Mathematical model of biohydrogen production in microbial electrolysis cell: A review

Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to re...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 46; no. 75; pp. 37174 - 37191
Main Authors Mohd Asrul, Mohamad Afiq, Atan, Mohd Farid, Abdul Halim Yun, Hafizah, Lai, Josephine Chang Hui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 29.10.2021
Subjects
Online AccessGet full text
ISSN0360-3199
1879-3487
DOI10.1016/j.ijhydene.2021.09.021

Cover

Abstract Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to record the non-linearity of the dynamic behavior for biohydrogen processes in an MEC has led to the introduction of computational approach that has the potential to reduce time constraints and optimize experimental costs. Reviews of comparative studies on bioelectrochemical models are widely reported, but there is less emphasis on the MEC model. Therefore, in this paper, a comprehensive review of the MEC mathematical model will be further discussed. The classification of the model with respect to the assumptions, model improvement, and extensive studies based on the model application will be critically analyzed to establish a methodology algorithm flow chart as a guideline for future implementation. [Display omitted] •Advancement of MEC mathematical models.•Classification of MEC mathematical models.•Proposed guideline for the MEC mathematical model implementation.
AbstractList Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to record the non-linearity of the dynamic behavior for biohydrogen processes in an MEC has led to the introduction of computational approach that has the potential to reduce time constraints and optimize experimental costs. Reviews of comparative studies on bioelectrochemical models are widely reported, but there is less emphasis on the MEC model. Therefore, in this paper, a comprehensive review of the MEC mathematical model will be further discussed. The classification of the model with respect to the assumptions, model improvement, and extensive studies based on the model application will be critically analyzed to establish a methodology algorithm flow chart as a guideline for future implementation. [Display omitted] •Advancement of MEC mathematical models.•Classification of MEC mathematical models.•Proposed guideline for the MEC mathematical model implementation.
Author Lai, Josephine Chang Hui
Mohd Asrul, Mohamad Afiq
Abdul Halim Yun, Hafizah
Atan, Mohd Farid
Author_xml – sequence: 1
  givenname: Mohamad Afiq
  orcidid: 0000-0003-3242-2569
  surname: Mohd Asrul
  fullname: Mohd Asrul, Mohamad Afiq
  organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
– sequence: 2
  givenname: Mohd Farid
  orcidid: 0000-0002-4968-1957
  surname: Atan
  fullname: Atan, Mohd Farid
  email: amfarid@unimas.my
  organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
– sequence: 3
  givenname: Hafizah
  orcidid: 0000-0002-6009-7575
  surname: Abdul Halim Yun
  fullname: Abdul Halim Yun, Hafizah
  organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
– sequence: 4
  givenname: Josephine Chang Hui
  orcidid: 0000-0001-5305-0261
  surname: Lai
  fullname: Lai, Josephine Chang Hui
  organization: Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QIIfSRwjFlQVL6mIDV1bjjOhjty4sgOof4-rwoZNV3cz5-rOmaHJ4AdA6JqSnBJa3fS57Tf7FgbIGWE0JzJPcYamtBYy40UtJmhKeEUyTqW8QLMYe0KoIIWcovWrHjew1aM12uGtb8Fh3-HG-lQZ_AcMeBd8-2lG6wdsB7y1JvjGpmNwYMbg3T7aiA04d4sXOMCXhe9LdN5pF-HqN-do_fjwvnzOVm9PL8vFKjOcsjHTQsu6boSsgREgEoqWgWYdq8qu4KIRmhupgXKiS2YqrhmpOyF5WRaiNYzxObo79qZNMQbolLGjPkwdg7ZOUaIOilSv_hSpgyJFpEqR8Oofvgt2q8P-NHh_BCE9lx4OKhoLg4HWhiRFtd6eqvgB3TqIkA
CitedBy_id crossref_primary_10_1016_j_ijhydene_2022_11_153
crossref_primary_10_3390_fractalfract6120736
crossref_primary_10_1016_j_ijhydene_2022_03_120
crossref_primary_10_1016_j_ijhydene_2022_03_197
crossref_primary_10_1016_j_biortech_2022_127641
crossref_primary_10_1016_j_biortech_2021_126498
crossref_primary_10_3390_en15114179
crossref_primary_10_1016_j_ijhydene_2022_06_317
crossref_primary_10_1016_j_clwas_2022_100039
crossref_primary_10_1016_j_ijhydene_2022_10_224
crossref_primary_10_1016_j_ijhydene_2024_12_242
crossref_primary_10_1016_j_ijhydene_2025_01_299
crossref_primary_10_1016_j_cep_2024_109707
crossref_primary_10_1016_j_ijhydene_2022_10_182
crossref_primary_10_1016_j_scenv_2025_100224
crossref_primary_10_1016_j_ijhydene_2023_04_184
Cites_doi 10.1016/j.biortech.2018.01.133
10.1016/j.ijhydene.2009.03.005
10.1016/j.biortech.2014.04.044
10.1016/j.cej.2015.11.112
10.1007/s00253-009-2378-9
10.1016/j.jenvman.2020.111869
10.1038/nrmicro2113
10.1016/j.biortech.2018.01.071
10.1002/jctb.5898
10.1021/es800970w
10.1016/S0043-1354(98)00415-1
10.1016/j.bej.2020.107714
10.1007/s10800-015-0864-6
10.1016/j.biortech.2014.12.096
10.1002/er.3780
10.1021/es0605016
10.1016/j.bioelechem.2009.04.009
10.3934/mbe.2020329
10.1016/j.enconman.2019.04.060
10.1038/nrmicro2422
10.1016/j.jpowsour.2017.03.109
10.1016/j.bios.2009.03.024
10.1016/j.renene.2014.05.052
10.1016/j.biortech.2010.10.137
10.4155/bfs.13.69
10.1016/j.ijhydene.2005.12.006
10.1016/j.ijhydene.2011.05.162
10.1016/j.copbio.2013.12.008
10.1016/j.chemosphere.2017.01.128
10.48175/IJARSCT-694
10.1016/j.watres.2014.02.031
10.1002/bit.10036
10.1016/j.electacta.2016.04.167
10.1016/j.jpowsour.2017.02.087
10.1039/C8EE03673J
10.1016/j.jpowsour.2009.06.101
10.1016/j.watres.2008.06.015
10.1016/j.jprocont.2012.04.005
10.1016/j.watres.2007.01.019
10.1016/j.rser.2015.11.015
10.1021/es801553z
10.1002/er.3273
10.1080/00986445.2019.1605360
10.1021/es104268g
10.1007/BF00872193
10.1016/j.bej.2013.01.012
10.1016/j.electacta.2017.01.041
10.1016/S0045-7825(99)00018-3
10.1016/j.biortech.2016.03.034
10.1016/j.rser.2016.12.069
10.1016/j.biortech.2017.02.104
10.1016/j.jpowsour.2010.03.061
10.3390/en9020111
10.1137/18M1172223
10.1111/j.1574-6976.2009.00191.x
10.2166/wst.2006.107
10.2166/wst.1997.0312
10.1021/es303837j
10.1007/s11157-015-9382-6
10.1039/C5CP00904A
10.1016/j.biortech.2011.04.051
10.1016/j.tibtech.2014.10.004
10.1016/j.jcou.2017.11.013
10.1088/1757-899X/1101/1/012040
10.1016/j.biotechadv.2013.10.001
10.1016/j.renene.2016.03.002
10.1016/j.apenergy.2019.113938
10.1016/j.ijhydene.2008.02.046
10.1016/j.cej.2015.02.076
10.1016/j.jpowsour.2017.11.001
10.1016/j.watres.2017.12.026
10.4155/bfs.09.9
10.1021/es050244p
10.2166/wst.2002.0292
10.1016/0043-1354(86)90189-2
10.1039/C9CP01288E
10.1016/j.rser.2016.04.017
10.1002/bit.21533
10.1016/j.ijhydene.2016.09.166
10.35940/ijitee.D1613.029420
10.1002/cssc.201100732
10.1016/j.fuel.2020.118463
10.1016/j.rser.2015.12.029
10.1016/j.biortech.2010.01.122
10.3390/pr7040183
10.1016/j.jcou.2017.05.011
10.1007/s00253-007-1198-z
10.1016/j.cej.2018.03.005
10.1016/j.biortech.2014.09.083
10.1016/j.jbiotec.2011.07.030
ContentType Journal Article
Copyright 2021 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2021 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2021.09.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 37191
ExternalDocumentID 10_1016_j_ijhydene_2021_09_021
S0360319921035011
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
T9H
WUQ
~HD
ID FETCH-LOGICAL-c312t-a7a988b798e20e09e4d2ea2f265f437b7a3c9ae130a52c63a208f7935547dc223
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Oct 09 00:16:34 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Fri Feb 23 02:43:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 75
Keywords Microbial electrolysis cell
Biohydrogen process
Mathematical model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-a7a988b798e20e09e4d2ea2f265f437b7a3c9ae130a52c63a208f7935547dc223
ORCID 0000-0001-5305-0261
0000-0003-3242-2569
0000-0002-4968-1957
0000-0002-6009-7575
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2021_09_021
crossref_primary_10_1016_j_ijhydene_2021_09_021
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_09_021
PublicationCentury 2000
PublicationDate 2021-10-29
PublicationDateYYYYMMDD 2021-10-29
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-29
  day: 29
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiang, Liu, Zhang, Lu, Luo (bib10) 2017; 233
Logan (bib69) 2010; 85
Sleutels, Ter Heijne, Buisman, Hamelers (bib70) 2012; 5
Dudley, Lu, Ren, Bortz (bib40) 2019; 18
Sun, Yang, Wen, Zhang, Sun (bib29) 2018; 24
ThamizhSuganya, Balaganesan, Rajendran (bib100) 2021; 1
Lu, Hou, Fang, Huang, Ren (bib9) 2016; 206
Guo, Yang (bib19) 2020
Zou, He (bib43) 2018; 131
Batstone, Keller, Angelidaki, Kalyuzhnyi, Pavlostathis, Rozzi, Sanders, Siegrist, Vavilin (bib37) 2002; 45
Alcaraz–Gonzalez, Rodriguez–Valenzuela, Gomez–Martinez, Dotto, Flores–Estrella (bib58) 2021; 281
Hernández-García, Cercado, Rivero, Rivera (bib25) 2020; 279
Marone, Ayala-Campos, Trably, Carmona-Martínez, Moscoviz, Latrille, Steyer, Alcaraz-Gonzalez, Bernet (bib64) 2017; 42
Then, Ramesh, Asrul, Atan, Yun, Lai, Rahman, Abdullah, Wahab (bib98) 2021; 1101
Rabaey, Rozendal (bib36) 2010; 8
Gadkari, Shemfe, Modestra, Mohan, Sadhukhan (bib20) 2019; 21
Wang, Liu, Cheng, Xing, Zhou, Logan (bib56) 2009; 34
Krieg, Sydow, Schröder, Schrader, Holtmann (bib53) 2014; 32
Pinto, Tartakovsky, Srinivasan (bib97) 2012; 22
Bernard, Hadj-Sadok, Dochain, Genovesi, Steyer (bib79) 2001; 75
Torres, Kato Marcus, Rittmann (bib91) 2007; 77
Torres, Marcus, Parameswaran, Rittmann (bib92) 2008; 42
Aboelela, Soliman, Moustafa, Ashour (bib4) 2020; 9
Kato Marcus, Torres, Rittmann (bib93) 2007; 98
Hua, Li, Li, Zhou, Ondon (bib49) 2019; 94
Luo, Sun, Ping, Jin, He (bib71) 2016; 9
Dudley, Ren, Bortz (bib17) 2019; 17
Rivera, Buitrón, Bakonyi, Nemestóthy, Bélafi-Bakó (bib95) 2015; 45
Kumar, Singh, Zularisam (bib45) 2016; 56
Mardanpour, Yaghmaei (bib72) 2017; 227
Recio-Garrido, Perrier, Tartakovsky (bib48) 2016; 289
Modestra, Mohan (bib35) 2017; 20
Costa, Clarke, Philipp, Gescher, Louro, Paquete (bib33) 2018; 255
Escapa, San-Martín, Mateos, Morán (bib52) 2015; 180
Brenan, Campbell, Petzold (bib88) 1996; 14
Pinto, Srinivasan, Escapa, Tartakovsky (bib13) 2011; 45
Varanasi, Veerubhotla, Pandit, Das (bib23) 2018
Lu, Vakki, Aguiar, Xiao, Hurst, Fairchild, Chen, Yang, Gu, Ren (bib18) 2019; 12
Moletta (bib82) 1986; 20
Liu, Wang, Ren, Zhao, Liu, Yu, Lee (bib14) 2008; vol. 22
Guwy, Dinsdale, Kim, Massanet-Nicolau, Premier (bib24) 2011; 102
Rozendal, Hamelers, Euverink, Metz, Buisman (bib12) 2006; 31
Kadier, Simayi, Kalil, Abdeshahian, Hamid (bib2) 2014; 71
Reddy, Chandrasekhar, Mohan (bib3) 2011; 155
Xia, Zhang, Pedrycz, Zhu, Guo (bib75) 2018; 373
Gadkari, Gu, Sadhukhan (bib22) 2018; 343
Logan (bib44) 2008
Pinto, Srinivasan, Manuel, Tartakovsky (bib78) 2010; 101
Torres (bib65) 2014; 27
Rozendal, Hamelers, Molenkamp, Buisman (bib16) 2007; 41
Bajracharya, Sharma, Mohanakrishna, Dominguez Benneton, Strik, Sarma, Pant (bib38) 2016; 98
Kadier, Kalil, Abdeshahian, Chandrasekhar, Mohamed, Azman, Logroño, Simayi, Hamid (bib39) 2016; 61
Ortiz-Martínez, Salar-García, de los Ríos, Hernández-Fernández, Egea, Lozano (bib47) 2015; 271
He (bib101) 1999; 178
Liu, Grot, Logan (bib11) 2005; 39
Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib42) 2006; 40
Gong, Ebrahim, Feist, Embree, Zhang, Lovley, Zengler (bib34) 2013; 47
Picioreanu, van Loosdrecht, Curtis, Scott (bib86) 2010; 78
Tartakovsky, Mehta, Santoyo, Guiot (bib68) 2011; 36
Steyer, Bernard, Batstone, Angelidaki (bib73) 2006; 53
He, Du, Chen, Lu, Cheng, Chang, Wang (bib1) 2017; 71
Oliveira, Simões, Melo, Pinto (bib46) 2013; 73
Kazemi, Biria, Rismani-Yazdi (bib76) 2015; 17
Hernández-García, Cercado, Rodríguez, Rivera, Rivero (bib26) 2020; 162
Azwar, Wahab, Hussain (bib85) 2013; 32
Brown, Harnisch, Wirth, Wahlandt, Dockhorn, Dichtl, Schröder (bib63) 2014; 163
Yahya, Hussain, Abdul Wahab (bib7) 2015; 39
Flores-Estrella, de Jesús Garza-Rubalcava, Haarstrick, Alcaraz-González (bib30) 2019; 7
Rittmann, McCarty (bib94) 2001
Rauch, Vanhooren, Vanrolleghem (bib80) 1999; 33
Sadhukhan, Lloyd, Scott, Premier, Eileen, Curtis, Head (bib59) 2016; 56
Wang, Ren (bib6) 2013; 31
Kumar, Singh, Zularisam, Hai (bib61) 2018; 42
Rousseau, Etcheverry, Roubaud, Basséguy, Délia, Bergel (bib55) 2020; 257
Torres, Marcus, Lee, Parameswaran, Krajmalnik-Brown, Rittmann (bib102) 2010; 34
Wang, Sun, Cao, Wang, Ren, Wu, Logan (bib57) 2011; 102
Khalil (bib90) 2002
Gadhamshetty, Sukumaran, Nirmalakhandan, Theinmyint (bib99) 2008; 33
Baeza, Martínez-Miró, Guerrero, Ruiz, Guisasola (bib50) 2017; 356
Rivera, Bakonyi, Cuautle-Marín, Buitrón (bib96) 2017; 174
Logan, Call, Cheng, Hamelers, Sleutels, Jeremiasse, Rozendal (bib5) 2008; 42
Flores-Estrella, Rodríguez-Valenzuela, Ramírez-Landeros, Alcaraz-González, González-Álvarez (bib89) 2020; 207
Xing, Yang, Li, Cui, Ma, Cai, Gu (bib27) 2020
Hu, Fan, Liu (bib84) 2008; 42
Heidrich, Edwards, Dolfing, Cotterill, Curtis (bib66) 2014; 173
Lettinga (bib81) 1995; 67
Santoro, Arbizzani, Erable, Ieropoulos (bib32) 2017; 356
Logan (bib41) 2009; 7
Chookaew, Prasertsan, Ren (bib21) 2014; 31
Lu, Ren, Xing, Logan (bib15) 2009; 24
Zeng, Choo, Kim, Wu (bib87) 2010; 195
Hallenbeck (bib60) 2012
Liu, Hu, Chignell, Fan (bib28) 2010; 1
Shemfe, Gadkari, Yu, Rasul, Scott, Head, Gu, Sadhukhan (bib77) 2018; 255
Jeyaseelan (bib83) 1997; 35
Cardeña, Cercado, Buitrón (bib31) 2019
Chen, Xu, Wu, E, Lu, Wang, Zuo (bib51) 2019; 193
Manuel, Neburchilov, Wang, Guiot, Tartakovsky (bib67) 2010; 195
Jimenez, Latrille, Harmand, Robles, Ferrer, Gaida, Wolf, Mairet, Bernard, Alcaraz-Gonzalez, Mendez-Acosta, Zitomer, Totzke, Spanjers, Jacobi, Guwy, Dinsdale, Premier, Mazhegrane, Ruiz-Filippi, Seco, Ribeiro, Pauss, Steyer (bib74) 2015; 14
Janicek, Fan, Liu (bib54) 2014; 5
Zhang, Angelidaki (bib8) 2014; 56
Lu, Ren (bib62) 2016; 215
Batstone (10.1016/j.ijhydene.2021.09.021_bib37) 2002; 45
Hua (10.1016/j.ijhydene.2021.09.021_bib49) 2019; 94
Lu (10.1016/j.ijhydene.2021.09.021_bib62) 2016; 215
Wang (10.1016/j.ijhydene.2021.09.021_bib56) 2009; 34
Pinto (10.1016/j.ijhydene.2021.09.021_bib78) 2010; 101
Liu (10.1016/j.ijhydene.2021.09.021_bib28) 2010; 1
Hu (10.1016/j.ijhydene.2021.09.021_bib84) 2008; 42
Sleutels (10.1016/j.ijhydene.2021.09.021_bib70) 2012; 5
Kazemi (10.1016/j.ijhydene.2021.09.021_bib76) 2015; 17
Khalil (10.1016/j.ijhydene.2021.09.021_bib90) 2002
Chookaew (10.1016/j.ijhydene.2021.09.021_bib21) 2014; 31
Kumar (10.1016/j.ijhydene.2021.09.021_bib61) 2018; 42
Lu (10.1016/j.ijhydene.2021.09.021_bib15) 2009; 24
Sadhukhan (10.1016/j.ijhydene.2021.09.021_bib59) 2016; 56
Lu (10.1016/j.ijhydene.2021.09.021_bib9) 2016; 206
Heidrich (10.1016/j.ijhydene.2021.09.021_bib66) 2014; 173
Flores-Estrella (10.1016/j.ijhydene.2021.09.021_bib30) 2019; 7
Pinto (10.1016/j.ijhydene.2021.09.021_bib97) 2012; 22
Baeza (10.1016/j.ijhydene.2021.09.021_bib50) 2017; 356
Gadhamshetty (10.1016/j.ijhydene.2021.09.021_bib99) 2008; 33
Kadier (10.1016/j.ijhydene.2021.09.021_bib39) 2016; 61
Shemfe (10.1016/j.ijhydene.2021.09.021_bib77) 2018; 255
Rittmann (10.1016/j.ijhydene.2021.09.021_bib94) 2001
Manuel (10.1016/j.ijhydene.2021.09.021_bib67) 2010; 195
Zhang (10.1016/j.ijhydene.2021.09.021_bib8) 2014; 56
Reddy (10.1016/j.ijhydene.2021.09.021_bib3) 2011; 155
Torres (10.1016/j.ijhydene.2021.09.021_bib92) 2008; 42
Gadkari (10.1016/j.ijhydene.2021.09.021_bib20) 2019; 21
Guwy (10.1016/j.ijhydene.2021.09.021_bib24) 2011; 102
Moletta (10.1016/j.ijhydene.2021.09.021_bib82) 1986; 20
Liu (10.1016/j.ijhydene.2021.09.021_bib11) 2005; 39
Torres (10.1016/j.ijhydene.2021.09.021_bib65) 2014; 27
Janicek (10.1016/j.ijhydene.2021.09.021_bib54) 2014; 5
He (10.1016/j.ijhydene.2021.09.021_bib1) 2017; 71
Kumar (10.1016/j.ijhydene.2021.09.021_bib45) 2016; 56
Rauch (10.1016/j.ijhydene.2021.09.021_bib80) 1999; 33
Hernández-García (10.1016/j.ijhydene.2021.09.021_bib25) 2020; 279
Aboelela (10.1016/j.ijhydene.2021.09.021_bib4) 2020; 9
Logan (10.1016/j.ijhydene.2021.09.021_bib41) 2009; 7
Luo (10.1016/j.ijhydene.2021.09.021_bib71) 2016; 9
Chen (10.1016/j.ijhydene.2021.09.021_bib51) 2019; 193
Torres (10.1016/j.ijhydene.2021.09.021_bib102) 2010; 34
Rabaey (10.1016/j.ijhydene.2021.09.021_bib36) 2010; 8
Modestra (10.1016/j.ijhydene.2021.09.021_bib35) 2017; 20
Yahya (10.1016/j.ijhydene.2021.09.021_bib7) 2015; 39
Logan (10.1016/j.ijhydene.2021.09.021_bib44) 2008
Bernard (10.1016/j.ijhydene.2021.09.021_bib79) 2001; 75
He (10.1016/j.ijhydene.2021.09.021_bib101) 1999; 178
Steyer (10.1016/j.ijhydene.2021.09.021_bib73) 2006; 53
Wang (10.1016/j.ijhydene.2021.09.021_bib6) 2013; 31
Liu (10.1016/j.ijhydene.2021.09.021_bib14) 2008; vol. 22
Santoro (10.1016/j.ijhydene.2021.09.021_bib32) 2017; 356
Wang (10.1016/j.ijhydene.2021.09.021_bib57) 2011; 102
Xia (10.1016/j.ijhydene.2021.09.021_bib75) 2018; 373
Flores-Estrella (10.1016/j.ijhydene.2021.09.021_bib89) 2020; 207
Escapa (10.1016/j.ijhydene.2021.09.021_bib52) 2015; 180
Cardeña (10.1016/j.ijhydene.2021.09.021_bib31) 2019
Lu (10.1016/j.ijhydene.2021.09.021_bib18) 2019; 12
Krieg (10.1016/j.ijhydene.2021.09.021_bib53) 2014; 32
Logan (10.1016/j.ijhydene.2021.09.021_bib42) 2006; 40
Zou (10.1016/j.ijhydene.2021.09.021_bib43) 2018; 131
Azwar (10.1016/j.ijhydene.2021.09.021_bib85) 2013; 32
Rivera (10.1016/j.ijhydene.2021.09.021_bib96) 2017; 174
Rozendal (10.1016/j.ijhydene.2021.09.021_bib16) 2007; 41
Zeng (10.1016/j.ijhydene.2021.09.021_bib87) 2010; 195
Marone (10.1016/j.ijhydene.2021.09.021_bib64) 2017; 42
Xiang (10.1016/j.ijhydene.2021.09.021_bib10) 2017; 233
Hernández-García (10.1016/j.ijhydene.2021.09.021_bib26) 2020; 162
Costa (10.1016/j.ijhydene.2021.09.021_bib33) 2018; 255
Tartakovsky (10.1016/j.ijhydene.2021.09.021_bib68) 2011; 36
Logan (10.1016/j.ijhydene.2021.09.021_bib69) 2010; 85
Dudley (10.1016/j.ijhydene.2021.09.021_bib17) 2019; 17
Xing (10.1016/j.ijhydene.2021.09.021_bib27) 2020
Rousseau (10.1016/j.ijhydene.2021.09.021_bib55) 2020; 257
Lettinga (10.1016/j.ijhydene.2021.09.021_bib81) 1995; 67
Ortiz-Martínez (10.1016/j.ijhydene.2021.09.021_bib47) 2015; 271
Gong (10.1016/j.ijhydene.2021.09.021_bib34) 2013; 47
Logan (10.1016/j.ijhydene.2021.09.021_bib5) 2008; 42
Dudley (10.1016/j.ijhydene.2021.09.021_bib40) 2019; 18
Mardanpour (10.1016/j.ijhydene.2021.09.021_bib72) 2017; 227
Sun (10.1016/j.ijhydene.2021.09.021_bib29) 2018; 24
Pinto (10.1016/j.ijhydene.2021.09.021_bib13) 2011; 45
Bajracharya (10.1016/j.ijhydene.2021.09.021_bib38) 2016; 98
Recio-Garrido (10.1016/j.ijhydene.2021.09.021_bib48) 2016; 289
Oliveira (10.1016/j.ijhydene.2021.09.021_bib46) 2013; 73
Hallenbeck (10.1016/j.ijhydene.2021.09.021_bib60) 2012
Torres (10.1016/j.ijhydene.2021.09.021_bib91) 2007; 77
Brenan (10.1016/j.ijhydene.2021.09.021_bib88) 1996; 14
Then (10.1016/j.ijhydene.2021.09.021_bib98) 2021; 1101
Gadkari (10.1016/j.ijhydene.2021.09.021_bib22) 2018; 343
Varanasi (10.1016/j.ijhydene.2021.09.021_bib23) 2018
Rivera (10.1016/j.ijhydene.2021.09.021_bib95) 2015; 45
Rozendal (10.1016/j.ijhydene.2021.09.021_bib12) 2006; 31
Kato Marcus (10.1016/j.ijhydene.2021.09.021_bib93) 2007; 98
Brown (10.1016/j.ijhydene.2021.09.021_bib63) 2014; 163
Jeyaseelan (10.1016/j.ijhydene.2021.09.021_bib83) 1997; 35
Kadier (10.1016/j.ijhydene.2021.09.021_bib2) 2014; 71
Jimenez (10.1016/j.ijhydene.2021.09.021_bib74) 2015; 14
Picioreanu (10.1016/j.ijhydene.2021.09.021_bib86) 2010; 78
Guo (10.1016/j.ijhydene.2021.09.021_bib19) 2020
ThamizhSuganya (10.1016/j.ijhydene.2021.09.021_bib100) 2021; 1
Alcaraz–Gonzalez (10.1016/j.ijhydene.2021.09.021_bib58) 2021; 281
References_xml – volume: 17
  start-page: 12561
  year: 2015
  end-page: 12574
  ident: bib76
  article-title: Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO 2 and H 2 O
  publication-title: Phys Chem Chem Phys
– start-page: 39
  year: 2020
  end-page: 70
  ident: bib27
  article-title: Hydrogen production from waste stream with microbial electrolysis cells
  publication-title: Bioelectrosynthesis
– volume: 180
  start-page: 72
  year: 2015
  end-page: 78
  ident: bib52
  article-title: Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations1
  publication-title: Bioresour Technol
– volume: 27
  start-page: 107
  year: 2014
  end-page: 114
  ident: bib65
  article-title: On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications
  publication-title: Curr Opin Biotechnol
– volume: 42
  start-page: 1609
  year: 2017
  end-page: 1621
  ident: bib64
  article-title: Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework
  publication-title: Int J Hydrogen Energy
– volume: 73
  start-page: 53
  year: 2013
  end-page: 64
  ident: bib46
  article-title: Overview on the developments of microbial fuel cells
  publication-title: Biochem Eng J
– volume: 45
  start-page: 65
  year: 2002
  end-page: 73
  ident: bib37
  article-title: The IWA anaerobic digestion model No 1 (ADM1)
  publication-title: Water Sci Technol
– volume: 373
  start-page: 119
  year: 2018
  end-page: 131
  ident: bib75
  article-title: Models for microbial fuel cells: a critical review
  publication-title: J Power Sources
– volume: 5
  start-page: 79
  year: 2014
  end-page: 92
  ident: bib54
  article-title: Design of microbial fuel cells for practical application: a review and analysis of scale-up studies
  publication-title: Biofuels
– volume: 102
  start-page: 4137
  year: 2011
  end-page: 4143
  ident: bib57
  article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
  publication-title: Bioresour Technol
– volume: 5
  start-page: 1012
  year: 2012
  end-page: 1019
  ident: bib70
  article-title: Bioelectrochemical systems: an outlook for practical applications
  publication-title: ChemSusChem
– start-page: 843
  year: 2018
  end-page: 869
  ident: bib23
  article-title: Biohydrogen production using microbial electrolysis cell: recent advances and future prospects
  publication-title: Biomass, biofuels
– volume: 215
  start-page: 254
  year: 2016
  end-page: 264
  ident: bib62
  article-title: Microbial electrolysis cells for waste biorefinery: a state of the art review
  publication-title: Bioresour Technol
– volume: 75
  start-page: 424
  year: 2001
  end-page: 438
  ident: bib79
  article-title: Dynamical model development and parameter identification for an anaerobic wastewater treatment process
  publication-title: Biotechnol Bioeng
– volume: 77
  start-page: 689
  year: 2007
  end-page: 697
  ident: bib91
  article-title: Kinetics of consumption of fermentation products by anode-respiring bacteria
  publication-title: Appl Microbiol Biotechnol
– volume: 85
  start-page: 1665
  year: 2010
  end-page: 1671
  ident: bib69
  article-title: Scaling up microbial fuel cells and other bioelectrochemical systems
  publication-title: Appl Microbiol Biotechnol
– volume: 162
  start-page: 107714
  year: 2020
  ident: bib26
  article-title: Modeling 3D current and potential distribution in a microbial electrolysis cell with augmented anode surface and non-ideal flow pattern
  publication-title: Biochem Eng J
– volume: 78
  start-page: 8
  year: 2010
  end-page: 24
  ident: bib86
  article-title: Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance
  publication-title: Bioelectrochemistry
– year: 2008
  ident: bib44
  article-title: Microbial fuel cells
– volume: 17
  start-page: 6217
  year: 2019
  end-page: 6239
  ident: bib17
  article-title: Competitive exclusion in a DAE model for microbial electrolysis cells
  publication-title: Math Biosci Eng
– volume: 18
  start-page: 709
  year: 2019
  end-page: 728
  ident: bib40
  article-title: Sensitivity and bifurcation analysis of a differential-algebraic equation model for a microbial electrolysis cell
  publication-title: SIAM J Appl Dyn Syst
– volume: 56
  start-page: 1322
  year: 2016
  end-page: 1336
  ident: bib45
  article-title: Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications
  publication-title: Renew Sustain Energy Rev
– volume: 56
  start-page: 11
  year: 2014
  end-page: 25
  ident: bib8
  article-title: Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges
  publication-title: Water Res
– volume: 36
  start-page: 10557
  year: 2011
  end-page: 10564
  ident: bib68
  article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage
  publication-title: Int J Hydrogen Energy
– volume: 33
  start-page: 2148
  year: 1999
  end-page: 2162
  ident: bib80
  article-title: A simplified mixed-culture biofilm model
  publication-title: Water Res
– volume: 255
  start-page: 308
  year: 2018
  end-page: 317
  ident: bib33
  article-title: Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins
  publication-title: Bioresour Technol
– volume: 94
  start-page: 1697
  year: 2019
  end-page: 1711
  ident: bib49
  article-title: Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge
  publication-title: J Chem Technol Biotechnol
– volume: 8
  start-page: 706
  year: 2010
  end-page: 716
  ident: bib36
  article-title: Microbial electrosynthesis - revisiting the electrical route for microbial production
  publication-title: Nat Rev Microbiol
– year: 2001
  ident: bib94
  article-title: Environmental biotechnology: principles and applications
– volume: 178
  start-page: 257
  year: 1999
  end-page: 262
  ident: bib101
  article-title: Homotopy perturbation technique
  publication-title: Comput Methods Appl Mech Eng
– volume: 206
  start-page: 381
  year: 2016
  end-page: 387
  ident: bib9
  article-title: Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells
  publication-title: Electrochim Acta
– volume: 155
  start-page: 387
  year: 2011
  end-page: 395
  ident: bib3
  article-title: Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment
  publication-title: J Biotechnol
– volume: 56
  start-page: 116
  year: 2016
  end-page: 132
  ident: bib59
  article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2
  publication-title: Renew Sustain Energy Rev
– volume: 9
  start-page: 111
  year: 2016
  ident: bib71
  article-title: A review of modeling bioelectrochemical systems: engineering and statistical aspects
  publication-title: Energies
– volume: 7
  start-page: 375
  year: 2009
  end-page: 381
  ident: bib41
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nat Rev Microbiol
– volume: 98
  start-page: 1171
  year: 2007
  end-page: 1182
  ident: bib93
  article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell
  publication-title: Biotechnol Bioeng
– volume: vol. 22
  start-page: 159
  year: 2008
  end-page: 163
  ident: bib14
  article-title: Electrochemically assisted biohydrogen production from acetate
  publication-title: Energy and fuels
– volume: 1101
  year: 2021
  ident: bib98
  article-title: Dynamic modeling of hydrogen production from photo-fermentation in microbial electrolysis cell using sago waste
  publication-title: IOP Conf Ser Mater Sci Eng
– volume: 35
  year: 1997
  ident: bib83
  article-title: A simple mathematical model for anaerobic digestion process
  publication-title: Water Sci Technol
– volume: 22
  start-page: 1079
  year: 2012
  end-page: 1086
  ident: bib97
  article-title: Optimizing energy productivity of microbial electrochemical cells
  publication-title: J Process Contr
– volume: 102
  start-page: 8534
  year: 2011
  end-page: 8542
  ident: bib24
  article-title: Fermentative biohydrogen production systems integration
  publication-title: Bioresour Technol
– volume: 32
  start-page: 727
  year: 2013
  end-page: 732
  ident: bib85
  article-title: Optimal production of biohydrogen gas via microbial electrolysis cells (MEC) in a controlled batch reactor system
  publication-title: Chem. Eng. Trans.
– volume: 20
  start-page: 427
  year: 1986
  end-page: 434
  ident: bib82
  article-title: Dynamic modelling of anaerobic digestion
  publication-title: Water Res
– volume: 12
  start-page: 1088
  year: 2019
  end-page: 1099
  ident: bib18
  article-title: Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode
  publication-title: Energy Environ Sci
– volume: 33
  start-page: 2138
  year: 2008
  end-page: 2146
  ident: bib99
  article-title: Photofermentation of malate for biohydrogen production— a modeling approach
  publication-title: Int J Hydrogen Energy
– volume: 279
  start-page: 118463
  year: 2020
  ident: bib25
  article-title: Theoretical and experimental evaluation of the potential-current distribution and the recirculation flow rate effect in the performance of a porous electrode microbial electrolysis cell (MEC)
  publication-title: Fuel
– volume: 31
  start-page: 179
  year: 2014
  end-page: 184
  ident: bib21
  article-title: Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell
  publication-title: Nat Biotechnol
– volume: 21
  start-page: 10761
  year: 2019
  end-page: 10772
  ident: bib20
  article-title: Understanding the interdependence of operating parameters in microbial electrosynthesis: a numerical investigation
  publication-title: Phys Chem Chem Phys
– volume: 173
  start-page: 87
  year: 2014
  end-page: 95
  ident: bib66
  article-title: Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period
  publication-title: Bioresour Technol
– volume: 45
  start-page: 1223
  year: 2015
  end-page: 1229
  ident: bib95
  article-title: Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent
  publication-title: J Appl Electrochem
– volume: 20
  start-page: 190
  year: 2017
  end-page: 199
  ident: bib35
  article-title: Microbial electrosynthesis of carboxylic acids through CO2 reduction with selectively enriched biocatalyst: microbial dynamics
  publication-title: J CO2 Util.
– volume: 343
  start-page: 303
  year: 2018
  end-page: 316
  ident: bib22
  article-title: Towards automated design of bioelectrochemical systems: a comprehensive review of mathematical models
  publication-title: Chem Eng J
– volume: 289
  start-page: 180
  year: 2016
  end-page: 190
  ident: bib48
  article-title: Modeling, optimization and control of bioelectrochemical systems
  publication-title: Chem Eng J
– volume: 1
  start-page: 91
  year: 2021
  end-page: 100
  ident: bib100
  article-title: Mathematical modeling of bio hydrogen production in microbial electrolysis cell reactor
  publication-title: Int J Adv Res Sci Commun Technol
– volume: 45
  start-page: 5039
  year: 2011
  end-page: 5046
  ident: bib13
  article-title: Multi-population model of a microbial electrolysis cell
  publication-title: Environ Sci Technol
– year: 2002
  ident: bib90
  article-title: Nonlinear systems
– volume: 193
  start-page: 52
  year: 2019
  end-page: 63
  ident: bib51
  article-title: System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater
  publication-title: Energy Convers Manag
– volume: 67
  start-page: 3
  year: 1995
  end-page: 28
  ident: bib81
  article-title: Anaerobic digestion and wastewater treatment systems
  publication-title: Antonie Leeuwenhoek
– volume: 47
  start-page: 568
  year: 2013
  end-page: 573
  ident: bib34
  article-title: Sulfide-driven microbial electrosynthesis
  publication-title: Environ Sci Technol
– volume: 356
  start-page: 225
  year: 2017
  end-page: 244
  ident: bib32
  article-title: Microbial fuel cells: from fundamentals to applications. A review
  publication-title: J Power Sources
– volume: 1
  start-page: 129
  year: 2010
  end-page: 142
  ident: bib28
  article-title: Microbial electrolysis: novel technology for hydrogen production from biomass
  publication-title: Biofuels
– volume: 42
  start-page: 4172
  year: 2008
  end-page: 4178
  ident: bib84
  article-title: Hydrogen production using single-chamber membrane-free microbial electrolysis cells
  publication-title: Water Res
– volume: 163
  start-page: 206
  year: 2014
  end-page: 213
  ident: bib63
  article-title: Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell
  publication-title: Bioresour Technol
– volume: 34
  start-page: 3
  year: 2010
  end-page: 17
  ident: bib102
  article-title: A kinetic perspective on extracellular electron transfer by anode-respiring bacteria
  publication-title: FEMS Microbiol Rev
– volume: 281
  start-page: 111869
  year: 2021
  ident: bib58
  article-title: Hydrogen production automatic control in continuous microbial electrolysis cells reactors used in wastewater treatment
  publication-title: J Environ Manag
– volume: 101
  start-page: 5256
  year: 2010
  end-page: 5265
  ident: bib78
  article-title: A two-population bio-electrochemical model of a microbial fuel cell
  publication-title: Bioresour Technol
– volume: 9
  start-page: 1724
  year: 2020
  end-page: 1730
  ident: bib4
  article-title: A reduced model for microbial electrolysis cells
  publication-title: Int J Innovative Technol Explor Eng
– volume: 233
  start-page: 227
  year: 2017
  end-page: 235
  ident: bib10
  article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane
  publication-title: Bioresour Technol
– volume: 39
  start-page: 4317
  year: 2005
  end-page: 4320
  ident: bib11
  article-title: Electrochemically assisted microbial production of hydrogen from acetate
  publication-title: Environ Sci Technol
– volume: 61
  start-page: 501
  year: 2016
  end-page: 525
  ident: bib39
  article-title: Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals
  publication-title: Renew Sustain Energy Rev
– volume: 40
  start-page: 5181
  year: 2006
  end-page: 5192
  ident: bib42
  article-title: Microbial fuel cells: methodology and technology
  publication-title: Environ Sci Technol
– volume: 42
  start-page: 8630
  year: 2008
  end-page: 8640
  ident: bib5
  article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ Sci Technol
– start-page: 363
  year: 2020
  end-page: 394
  ident: bib19
  article-title: Microbial metabolism kinetics and interactions in bioelectrosynthesis system
  publication-title: Bioelectrosynthesis
– volume: 255
  start-page: 39
  year: 2018
  end-page: 49
  ident: bib77
  article-title: Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: a case of formic acid synthesis
  publication-title: Bioresour Technol
– volume: 41
  start-page: 1984
  year: 2007
  end-page: 1994
  ident: bib16
  article-title: Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes
  publication-title: Water Res
– volume: 31
  start-page: 1632
  year: 2006
  end-page: 1640
  ident: bib12
  article-title: Principle and perspectives of hydrogen production through biocatalyzed electrolysis
  publication-title: Int J Hydrogen Energy
– volume: 227
  start-page: 317
  year: 2017
  end-page: 329
  ident: bib72
  article-title: Dynamical analysis of microfluidic microbial electrolysis cell via integrated experimental investigation and mathematical modeling
  publication-title: Electrochim Acta
– volume: 356
  start-page: 500
  year: 2017
  end-page: 509
  ident: bib50
  article-title: Bioelectrochemical hydrogen production from urban wastewater on a pilot scale
  publication-title: J Power Sources
– volume: 24
  start-page: 10
  year: 2018
  end-page: 21
  ident: bib29
  article-title: Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor
  publication-title: J. CO2 Util.
– volume: 7
  start-page: 183
  year: 2019
  ident: bib30
  article-title: A dynamic biofilm model for a microbial electrolysis cell
  publication-title: Processes
– volume: 42
  start-page: 369
  year: 2018
  end-page: 394
  ident: bib61
  article-title: Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances
  publication-title: Int J Energy Res
– volume: 98
  start-page: 153
  year: 2016
  end-page: 170
  ident: bib38
  article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond
  publication-title: Renew Energy
– start-page: 159
  year: 2019
  end-page: 185
  ident: bib31
  article-title: Microbial electrolysis cell for biohydrogen production
  publication-title: Biohydrogen
– volume: 71
  start-page: 466
  year: 2014
  end-page: 472
  ident: bib2
  article-title: A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas
  publication-title: Renew Energy
– volume: 195
  start-page: 5514
  year: 2010
  end-page: 5519
  ident: bib67
  article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes
  publication-title: J Power Sources
– volume: 257
  start-page: 113938
  year: 2020
  ident: bib55
  article-title: Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint
  publication-title: Appl Energy
– volume: 174
  start-page: 253
  year: 2017
  end-page: 259
  ident: bib96
  article-title: Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production
  publication-title: Chemosphere
– volume: 32
  start-page: 645
  year: 2014
  end-page: 655
  ident: bib53
  article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion
  publication-title: Trends Biotechnol
– volume: 14
  start-page: 615
  year: 2015
  end-page: 648
  ident: bib74
  article-title: Instrumentation and control of anaerobic digestion processes: a review and some research challenges
  publication-title: Rev Environ Sci Bio/Technol
– volume: 207
  start-page: 493
  year: 2020
  end-page: 505
  ident: bib89
  article-title: A simple microbial electrochemical cell model and dynamic analysis towards control design
  publication-title: Chem Eng Commun
– volume: 42
  start-page: 6593
  year: 2008
  end-page: 6597
  ident: bib92
  article-title: Kinetic experiments for evaluating the Nernst−Monod model for anode-respiring bacteria (ARB) in a biofilm anode
  publication-title: Environ Sci Technol
– volume: 31
  start-page: 1796
  year: 2013
  end-page: 1807
  ident: bib6
  article-title: A comprehensive review of microbial electrochemical systems as a platform technology
  publication-title: Biotechnol Adv
– volume: 271
  start-page: 50
  year: 2015
  end-page: 60
  ident: bib47
  article-title: Developments in microbial fuel cell modeling
  publication-title: Chem Eng J
– volume: 14
  year: 1996
  ident: bib88
  article-title: Numerical solution of initial-value problems in differential-algebraic equations
  publication-title: SIAM
– volume: 39
  start-page: 557
  year: 2015
  end-page: 572
  ident: bib7
  article-title: Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas
  publication-title: Int J Energy Res
– volume: 53
  start-page: 25
  year: 2006
  end-page: 33
  ident: bib73
  article-title: Lessons learnt from 15 years of ICA in anaerobic digesters
  publication-title: Water Sci Technol
– volume: 24
  start-page: 3055
  year: 2009
  end-page: 3060
  ident: bib15
  article-title: Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell
  publication-title: Biosens Bioelectron
– volume: 195
  start-page: 79
  year: 2010
  end-page: 89
  ident: bib87
  article-title: Modelling and simulation of two-chamber microbial fuel cell
  publication-title: J Power Sources
– volume: 131
  start-page: 62
  year: 2018
  end-page: 73
  ident: bib43
  article-title: Efficiently “pumping out” value-added resources from wastewater by bioelectrochemical systems: a review from energy perspectives
  publication-title: Water Res
– volume: 71
  start-page: 388
  year: 2017
  end-page: 403
  ident: bib1
  article-title: Advances in microbial fuel cells for wastewater treatment
  publication-title: Renew Sustain Energy Rev
– start-page: 15
  year: 2012
  end-page: 28
  ident: bib60
  article-title: Hydrogen production by cyanobacteria
  publication-title: Microbial technologies in advanced biofuels production 9781461412083
– volume: 34
  start-page: 3653
  year: 2009
  end-page: 3658
  ident: bib56
  article-title: Source of methane and methods to control its formation in single chamber microbial electrolysis cells
  publication-title: Int J Hydrogen Energy
– volume: 255
  start-page: 308
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib33
  article-title: Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.01.133
– volume: 34
  start-page: 3653
  issue: 9
  year: 2009
  ident: 10.1016/j.ijhydene.2021.09.021_bib56
  article-title: Source of methane and methods to control its formation in single chamber microbial electrolysis cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.03.005
– volume: 163
  start-page: 206
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib63
  article-title: Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.04.044
– volume: 289
  start-page: 180
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib48
  article-title: Modeling, optimization and control of bioelectrochemical systems
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.11.112
– start-page: 363
  year: 2020
  ident: 10.1016/j.ijhydene.2021.09.021_bib19
  article-title: Microbial metabolism kinetics and interactions in bioelectrosynthesis system
– volume: 85
  start-page: 1665
  issue: 6
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib69
  article-title: Scaling up microbial fuel cells and other bioelectrochemical systems
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2378-9
– volume: 281
  start-page: 111869
  year: 2021
  ident: 10.1016/j.ijhydene.2021.09.021_bib58
  article-title: Hydrogen production automatic control in continuous microbial electrolysis cells reactors used in wastewater treatment
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2020.111869
– volume: 7
  start-page: 375
  issue: 5
  year: 2009
  ident: 10.1016/j.ijhydene.2021.09.021_bib41
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2113
– volume: 255
  start-page: 39
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib77
  article-title: Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: a case of formic acid synthesis
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.01.071
– volume: 94
  start-page: 1697
  issue: 6
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib49
  article-title: Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.5898
– volume: 42
  start-page: 6593
  issue: 17
  year: 2008
  ident: 10.1016/j.ijhydene.2021.09.021_bib92
  article-title: Kinetic experiments for evaluating the Nernst−Monod model for anode-respiring bacteria (ARB) in a biofilm anode
  publication-title: Environ Sci Technol
  doi: 10.1021/es800970w
– volume: 33
  start-page: 2148
  issue: 9
  year: 1999
  ident: 10.1016/j.ijhydene.2021.09.021_bib80
  article-title: A simplified mixed-culture biofilm model
  publication-title: Water Res
  doi: 10.1016/S0043-1354(98)00415-1
– volume: 162
  start-page: 107714
  year: 2020
  ident: 10.1016/j.ijhydene.2021.09.021_bib26
  article-title: Modeling 3D current and potential distribution in a microbial electrolysis cell with augmented anode surface and non-ideal flow pattern
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2020.107714
– volume: 45
  start-page: 1223
  issue: 11
  year: 2015
  ident: 10.1016/j.ijhydene.2021.09.021_bib95
  article-title: Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent
  publication-title: J Appl Electrochem
  doi: 10.1007/s10800-015-0864-6
– volume: 180
  start-page: 72
  year: 2015
  ident: 10.1016/j.ijhydene.2021.09.021_bib52
  article-title: Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations1
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.12.096
– volume: 42
  start-page: 369
  issue: 2
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib61
  article-title: Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances
  publication-title: Int J Energy Res
  doi: 10.1002/er.3780
– volume: 40
  start-page: 5181
  issue: 17
  year: 2006
  ident: 10.1016/j.ijhydene.2021.09.021_bib42
  article-title: Microbial fuel cells: methodology and technology
  publication-title: Environ Sci Technol
  doi: 10.1021/es0605016
– volume: 78
  start-page: 8
  issue: 1
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib86
  article-title: Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2009.04.009
– volume: 17
  start-page: 6217
  issue: 5
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib17
  article-title: Competitive exclusion in a DAE model for microbial electrolysis cells
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2020329
– start-page: 39
  year: 2020
  ident: 10.1016/j.ijhydene.2021.09.021_bib27
  article-title: Hydrogen production from waste stream with microbial electrolysis cells
– volume: 193
  start-page: 52
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib51
  article-title: System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.04.060
– volume: 8
  start-page: 706
  issue: 10
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib36
  article-title: Microbial electrosynthesis - revisiting the electrical route for microbial production
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2422
– volume: 14
  year: 1996
  ident: 10.1016/j.ijhydene.2021.09.021_bib88
  article-title: Numerical solution of initial-value problems in differential-algebraic equations
  publication-title: SIAM
– volume: 356
  start-page: 225
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib32
  article-title: Microbial fuel cells: from fundamentals to applications. A review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.03.109
– volume: 24
  start-page: 3055
  issue: 10
  year: 2009
  ident: 10.1016/j.ijhydene.2021.09.021_bib15
  article-title: Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2009.03.024
– volume: 71
  start-page: 466
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib2
  article-title: A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.05.052
– volume: 102
  start-page: 4137
  issue: 5
  year: 2011
  ident: 10.1016/j.ijhydene.2021.09.021_bib57
  article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.10.137
– volume: 5
  start-page: 79
  issue: 1
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib54
  article-title: Design of microbial fuel cells for practical application: a review and analysis of scale-up studies
  publication-title: Biofuels
  doi: 10.4155/bfs.13.69
– volume: 31
  start-page: 1632
  issue: 12
  year: 2006
  ident: 10.1016/j.ijhydene.2021.09.021_bib12
  article-title: Principle and perspectives of hydrogen production through biocatalyzed electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2005.12.006
– volume: 36
  start-page: 10557
  issue: 17
  year: 2011
  ident: 10.1016/j.ijhydene.2021.09.021_bib68
  article-title: Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.162
– volume: 27
  start-page: 107
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib65
  article-title: On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2013.12.008
– volume: 174
  start-page: 253
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib96
  article-title: Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.128
– volume: 1
  start-page: 91
  issue: 1
  year: 2021
  ident: 10.1016/j.ijhydene.2021.09.021_bib100
  article-title: Mathematical modeling of bio hydrogen production in microbial electrolysis cell reactor
  publication-title: Int J Adv Res Sci Commun Technol
  doi: 10.48175/IJARSCT-694
– volume: 56
  start-page: 11
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib8
  article-title: Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.02.031
– volume: 75
  start-page: 424
  issue: 4
  year: 2001
  ident: 10.1016/j.ijhydene.2021.09.021_bib79
  article-title: Dynamical model development and parameter identification for an anaerobic wastewater treatment process
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.10036
– volume: 206
  start-page: 381
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib9
  article-title: Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.04.167
– volume: 356
  start-page: 500
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib50
  article-title: Bioelectrochemical hydrogen production from urban wastewater on a pilot scale
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.02.087
– volume: 12
  start-page: 1088
  issue: 3
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib18
  article-title: Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE03673J
– volume: 195
  start-page: 79
  issue: 1
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib87
  article-title: Modelling and simulation of two-chamber microbial fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.06.101
– volume: 42
  start-page: 4172
  issue: 15
  year: 2008
  ident: 10.1016/j.ijhydene.2021.09.021_bib84
  article-title: Hydrogen production using single-chamber membrane-free microbial electrolysis cells
  publication-title: Water Res
  doi: 10.1016/j.watres.2008.06.015
– volume: 22
  start-page: 1079
  issue: 6
  year: 2012
  ident: 10.1016/j.ijhydene.2021.09.021_bib97
  article-title: Optimizing energy productivity of microbial electrochemical cells
  publication-title: J Process Contr
  doi: 10.1016/j.jprocont.2012.04.005
– volume: 41
  start-page: 1984
  issue: 9
  year: 2007
  ident: 10.1016/j.ijhydene.2021.09.021_bib16
  article-title: Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.01.019
– volume: 56
  start-page: 116
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib59
  article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.11.015
– volume: 42
  start-page: 8630
  issue: 23
  year: 2008
  ident: 10.1016/j.ijhydene.2021.09.021_bib5
  article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ Sci Technol
  doi: 10.1021/es801553z
– volume: 39
  start-page: 557
  issue: 4
  year: 2015
  ident: 10.1016/j.ijhydene.2021.09.021_bib7
  article-title: Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas
  publication-title: Int J Energy Res
  doi: 10.1002/er.3273
– volume: 207
  start-page: 493
  issue: 4
  year: 2020
  ident: 10.1016/j.ijhydene.2021.09.021_bib89
  article-title: A simple microbial electrochemical cell model and dynamic analysis towards control design
  publication-title: Chem Eng Commun
  doi: 10.1080/00986445.2019.1605360
– volume: 45
  start-page: 5039
  issue: 11
  year: 2011
  ident: 10.1016/j.ijhydene.2021.09.021_bib13
  article-title: Multi-population model of a microbial electrolysis cell
  publication-title: Environ Sci Technol
  doi: 10.1021/es104268g
– volume: 67
  start-page: 3
  issue: 1
  year: 1995
  ident: 10.1016/j.ijhydene.2021.09.021_bib81
  article-title: Anaerobic digestion and wastewater treatment systems
  publication-title: Antonie Leeuwenhoek
  doi: 10.1007/BF00872193
– volume: 73
  start-page: 53
  year: 2013
  ident: 10.1016/j.ijhydene.2021.09.021_bib46
  article-title: Overview on the developments of microbial fuel cells
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2013.01.012
– volume: 227
  start-page: 317
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib72
  article-title: Dynamical analysis of microfluidic microbial electrolysis cell via integrated experimental investigation and mathematical modeling
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2017.01.041
– volume: 178
  start-page: 257
  issue: 3–4
  year: 1999
  ident: 10.1016/j.ijhydene.2021.09.021_bib101
  article-title: Homotopy perturbation technique
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(99)00018-3
– volume: 215
  start-page: 254
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib62
  article-title: Microbial electrolysis cells for waste biorefinery: a state of the art review
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.03.034
– volume: 71
  start-page: 388
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib1
  article-title: Advances in microbial fuel cells for wastewater treatment
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.12.069
– volume: 233
  start-page: 227
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib10
  article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.02.104
– volume: 195
  start-page: 5514
  issue: 17
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib67
  article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.03.061
– volume: 9
  start-page: 111
  issue: 2
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib71
  article-title: A review of modeling bioelectrochemical systems: engineering and statistical aspects
  publication-title: Energies
  doi: 10.3390/en9020111
– volume: 18
  start-page: 709
  issue: 2
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib40
  article-title: Sensitivity and bifurcation analysis of a differential-algebraic equation model for a microbial electrolysis cell
  publication-title: SIAM J Appl Dyn Syst
  doi: 10.1137/18M1172223
– volume: 34
  start-page: 3
  issue: 1
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib102
  article-title: A kinetic perspective on extracellular electron transfer by anode-respiring bacteria
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2009.00191.x
– volume: 53
  start-page: 25
  issue: 4–5
  year: 2006
  ident: 10.1016/j.ijhydene.2021.09.021_bib73
  article-title: Lessons learnt from 15 years of ICA in anaerobic digesters
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2006.107
– volume: 35
  issue: 8
  year: 1997
  ident: 10.1016/j.ijhydene.2021.09.021_bib83
  article-title: A simple mathematical model for anaerobic digestion process
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1997.0312
– volume: 32
  start-page: 727
  year: 2013
  ident: 10.1016/j.ijhydene.2021.09.021_bib85
  article-title: Optimal production of biohydrogen gas via microbial electrolysis cells (MEC) in a controlled batch reactor system
  publication-title: Chem. Eng. Trans.
– volume: 47
  start-page: 568
  issue: 1
  year: 2013
  ident: 10.1016/j.ijhydene.2021.09.021_bib34
  article-title: Sulfide-driven microbial electrosynthesis
  publication-title: Environ Sci Technol
  doi: 10.1021/es303837j
– start-page: 15
  year: 2012
  ident: 10.1016/j.ijhydene.2021.09.021_bib60
  article-title: Hydrogen production by cyanobacteria
– volume: 14
  start-page: 615
  issue: 4
  year: 2015
  ident: 10.1016/j.ijhydene.2021.09.021_bib74
  article-title: Instrumentation and control of anaerobic digestion processes: a review and some research challenges
  publication-title: Rev Environ Sci Bio/Technol
  doi: 10.1007/s11157-015-9382-6
– volume: 17
  start-page: 12561
  issue: 19
  year: 2015
  ident: 10.1016/j.ijhydene.2021.09.021_bib76
  article-title: Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO 2 and H 2 O
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP00904A
– volume: 102
  start-page: 8534
  issue: 18
  year: 2011
  ident: 10.1016/j.ijhydene.2021.09.021_bib24
  article-title: Fermentative biohydrogen production systems integration
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2011.04.051
– volume: 32
  start-page: 645
  issue: 12
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib53
  article-title: Reactor concepts for bioelectrochemical syntheses and energy conversion
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2014.10.004
– volume: 24
  start-page: 10
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib29
  article-title: Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.11.013
– volume: 1101
  year: 2021
  ident: 10.1016/j.ijhydene.2021.09.021_bib98
  article-title: Dynamic modeling of hydrogen production from photo-fermentation in microbial electrolysis cell using sago waste
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/1101/1/012040
– volume: 31
  start-page: 1796
  issue: 8
  year: 2013
  ident: 10.1016/j.ijhydene.2021.09.021_bib6
  article-title: A comprehensive review of microbial electrochemical systems as a platform technology
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2013.10.001
– volume: 98
  start-page: 153
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib38
  article-title: An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.002
– volume: 257
  start-page: 113938
  year: 2020
  ident: 10.1016/j.ijhydene.2021.09.021_bib55
  article-title: Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113938
– volume: 33
  start-page: 2138
  issue: 9
  year: 2008
  ident: 10.1016/j.ijhydene.2021.09.021_bib99
  article-title: Photofermentation of malate for biohydrogen production— a modeling approach
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.02.046
– volume: 271
  start-page: 50
  year: 2015
  ident: 10.1016/j.ijhydene.2021.09.021_bib47
  article-title: Developments in microbial fuel cell modeling
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.02.076
– volume: 373
  start-page: 119
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib75
  article-title: Models for microbial fuel cells: a critical review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.11.001
– year: 2001
  ident: 10.1016/j.ijhydene.2021.09.021_bib94
– volume: 131
  start-page: 62
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib43
  article-title: Efficiently “pumping out” value-added resources from wastewater by bioelectrochemical systems: a review from energy perspectives
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.12.026
– volume: 1
  start-page: 129
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib28
  article-title: Microbial electrolysis: novel technology for hydrogen production from biomass
  publication-title: Biofuels
  doi: 10.4155/bfs.09.9
– volume: 39
  start-page: 4317
  issue: 11
  year: 2005
  ident: 10.1016/j.ijhydene.2021.09.021_bib11
  article-title: Electrochemically assisted microbial production of hydrogen from acetate
  publication-title: Environ Sci Technol
  doi: 10.1021/es050244p
– volume: 45
  start-page: 65
  issue: 10
  year: 2002
  ident: 10.1016/j.ijhydene.2021.09.021_bib37
  article-title: The IWA anaerobic digestion model No 1 (ADM1)
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2002.0292
– volume: 20
  start-page: 427
  issue: 4
  year: 1986
  ident: 10.1016/j.ijhydene.2021.09.021_bib82
  article-title: Dynamic modelling of anaerobic digestion
  publication-title: Water Res
  doi: 10.1016/0043-1354(86)90189-2
– volume: 21
  start-page: 10761
  issue: 20
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib20
  article-title: Understanding the interdependence of operating parameters in microbial electrosynthesis: a numerical investigation
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C9CP01288E
– volume: 61
  start-page: 501
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib39
  article-title: Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.04.017
– volume: 98
  start-page: 1171
  issue: 6
  year: 2007
  ident: 10.1016/j.ijhydene.2021.09.021_bib93
  article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21533
– year: 2002
  ident: 10.1016/j.ijhydene.2021.09.021_bib90
– start-page: 159
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib31
  article-title: Microbial electrolysis cell for biohydrogen production
– volume: 42
  start-page: 1609
  issue: 3
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib64
  article-title: Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.166
– volume: 9
  start-page: 1724
  issue: 4
  year: 2020
  ident: 10.1016/j.ijhydene.2021.09.021_bib4
  article-title: A reduced model for microbial electrolysis cells
  publication-title: Int J Innovative Technol Explor Eng
  doi: 10.35940/ijitee.D1613.029420
– volume: 5
  start-page: 1012
  issue: 6
  year: 2012
  ident: 10.1016/j.ijhydene.2021.09.021_bib70
  article-title: Bioelectrochemical systems: an outlook for practical applications
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100732
– year: 2008
  ident: 10.1016/j.ijhydene.2021.09.021_bib44
– volume: vol. 22
  start-page: 159
  year: 2008
  ident: 10.1016/j.ijhydene.2021.09.021_bib14
  article-title: Electrochemically assisted biohydrogen production from acetate
– volume: 279
  start-page: 118463
  year: 2020
  ident: 10.1016/j.ijhydene.2021.09.021_bib25
  article-title: Theoretical and experimental evaluation of the potential-current distribution and the recirculation flow rate effect in the performance of a porous electrode microbial electrolysis cell (MEC)
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118463
– volume: 56
  start-page: 1322
  year: 2016
  ident: 10.1016/j.ijhydene.2021.09.021_bib45
  article-title: Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.029
– volume: 101
  start-page: 5256
  issue: 14
  year: 2010
  ident: 10.1016/j.ijhydene.2021.09.021_bib78
  article-title: A two-population bio-electrochemical model of a microbial fuel cell
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.01.122
– volume: 7
  start-page: 183
  issue: 4
  year: 2019
  ident: 10.1016/j.ijhydene.2021.09.021_bib30
  article-title: A dynamic biofilm model for a microbial electrolysis cell
  publication-title: Processes
  doi: 10.3390/pr7040183
– volume: 20
  start-page: 190
  year: 2017
  ident: 10.1016/j.ijhydene.2021.09.021_bib35
  article-title: Microbial electrosynthesis of carboxylic acids through CO2 reduction with selectively enriched biocatalyst: microbial dynamics
  publication-title: J CO2 Util.
  doi: 10.1016/j.jcou.2017.05.011
– volume: 77
  start-page: 689
  issue: 3
  year: 2007
  ident: 10.1016/j.ijhydene.2021.09.021_bib91
  article-title: Kinetics of consumption of fermentation products by anode-respiring bacteria
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-007-1198-z
– volume: 343
  start-page: 303
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib22
  article-title: Towards automated design of bioelectrochemical systems: a comprehensive review of mathematical models
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.03.005
– volume: 173
  start-page: 87
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib66
  article-title: Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.09.083
– volume: 155
  start-page: 387
  issue: 4
  year: 2011
  ident: 10.1016/j.ijhydene.2021.09.021_bib3
  article-title: Influence of carbohydrates and proteins concentration on fermentative hydrogen production using canteen based waste under acidophilic microenvironment
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2011.07.030
– start-page: 843
  year: 2018
  ident: 10.1016/j.ijhydene.2021.09.021_bib23
  article-title: Biohydrogen production using microbial electrolysis cell: recent advances and future prospects
– volume: 31
  start-page: 179
  issue: 2
  year: 2014
  ident: 10.1016/j.ijhydene.2021.09.021_bib21
  article-title: Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell
  publication-title: Nat Biotechnol
SSID ssj0017049
Score 2.4599931
SecondaryResourceType review_article
Snippet Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 37174
SubjectTerms Biohydrogen process
Mathematical model
Microbial electrolysis cell
Title Mathematical model of biohydrogen production in microbial electrolysis cell: A review
URI https://dx.doi.org/10.1016/j.ijhydene.2021.09.021
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: AKRWK
  dateStart: 19760101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqDywpkkcJ47ZqoqqgNoFKnWzHNsRqSCpqjKw8Ns5J05VJCQGpijRnRJdznfn5L7vELqFoiBhQcI9ZnjgUQoblCxPpKdoqHXAch5TC06ezpLJnD4u4kUHjVosjG2rdLG_iel1tHZXfGdNf1UU_jPEXgvB4bBpsX_HagQ7ZXaKweBr2-YRMlcCg7BnpXdQwstBsXz9hOVt6TJJWPOdkvD3BLWTdMZH6NBVi3jYPNAx6pjyBB3scAieovl0S7wKkvVgG1zlOCsquOm6Av_Aq4bVFd4ALkr8XtTcSyDsRuDUpCTYfsG_w0PcYFnO0Hx8_zKaeG5WgqeikGw8ySRP04zx1JDABNxQTYwkOUninEYsYzJSXBrIWDImKokkCdKcWXJ1yrSCGuEcdcuqNBcIwwqlWkY0znILONepTnksmdKZMmBP3UNxayChHJG4nWfxJtqOsaVoDSusYUXABRx6yN_qrRoqjT81eGt_8cMpBMT7P3Qv_6F7hfbtmU1RhF-j7mb9YW6g9thk_dq5-mhv-PA0mX0DvcDZ_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YE1TeLYccxWVVQF2i60UjfLiR2RCpKqKgMLv51zHlWRkDowRUrulOiLfY_k7juE7iEoCLkXCocb4TmUQoISp6FyEupr7fFUMGqbk0fjcDClzzM2a6Fe0wtjyypr21_Z9NJa12fcGk13kWXuK9he24IjIGmxf8cgBdqljHCbgXW-13UePq9jYJB2rPhGm_C8k83fvmB_W75M4peEp8T_20NteJ3-ETqsw0XcrZ7oGLVMfoIONkgET9F0tGZeBclysg0uUhxnBdx0WcACwYuK1hVeAc5y_JGV5EsgXM_AKVlJsP2E_4C7uGpmOUPT_uOkN3DqYQlOEvhk5SiuRBTFXESGeMYThmpiFElJyFIa8JirIBHKgMtSjCRhoIgXpdyyq1OuEwgSztFOXuTmAmHYolSrgLI4tR3nOtKRYIonOk4M4KnbiDUAyaRmErcDLd5lUzI2lw2w0gIrPSHh0EbuWm9RcWls1RAN_vLXqpBg8LfoXv5D9w7tDSajoRw-jV-u0L69Yv0VEddoZ7X8NDcQiKzi23Kh_QDpl9uS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+model+of+biohydrogen+production+in+microbial+electrolysis+cell%3A+A+review&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Mohd+Asrul%2C+Mohamad+Afiq&rft.au=Atan%2C+Mohd+Farid&rft.au=Abdul+Halim+Yun%2C+Hafizah&rft.au=Lai%2C+Josephine+Chang+Hui&rft.date=2021-10-29&rft.issn=0360-3199&rft.volume=46&rft.issue=75&rft.spage=37174&rft.epage=37191&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.09.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2021_09_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon