start-page: 375 issue: 5 year: 2009 ident: 10.1016/j.ijhydene.2021.09.021_bib41 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2113 – volume: 255 start-page: 39 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib77 article-title: Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: a case of formic acid synthesis publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.01.071 – volume: 94 start-page: 1697 issue: 6 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib49 article-title: Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.5898 – volume: 42 start-page: 6593 issue: 17 year: 2008 ident: 10.1016/j.ijhydene.2021.09.021_bib92 article-title: Kinetic experiments for evaluating the Nernst−Monod model for anode-respiring bacteria (ARB) in a biofilm anode publication-title: Environ Sci Technol doi: 10.1021/es800970w – volume: 33 start-page: 2148 issue: 9 year: 1999 ident: 10.1016/j.ijhydene.2021.09.021_bib80 article-title: A simplified mixed-culture biofilm model publication-title: Water Res doi: 10.1016/S0043-1354(98)00415-1 – volume: 162 start-page: 107714 year: 2020 ident: 10.1016/j.ijhydene.2021.09.021_bib26 article-title: Modeling 3D current and potential distribution in a microbial electrolysis cell with augmented anode surface and non-ideal flow pattern publication-title: Biochem Eng J doi: 10.1016/j.bej.2020.107714 – volume: 45 start-page: 1223 issue: 11 year: 2015 ident: 10.1016/j.ijhydene.2021.09.021_bib95 article-title: Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent publication-title: J Appl Electrochem doi: 10.1007/s10800-015-0864-6 – volume: 180 start-page: 72 year: 2015 ident: 10.1016/j.ijhydene.2021.09.021_bib52 article-title: Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations1 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.12.096 – volume: 42 start-page: 369 issue: 2 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib61 article-title: Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances publication-title: Int J Energy Res doi: 10.1002/er.3780 – volume: 40 start-page: 5181 issue: 17 year: 2006 ident: 10.1016/j.ijhydene.2021.09.021_bib42 article-title: Microbial fuel cells: methodology and technology publication-title: Environ Sci Technol doi: 10.1021/es0605016 – volume: 78 start-page: 8 issue: 1 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib86 article-title: Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2009.04.009 – volume: 17 start-page: 6217 issue: 5 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib17 article-title: Competitive exclusion in a DAE model for microbial electrolysis cells publication-title: Math Biosci Eng doi: 10.3934/mbe.2020329 – start-page: 39 year: 2020 ident: 10.1016/j.ijhydene.2021.09.021_bib27 article-title: Hydrogen production from waste stream with microbial electrolysis cells – volume: 193 start-page: 52 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib51 article-title: System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.04.060 – volume: 8 start-page: 706 issue: 10 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib36 article-title: Microbial electrosynthesis - revisiting the electrical route for microbial production publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2422 – volume: 14 year: 1996 ident: 10.1016/j.ijhydene.2021.09.021_bib88 article-title: Numerical solution of initial-value problems in differential-algebraic equations publication-title: SIAM – volume: 356 start-page: 225 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib32 article-title: Microbial fuel cells: from fundamentals to applications. A review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.03.109 – volume: 24 start-page: 3055 issue: 10 year: 2009 ident: 10.1016/j.ijhydene.2021.09.021_bib15 article-title: Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2009.03.024 – volume: 71 start-page: 466 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib2 article-title: A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas publication-title: Renew Energy doi: 10.1016/j.renene.2014.05.052 – volume: 102 start-page: 4137 issue: 5 year: 2011 ident: 10.1016/j.ijhydene.2021.09.021_bib57 article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.10.137 – volume: 5 start-page: 79 issue: 1 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib54 article-title: Design of microbial fuel cells for practical application: a review and analysis of scale-up studies publication-title: Biofuels doi: 10.4155/bfs.13.69 – volume: 31 start-page: 1632 issue: 12 year: 2006 ident: 10.1016/j.ijhydene.2021.09.021_bib12 article-title: Principle and perspectives of hydrogen production through biocatalyzed electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2005.12.006 – volume: 36 start-page: 10557 issue: 17 year: 2011 ident: 10.1016/j.ijhydene.2021.09.021_bib68 article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.162 – volume: 27 start-page: 107 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib65 article-title: On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2013.12.008 – volume: 174 start-page: 253 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib96 article-title: Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.128 – volume: 1 start-page: 91 issue: 1 year: 2021 ident: 10.1016/j.ijhydene.2021.09.021_bib100 article-title: Mathematical modeling of bio hydrogen production in microbial electrolysis cell reactor publication-title: Int J Adv Res Sci Commun Technol doi: 10.48175/IJARSCT-694 – volume: 56 start-page: 11 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib8 article-title: Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges publication-title: Water Res doi: 10.1016/j.watres.2014.02.031 – volume: 75 start-page: 424 issue: 4 year: 2001 ident: 10.1016/j.ijhydene.2021.09.021_bib79 article-title: Dynamical model development and parameter identification for an anaerobic wastewater treatment process publication-title: Biotechnol Bioeng doi: 10.1002/bit.10036 – volume: 206 start-page: 381 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib9 article-title: Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.04.167 – volume: 356 start-page: 500 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib50 article-title: Bioelectrochemical hydrogen production from urban wastewater on a pilot scale publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.02.087 – volume: 12 start-page: 1088 issue: 3 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib18 article-title: Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode publication-title: Energy Environ Sci doi: 10.1039/C8EE03673J – volume: 195 start-page: 79 issue: 1 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib87 article-title: Modelling and simulation of two-chamber microbial fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.06.101 – volume: 42 start-page: 4172 issue: 15 year: 2008 ident: 10.1016/j.ijhydene.2021.09.021_bib84 article-title: Hydrogen production using single-chamber membrane-free microbial electrolysis cells publication-title: Water Res doi: 10.1016/j.watres.2008.06.015 – volume: 22 start-page: 1079 issue: 6 year: 2012 ident: 10.1016/j.ijhydene.2021.09.021_bib97 article-title: Optimizing energy productivity of microbial electrochemical cells publication-title: J Process Contr doi: 10.1016/j.jprocont.2012.04.005 – volume: 41 start-page: 1984 issue: 9 year: 2007 ident: 10.1016/j.ijhydene.2021.09.021_bib16 article-title: Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes publication-title: Water Res doi: 10.1016/j.watres.2007.01.019 – volume: 56 start-page: 116 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib59 article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.11.015 – volume: 42 start-page: 8630 issue: 23 year: 2008 ident: 10.1016/j.ijhydene.2021.09.021_bib5 article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ Sci Technol doi: 10.1021/es801553z – volume: 39 start-page: 557 issue: 4 year: 2015 ident: 10.1016/j.ijhydene.2021.09.021_bib7 article-title: Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas publication-title: Int J Energy Res doi: 10.1002/er.3273 – volume: 207 start-page: 493 issue: 4 year: 2020 ident: 10.1016/j.ijhydene.2021.09.021_bib89 article-title: A simple microbial electrochemical cell model and dynamic analysis towards control design publication-title: Chem Eng Commun doi: 10.1080/00986445.2019.1605360 – volume: 45 start-page: 5039 issue: 11 year: 2011 ident: 10.1016/j.ijhydene.2021.09.021_bib13 article-title: Multi-population model of a microbial electrolysis cell publication-title: Environ Sci Technol doi: 10.1021/es104268g – volume: 67 start-page: 3 issue: 1 year: 1995 ident: 10.1016/j.ijhydene.2021.09.021_bib81 article-title: Anaerobic digestion and wastewater treatment systems publication-title: Antonie Leeuwenhoek doi: 10.1007/BF00872193 – volume: 73 start-page: 53 year: 2013 ident: 10.1016/j.ijhydene.2021.09.021_bib46 article-title: Overview on the developments of microbial fuel cells publication-title: Biochem Eng J doi: 10.1016/j.bej.2013.01.012 – volume: 227 start-page: 317 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib72 article-title: Dynamical analysis of microfluidic microbial electrolysis cell via integrated experimental investigation and mathematical modeling publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.01.041 – volume: 178 start-page: 257 issue: 3–4 year: 1999 ident: 10.1016/j.ijhydene.2021.09.021_bib101 article-title: Homotopy perturbation technique publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(99)00018-3 – volume: 215 start-page: 254 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib62 article-title: Microbial electrolysis cells for waste biorefinery: a state of the art review publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.03.034 – volume: 71 start-page: 388 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib1 article-title: Advances in microbial fuel cells for wastewater treatment publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.12.069 – volume: 233 start-page: 227 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib10 article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.02.104 – volume: 195 start-page: 5514 issue: 17 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib67 article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.03.061 – volume: 9 start-page: 111 issue: 2 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib71 article-title: A review of modeling bioelectrochemical systems: engineering and statistical aspects publication-title: Energies doi: 10.3390/en9020111 – volume: 18 start-page: 709 issue: 2 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib40 article-title: Sensitivity and bifurcation analysis of a differential-algebraic equation model for a microbial electrolysis cell publication-title: SIAM J Appl Dyn Syst doi: 10.1137/18M1172223 – volume: 34 start-page: 3 issue: 1 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib102 article-title: A kinetic perspective on extracellular electron transfer by anode-respiring bacteria publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2009.00191.x – volume: 53 start-page: 25 issue: 4–5 year: 2006 ident: 10.1016/j.ijhydene.2021.09.021_bib73 article-title: Lessons learnt from 15 years of ICA in anaerobic digesters publication-title: Water Sci Technol doi: 10.2166/wst.2006.107 – volume: 35 issue: 8 year: 1997 ident: 10.1016/j.ijhydene.2021.09.021_bib83 article-title: A simple mathematical model for anaerobic digestion process publication-title: Water Sci Technol doi: 10.2166/wst.1997.0312 – volume: 32 start-page: 727 year: 2013 ident: 10.1016/j.ijhydene.2021.09.021_bib85 article-title: Optimal production of biohydrogen gas via microbial electrolysis cells (MEC) in a controlled batch reactor system publication-title: Chem. Eng. Trans. – volume: 47 start-page: 568 issue: 1 year: 2013 ident: 10.1016/j.ijhydene.2021.09.021_bib34 article-title: Sulfide-driven microbial electrosynthesis publication-title: Environ Sci Technol doi: 10.1021/es303837j – start-page: 15 year: 2012 ident: 10.1016/j.ijhydene.2021.09.021_bib60 article-title: Hydrogen production by cyanobacteria – volume: 14 start-page: 615 issue: 4 year: 2015 ident: 10.1016/j.ijhydene.2021.09.021_bib74 article-title: Instrumentation and control of anaerobic digestion processes: a review and some research challenges publication-title: Rev Environ Sci Bio/Technol doi: 10.1007/s11157-015-9382-6 – volume: 17 start-page: 12561 issue: 19 year: 2015 ident: 10.1016/j.ijhydene.2021.09.021_bib76 article-title: Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO 2 and H 2 O publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP00904A – volume: 102 start-page: 8534 issue: 18 year: 2011 ident: 10.1016/j.ijhydene.2021.09.021_bib24 article-title: Fermentative biohydrogen production systems integration publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.04.051 – volume: 32 start-page: 645 issue: 12 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib53 article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2014.10.004 – volume: 24 start-page: 10 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib29 article-title: Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.11.013 – volume: 1101 year: 2021 ident: 10.1016/j.ijhydene.2021.09.021_bib98 article-title: Dynamic modeling of hydrogen production from photo-fermentation in microbial electrolysis cell using sago waste publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/1101/1/012040 – volume: 31 start-page: 1796 issue: 8 year: 2013 ident: 10.1016/j.ijhydene.2021.09.021_bib6 article-title: A comprehensive review of microbial electrochemical systems as a platform technology publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2013.10.001 – volume: 98 start-page: 153 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib38 article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.002 – volume: 257 start-page: 113938 year: 2020 ident: 10.1016/j.ijhydene.2021.09.021_bib55 article-title: Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113938 – volume: 33 start-page: 2138 issue: 9 year: 2008 ident: 10.1016/j.ijhydene.2021.09.021_bib99 article-title: Photofermentation of malate for biohydrogen production— a modeling approach publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.02.046 – volume: 271 start-page: 50 year: 2015 ident: 10.1016/j.ijhydene.2021.09.021_bib47 article-title: Developments in microbial fuel cell modeling publication-title: Chem Eng J doi: 10.1016/j.cej.2015.02.076 – volume: 373 start-page: 119 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib75 article-title: Models for microbial fuel cells: a critical review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.11.001 – year: 2001 ident: 10.1016/j.ijhydene.2021.09.021_bib94 – volume: 131 start-page: 62 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib43 article-title: Efficiently “pumping out” value-added resources from wastewater by bioelectrochemical systems: a review from energy perspectives publication-title: Water Res doi: 10.1016/j.watres.2017.12.026 – volume: 1 start-page: 129 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib28 article-title: Microbial electrolysis: novel technology for hydrogen production from biomass publication-title: Biofuels doi: 10.4155/bfs.09.9 – volume: 39 start-page: 4317 issue: 11 year: 2005 ident: 10.1016/j.ijhydene.2021.09.021_bib11 article-title: Electrochemically assisted microbial production of hydrogen from acetate publication-title: Environ Sci Technol doi: 10.1021/es050244p – volume: 45 start-page: 65 issue: 10 year: 2002 ident: 10.1016/j.ijhydene.2021.09.021_bib37 article-title: The IWA anaerobic digestion model No 1 (ADM1) publication-title: Water Sci Technol doi: 10.2166/wst.2002.0292 – volume: 20 start-page: 427 issue: 4 year: 1986 ident: 10.1016/j.ijhydene.2021.09.021_bib82 article-title: Dynamic modelling of anaerobic digestion publication-title: Water Res doi: 10.1016/0043-1354(86)90189-2 – volume: 21 start-page: 10761 issue: 20 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib20 article-title: Understanding the interdependence of operating parameters in microbial electrosynthesis: a numerical investigation publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP01288E – volume: 61 start-page: 501 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib39 article-title: Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.04.017 – volume: 98 start-page: 1171 issue: 6 year: 2007 ident: 10.1016/j.ijhydene.2021.09.021_bib93 article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell publication-title: Biotechnol Bioeng doi: 10.1002/bit.21533 – year: 2002 ident: 10.1016/j.ijhydene.2021.09.021_bib90 – start-page: 159 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib31 article-title: Microbial electrolysis cell for biohydrogen production – volume: 42 start-page: 1609 issue: 3 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib64 article-title: Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.166 – volume: 9 start-page: 1724 issue: 4 year: 2020 ident: 10.1016/j.ijhydene.2021.09.021_bib4 article-title: A reduced model for microbial electrolysis cells publication-title: Int J Innovative Technol Explor Eng doi: 10.35940/ijitee.D1613.029420 – volume: 5 start-page: 1012 issue: 6 year: 2012 ident: 10.1016/j.ijhydene.2021.09.021_bib70 article-title: Bioelectrochemical systems: an outlook for practical applications publication-title: ChemSusChem doi: 10.1002/cssc.201100732 – year: 2008 ident: 10.1016/j.ijhydene.2021.09.021_bib44 – volume: vol. 22 start-page: 159 year: 2008 ident: 10.1016/j.ijhydene.2021.09.021_bib14 article-title: Electrochemically assisted biohydrogen production from acetate – volume: 279 start-page: 118463 year: 2020 ident: 10.1016/j.ijhydene.2021.09.021_bib25 article-title: Theoretical and experimental evaluation of the potential-current distribution and the recirculation flow rate effect in the performance of a porous electrode microbial electrolysis cell (MEC) publication-title: Fuel doi: 10.1016/j.fuel.2020.118463 – volume: 56 start-page: 1322 year: 2016 ident: 10.1016/j.ijhydene.2021.09.021_bib45 article-title: Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.029 – volume: 101 start-page: 5256 issue: 14 year: 2010 ident: 10.1016/j.ijhydene.2021.09.021_bib78 article-title: A two-population bio-electrochemical model of a microbial fuel cell publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.01.122 – volume: 7 start-page: 183 issue: 4 year: 2019 ident: 10.1016/j.ijhydene.2021.09.021_bib30 article-title: A dynamic biofilm model for a microbial electrolysis cell publication-title: Processes doi: 10.3390/pr7040183 – volume: 20 start-page: 190 year: 2017 ident: 10.1016/j.ijhydene.2021.09.021_bib35 article-title: Microbial electrosynthesis of carboxylic acids through CO2 reduction with selectively enriched biocatalyst: microbial dynamics publication-title: J CO2 Util. doi: 10.1016/j.jcou.2017.05.011 – volume: 77 start-page: 689 issue: 3 year: 2007 ident: 10.1016/j.ijhydene.2021.09.021_bib91 article-title: Kinetics of consumption of fermentation products by anode-respiring bacteria publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-007-1198-z – volume: 343 start-page: 303 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib22 article-title: Towards automated design of bioelectrochemical systems: a comprehensive review of mathematical models publication-title: Chem Eng J doi: 10.1016/j.cej.2018.03.005 – volume: 173 start-page: 87 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib66 article-title: Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.09.083 – volume: 155 start-page: 387 issue: 4 year: 2011 ident: 10.1016/j.ijhydene.2021.09.021_bib3 article-title: Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2011.07.030 – start-page: 843 year: 2018 ident: 10.1016/j.ijhydene.2021.09.021_bib23 article-title: Biohydrogen production using microbial electrolysis cell: recent advances and future prospects – volume: 31 start-page: 179 issue: 2 year: 2014 ident: 10.1016/j.ijhydene.2021.09.021_bib21 article-title: Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell publication-title: Nat Biotechnol |
| SSID | ssj0017049 |
| Score | 2.4599931 |
| SecondaryResourceType | review_article |
| Snippet | Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 37174 |
| SubjectTerms | Biohydrogen process Mathematical model Microbial electrolysis cell |
| Title | Mathematical model of biohydrogen production in microbial electrolysis cell: A review |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2021.09.021 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3487 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: AKRWK dateStart: 19760101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywpkkcJ47ZqoqqgNoFKnWzHNsRqSCpqjKw8Ns5J05VJCQGpijRnRJdznfn5L7vELqFoiBhQcI9ZnjgUQoblCxPpKdoqHXAch5TC06ezpLJnD4u4kUHjVosjG2rdLG_iel1tHZXfGdNf1UU_jPEXgvB4bBpsX_HagQ7ZXaKweBr2-YRMlcCg7BnpXdQwstBsXz9hOVt6TJJWPOdkvD3BLWTdMZH6NBVi3jYPNAx6pjyBB3scAieovl0S7wKkvVgG1zlOCsquOm6Av_Aq4bVFd4ALkr8XtTcSyDsRuDUpCTYfsG_w0PcYFnO0Hx8_zKaeG5WgqeikGw8ySRP04zx1JDABNxQTYwkOUninEYsYzJSXBrIWDImKokkCdKcWXJ1yrSCGuEcdcuqNBcIwwqlWkY0znILONepTnksmdKZMmBP3UNxayChHJG4nWfxJtqOsaVoDSusYUXABRx6yN_qrRoqjT81eGt_8cMpBMT7P3Qv_6F7hfbtmU1RhF-j7mb9YW6g9thk_dq5-mhv-PA0mX0DvcDZ_Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YE1TeLYccxWVVQF2i60UjfLiR2RCpKqKgMLv51zHlWRkDowRUrulOiLfY_k7juE7iEoCLkXCocb4TmUQoISp6FyEupr7fFUMGqbk0fjcDClzzM2a6Fe0wtjyypr21_Z9NJa12fcGk13kWXuK9he24IjIGmxf8cgBdqljHCbgXW-13UePq9jYJB2rPhGm_C8k83fvmB_W75M4peEp8T_20NteJ3-ETqsw0XcrZ7oGLVMfoIONkgET9F0tGZeBclysg0uUhxnBdx0WcACwYuK1hVeAc5y_JGV5EsgXM_AKVlJsP2E_4C7uGpmOUPT_uOkN3DqYQlOEvhk5SiuRBTFXESGeMYThmpiFElJyFIa8JirIBHKgMtSjCRhoIgXpdyyq1OuEwgSztFOXuTmAmHYolSrgLI4tR3nOtKRYIonOk4M4KnbiDUAyaRmErcDLd5lUzI2lw2w0gIrPSHh0EbuWm9RcWls1RAN_vLXqpBg8LfoXv5D9w7tDSajoRw-jV-u0L69Yv0VEddoZ7X8NDcQiKzi23Kh_QDpl9uS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+model+of+biohydrogen+production+in+microbial+electrolysis+cell%3A+A+review&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Mohd+Asrul%2C+Mohamad+Afiq&rft.au=Atan%2C+Mohd+Farid&rft.au=Abdul+Halim+Yun%2C+Hafizah&rft.au=Lai%2C+Josephine+Chang+Hui&rft.date=2021-10-29&rft.issn=0360-3199&rft.volume=46&rft.issue=75&rft.spage=37174&rft.epage=37191&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.09.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2021_09_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |