A study of multi-soliton solutions, breather, lumps, and their interactions for kadomtsev-petviashvili equation with variable time coeffcient using hirota method

This paper investigates the new KP equation with variable coefficients of time ‘ t ’, broadly used to elucidate shallow water waves that arise in plasma physics, marine engineering, ocean physics, nonlinear sciences, and fluid dynamics. In 2020, Wazwaz [1] proposed two extensive KP equations with ti...

Full description

Saved in:
Bibliographic Details
Published inPhysica scripta Vol. 96; no. 12; pp. 125255 - 125265
Main Authors Kumar, Sachin, Mohan, Brij
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2021
Subjects
Online AccessGet full text
ISSN0031-8949
1402-4896
DOI10.1088/1402-4896/ac3879

Cover

Abstract This paper investigates the new KP equation with variable coefficients of time ‘ t ’, broadly used to elucidate shallow water waves that arise in plasma physics, marine engineering, ocean physics, nonlinear sciences, and fluid dynamics. In 2020, Wazwaz [1] proposed two extensive KP equations with time-variable coefficients to obtain several soliton solutions and used Painlevé test to verify their integrability. In light of the research described above, we chose one of the integrated KP equations with time-variable coefficients to obtain multiple solitons, rogue waves, breather waves, lumps, and their interaction solutions relating to the suitable choice of time-dependent coefficients. For this KP equation, the multiple solitons and rogue waves up to fourth-order solutions, breather waves, and lump waves along with their interactions are achieved by employing Hirota's method. By taking advantage of Wolfram Mathematica , the time-dependent variable coefficient's effect on the newly established solutions can be observed through the three-dimensional wave profiles, corresponding contour plots. Some newly formed mathematical results and evolutionary dynamical behaviors of wave-wave interactions are shown in this work. The obtained results are often more advantageous for the analysis of shallow water waves in marine engineering, fluid dynamics, and dusty plasma, nonlinear sciences, and this approach has opened up a new way to explain the dynamical structures and properties of complex physical models. This study examines to be applicable in its influence on a wide-ranging class of nonlinear KP equations.
AbstractList This paper investigates the new KP equation with variable coefficients of time ‘ t ’, broadly used to elucidate shallow water waves that arise in plasma physics, marine engineering, ocean physics, nonlinear sciences, and fluid dynamics. In 2020, Wazwaz [1] proposed two extensive KP equations with time-variable coefficients to obtain several soliton solutions and used Painlevé test to verify their integrability. In light of the research described above, we chose one of the integrated KP equations with time-variable coefficients to obtain multiple solitons, rogue waves, breather waves, lumps, and their interaction solutions relating to the suitable choice of time-dependent coefficients. For this KP equation, the multiple solitons and rogue waves up to fourth-order solutions, breather waves, and lump waves along with their interactions are achieved by employing Hirota's method. By taking advantage of Wolfram Mathematica , the time-dependent variable coefficient's effect on the newly established solutions can be observed through the three-dimensional wave profiles, corresponding contour plots. Some newly formed mathematical results and evolutionary dynamical behaviors of wave-wave interactions are shown in this work. The obtained results are often more advantageous for the analysis of shallow water waves in marine engineering, fluid dynamics, and dusty plasma, nonlinear sciences, and this approach has opened up a new way to explain the dynamical structures and properties of complex physical models. This study examines to be applicable in its influence on a wide-ranging class of nonlinear KP equations.
Author Mohan, Brij
Kumar, Sachin
Author_xml – sequence: 1
  givenname: Sachin
  orcidid: 0000-0003-4451-3206
  surname: Kumar
  fullname: Kumar, Sachin
  organization: University of Delhi Department of Mathematics, Faculty of Mathematical Sciences, Delhi 110007, India
– sequence: 2
  givenname: Brij
  orcidid: 0000-0002-0400-4186
  surname: Mohan
  fullname: Mohan, Brij
  organization: University of Delhi Department of Mathematics, Hansraj College, Delhi -110007, India
BookMark eNp9kE9r3DAQxUVIIZtN7znOrZd1oz-21z6G0LSBQC_NWWjlUTypLbmSvCEfp9-03mzooZTAwIPH7w28d85OffDI2KXgnwVvmitRclmUTVtfGauabXvCVn-tU7biXImiacv2jJ2n9MS5rGXdrtjva0h57l4gOBjnIVORwkA5eFh0zhR82sAuosk9xg0M8zgthvEdLAZFIJ8xGvsKggsRfpoujDnhvpgw78mkfk8DAf6azQGCZ8o97E0ksxsQMo0INqBzltBnmBP5R-gphmxgxNyH7oJ9cGZI-PFN1-zh9suPm2_F_fevdzfX94VVQubCbMVSCWWF2KgSnaibamtLZ6V1ctdK0YqOS1UKx7FuK6VQGlWhszssa4G1WjN-_GtjSCmi01Ok0cQXLbg-TKwPe-rDnvo48RKp_4lYyq81czQ0vBfcHIMUJv0U5uiXZu_hn_6DT0kviJDLVbKq9NQ59QdHRaHi
CODEN PHSTBO
CitedBy_id crossref_primary_10_1088_1572_9494_ace350
crossref_primary_10_1016_j_chaos_2022_111832
crossref_primary_10_1016_j_ijleo_2023_171060
crossref_primary_10_1142_S0219887824501457
crossref_primary_10_1007_s12043_024_02784_5
crossref_primary_10_1142_S0217984922501111
crossref_primary_10_1088_1402_4896_ad5149
crossref_primary_10_1016_j_chaos_2022_112440
crossref_primary_10_1007_s12043_024_02740_3
crossref_primary_10_1016_j_cnsns_2023_107317
crossref_primary_10_1038_s41598_024_78047_5
crossref_primary_10_1007_s11071_024_10434_z
crossref_primary_10_1515_phys_2023_0129
crossref_primary_10_1142_S0217979222500977
crossref_primary_10_1515_phys_2023_0205
crossref_primary_10_3390_math12203205
crossref_primary_10_1142_S0217984924504530
crossref_primary_10_1142_S0217984924503202
crossref_primary_10_1088_1402_4896_acf0fe
crossref_primary_10_1515_phys_2022_0247
crossref_primary_10_1007_s12346_023_00813_z
crossref_primary_10_1016_j_physleta_2022_128393
crossref_primary_10_1016_j_joes_2021_12_007
crossref_primary_10_1016_j_joes_2022_03_005
crossref_primary_10_11948_20230056
crossref_primary_10_1063_5_0083223
crossref_primary_10_1007_s11082_022_03613_y
crossref_primary_10_1016_j_asej_2024_103085
crossref_primary_10_1016_j_chaos_2023_113421
crossref_primary_10_1016_j_rinp_2022_105394
crossref_primary_10_1007_s13324_023_00802_0
crossref_primary_10_1063_5_0195378
crossref_primary_10_1140_epjp_s13360_024_05132_z
crossref_primary_10_1140_epjp_s13360_023_03818_4
crossref_primary_10_1007_s11082_022_04261_y
crossref_primary_10_1063_5_0130950
crossref_primary_10_1088_1402_4896_ad8d3e
crossref_primary_10_1007_s11082_023_04969_5
crossref_primary_10_1016_j_rinp_2022_105992
crossref_primary_10_1088_1674_1056_ac935b
crossref_primary_10_1142_S0217984922501160
crossref_primary_10_1016_j_rinp_2022_105755
crossref_primary_10_1088_1402_4896_acecb2
crossref_primary_10_1140_epjp_s13360_022_03382_3
crossref_primary_10_1007_s11071_023_08430_w
crossref_primary_10_1016_j_rinp_2023_106771
crossref_primary_10_1016_j_rinp_2023_107101
crossref_primary_10_1515_phys_2023_0103
crossref_primary_10_3934_math_20241593
crossref_primary_10_1088_1402_4896_aca2fa
crossref_primary_10_1007_s11071_023_08938_1
crossref_primary_10_1016_j_chaos_2023_113430
crossref_primary_10_1088_1402_4896_ad6810
crossref_primary_10_3934_math_2022479
crossref_primary_10_1016_j_padiff_2025_101136
crossref_primary_10_1142_S0217984924504633
crossref_primary_10_1142_S0217984921506090
crossref_primary_10_1088_1402_4896_ac9dcc
crossref_primary_10_1007_s11071_024_10645_4
crossref_primary_10_1007_s12648_024_03441_8
crossref_primary_10_1016_j_chaos_2024_115932
crossref_primary_10_1155_2023_6983877
crossref_primary_10_1007_s11071_024_10756_y
crossref_primary_10_1016_j_physleta_2022_128574
crossref_primary_10_1016_j_physleta_2022_128503
crossref_primary_10_1016_j_joes_2022_06_019
crossref_primary_10_1063_5_0185772
crossref_primary_10_1063_5_0191954
crossref_primary_10_1007_s11082_022_03599_7
crossref_primary_10_1140_epjd_s10053_024_00874_y
crossref_primary_10_1007_s11071_024_10774_w
crossref_primary_10_1007_s11071_025_11013_6
crossref_primary_10_1088_1402_4896_ac4f9d
crossref_primary_10_1007_s10773_024_05559_1
crossref_primary_10_1007_s11071_024_10792_8
crossref_primary_10_1016_j_cjph_2024_09_004
crossref_primary_10_3390_sym14030597
crossref_primary_10_1007_s11082_022_03801_w
crossref_primary_10_3934_math_20231601
crossref_primary_10_1063_5_0194071
crossref_primary_10_1142_S0217984924502403
crossref_primary_10_1016_j_padiff_2022_100274
crossref_primary_10_1063_5_0160723
crossref_primary_10_1016_j_rinp_2023_106922
crossref_primary_10_1063_5_0180078
crossref_primary_10_1007_s11082_024_06456_x
crossref_primary_10_1080_23311916_2024_2345516
crossref_primary_10_1142_S021798492150603X
crossref_primary_10_1142_S0218863523500108
crossref_primary_10_1515_zna_2024_0148
crossref_primary_10_1088_1402_4896_ace862
Cites_doi 10.1080/17455030.2018.1559962
10.1088/1402-4896/aba5ae
10.1016/j.rinp.2021.104168
10.1016/j.cnsns.2009.06.024
10.1016/j.physleta.2021.127426
10.1016/j.aml.2016.10.003
10.1016/j.camwa.2017.04.034
10.1016/j.amc.2011.11.042
10.3934/math.2020080
10.1007/s11071-019-05294-x
10.1007/s11071-016-2894-y
10.1143/JPSJ.40.611
10.1007/s11071-019-05275-0
10.1007/s12043-021-02180-3
10.1016/j.rinp.2021.104013
10.1007/s11071-018-4085-5
10.2991/jnmp.2006.13.1.8
10.1017/CBO9780511623998
10.1016/j.aml.2021.107383
10.1016/j.chaos.2020.110507
10.1088/1402-4896/ab7f48
10.1140/epjp/s13360-021-01528-3
10.1007/s11071-020-05716-1
10.1016/j.camwa.2019.03.002
10.1007/BF02096873
10.1103/PhysRevE.74.027602
10.1016/j.aml.2015.08.018
10.1016/j.amc.2007.12.037
10.1007/s11071-016-3216-0
10.1016/j.cpc.2004.04.005
10.1007/s11071-021-06603-z
10.1007/s11071-021-06357-8
10.1007/s11071-013-0867-y
10.1016/j.camwa.2016.02.017
10.1007/s11071-021-06322-5
10.1088/1402-4896/ac1990
10.1016/j.aml.2020.106382
10.1016/S0378-4754(96)00053-5
10.1007/s11071-014-1321-5
10.1016/j.cjph.2020.11.013
10.1063/1.525721
10.1016/j.physleta.2015.06.061
10.1007/s11071-017-3630-y
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1402-4896/ac3879
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1402-4896
ExternalDocumentID 10_1088_1402_4896_ac3879
psac3879
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
LAP
M45
MV1
N5L
N9A
NS0
PJBAE
RIN
RNS
ROL
RPA
SJN
SY9
TN5
W28
WH7
XPP
~02
AAYXX
ADEQX
AEINN
CITATION
ID FETCH-LOGICAL-c312t-a71262e25ee834ef16857c4fc2cf2b92191d02341f0e69533e2a35efcbe461e63
IEDL.DBID IOP
ISSN 0031-8949
IngestDate Thu Apr 24 22:53:48 EDT 2025
Wed Oct 01 02:19:55 EDT 2025
Wed Aug 21 03:34:59 EDT 2024
Wed Jun 07 11:19:05 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-a71262e25ee834ef16857c4fc2cf2b92191d02341f0e69533e2a35efcbe461e63
Notes PHYSSCR-115472.R2
ORCID 0000-0002-0400-4186
0000-0003-4451-3206
PageCount 11
ParticipantIDs crossref_citationtrail_10_1088_1402_4896_ac3879
crossref_primary_10_1088_1402_4896_ac3879
iop_journals_10_1088_1402_4896_ac3879
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica scripta
PublicationTitleAbbrev PS
PublicationTitleAlternate Phys. Scr
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ma (psac3879bib24) 2015; 379
Yan (psac3879bib38) 2018; 92
Kumar (psac3879bib40) 2021; 136
Huang (psac3879bib44) 2017; 89
Wazwaz (psac3879bib1) 2020; 30
Jiang (psac3879bib32) 2013; 73
Kumar (psac3879bib41) 2019; 98
Zhao (psac3879bib16) 2021; 121
Han (psac3879bib3) 2021; 105
Tian (psac3879bib28) 2019; 95
Xu (psac3879bib10) 2004; 161
Li (psac3879bib35) 2016; 86
Huang (psac3879bib37) 2015; 80
Hirota (psac3879bib13) 1976; 40
Zhao (psac3879bib19) 2017; 65
Kumar (psac3879bib6) 2020; 95
Kumar (psac3879bib42) 2021; 142
Ma (psac3879bib27) 2019; 78
Baldwin (psac3879bib9) 2006; 13
Ma (psac3879bib22) 2021; 104
Kadomtsev (psac3879bib11) 1970; 15
Lan (psac3879bib21) 2020; 100
Zhou (psac3879bib46) 1990; 128
Lan (psac3879bib34) 2020; 107
Tian (psac3879bib2) 2021; 104
Jia (psac3879bib20) 2021; 405
Wang (psac3879bib23) 2017; 87
Chowdhury (psac3879bib17) 2021; 23
Kumar (psac3879bib7) 2021; 96
Weiss (psac3879bib8) 1983; 24
Wang (psac3879bib18) 2017; 74
Wazwaz (psac3879bib31) 2008; 201
Xu (psac3879bib47) 2006; 74
Kumar (psac3879bib4) 2020; 95
Ablowitz (psac3879bib14) 1991; vol 149
Hereman (psac3879bib36) 1997; 43
Zhang (psac3879bib26) 2021; 25
Ma (psac3879bib29) 2020; 5
Guan (psac3879bib33) 2019; 98
Kumar (psac3879bib5) 2021; 95
Hirota (psac3879bib30) 2004
Lu (psac3879bib25) 2016; 71
Wazwaz (psac3879bib15) 2016; 52
Asaad (psac3879bib43) 2012; 218
Kravchenko (psac3879bib45) 2020
Wazwaz (psac3879bib12) 2010; 15
Kumar (psac3879bib39) 2021; 69
References_xml – volume: 30
  start-page: 776
  year: 2020
  ident: psac3879bib1
  article-title: Two new integrable Kadomtsev-Petviashvili equations with time-dependent coefficients: multiple real and complex soliton solutions
  publication-title: Waves Random Complex Medium
  doi: 10.1080/17455030.2018.1559962
– volume: 95
  year: 2020
  ident: psac3879bib6
  article-title: Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2 + 1)-dimensional NNV equations
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aba5ae
– volume: 25
  year: 2021
  ident: psac3879bib26
  article-title: N-lump and interaction solutions of localized waves to the (2 + 1)-dimensional generalized KP equation
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2021.104168
– volume: 15
  start-page: 1466
  year: 2010
  ident: psac3879bib12
  article-title: Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul
  doi: 10.1016/j.cnsns.2009.06.024
– volume: 405
  year: 2021
  ident: psac3879bib20
  article-title: Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2021.127426
– volume: 65
  start-page: 48
  year: 2017
  ident: psac3879bib19
  article-title: Solitons, periodic waves, breathers and integrability for a nonisospectral and variable-coefficient fifth-order Korteweg-de Vries equation in fluids
  publication-title: Appl Math Lett.
  doi: 10.1016/j.aml.2016.10.003
– volume: 74
  start-page: 556
  year: 2017
  ident: psac3879bib18
  article-title: On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.04.034
– volume: 218
  start-page: 5524
  year: 2012
  ident: psac3879bib43
  article-title: Pfaffian solutions to a (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.11.042
– volume: 5
  start-page: 1162
  year: 2020
  ident: psac3879bib29
  article-title: Mixed lump and soliton solutions for a generalized (3.1)-dimensional Kadomtsev-Petviashvili equation
  publication-title: AIMS Math.
  doi: 10.3934/math.2020080
– volume: 98
  start-page: 1891
  year: 2019
  ident: psac3879bib41
  article-title: Lie symmetry reductions and group Invariant Solutions of (2+1)-dimensional modified Veronese web equation
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-019-05294-x
– year: 2020
  ident: psac3879bib45
  article-title: Inverse scattering transform method in direct and inverse sturm-liouville problems
– volume: 86
  start-page: 369
  year: 2016
  ident: psac3879bib35
  article-title: Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2894-y
– volume: 40
  start-page: 611
  year: 1976
  ident: psac3879bib13
  article-title: N-soliton solutions of model equations for shallow water waves
  publication-title: J Phys Soc Jpn.
  doi: 10.1143/JPSJ.40.611
– volume: 98
  start-page: 1491
  year: 2019
  ident: psac3879bib33
  article-title: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05275-0
– volume: 95
  start-page: 161
  year: 2021
  ident: psac3879bib5
  article-title: Some new families of exact solitary wave solutions of the Klein-Gordon-Zakharov equations in plasma physics
  publication-title: Pramana—J Phys.
  doi: 10.1007/s12043-021-02180-3
– volume: 23
  year: 2021
  ident: psac3879bib17
  article-title: An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2021.104013
– year: 2004
  ident: psac3879bib30
– volume: 92
  start-page: 709
  year: 2018
  ident: psac3879bib38
  article-title: Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)(3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4085-5
– volume: 13
  start-page: 90
  year: 2006
  ident: psac3879bib9
  article-title: Symbolic software for the Painlevé test of nonlinear differential ordinary and partial equations
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2006.13.1.8
– volume: vol 149
  year: 1991
  ident: psac3879bib14
  doi: 10.1017/CBO9780511623998
– volume: 121
  year: 2021
  ident: psac3879bib16
  article-title: Dark soliton solutions for a coupled nonlinear Schrödinger system
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2021.107383
– volume: 142
  year: 2021
  ident: psac3879bib42
  article-title: Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation
  publication-title: Chaos Soliton and Fractals
  doi: 10.1016/j.chaos.2020.110507
– volume: 95
  year: 2020
  ident: psac3879bib4
  article-title: Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab7f48
– volume: 136
  start-page: 531
  year: 2021
  ident: psac3879bib40
  article-title: Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01528-3
– volume: 100
  start-page: 3771
  year: 2020
  ident: psac3879bib21
  article-title: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized plasma
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05716-1
– volume: 78
  start-page: 827
  year: 2019
  ident: psac3879bib27
  article-title: Interactions between rogue wave and soliton for a (2+1)-dimensional generalized breaking soliton system: hidden rogue wave and hidden soliton
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.03.002
– volume: 128
  start-page: 551
  year: 1990
  ident: psac3879bib46
  article-title: Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02096873
– volume: 74
  year: 2006
  ident: psac3879bib47
  article-title: Painlevé classiffication of a generalized coupled Hirota system
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.027602
– volume: 52
  start-page: 74
  year: 2016
  ident: psac3879bib15
  article-title: Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2015.08.018
– volume: 201
  start-page: 489
  year: 2008
  ident: psac3879bib31
  article-title: The Hirota’s direct method for multiple soliton solutions for three model equations of shallow water waves
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.12.037
– volume: 87
  start-page: 2635
  year: 2017
  ident: psac3879bib23
  article-title: Lump solution and integrability for the associated Hirota bilinear equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3216-0
– volume: 161
  start-page: 65
  year: 2004
  ident: psac3879bib10
  article-title: Symbolic computation of the Painlevé test for nonlinear partial differential equations using Maple
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2004.04.005
– volume: 15
  start-page: 539
  year: 1970
  ident: psac3879bib11
  article-title: On the stability of solitary waves in weakly dispersive media
  publication-title: Sov. Phys. Dokl.
– volume: 105
  start-page: 717
  year: 2021
  ident: psac3879bib3
  article-title: Interaction of multiple superposition solutions for the (4+1)-dimensional Boiti-LeonManna-Pempinelli equation
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-021-06603-z
– volume: 104
  start-page: 1581
  year: 2021
  ident: psac3879bib22
  article-title: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06357-8
– volume: 73
  start-page: 1343
  year: 2013
  ident: psac3879bib32
  article-title: Bilinear form and soliton interactions for the modified Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0867-y
– volume: 71
  start-page: 1560
  year: 2016
  ident: psac3879bib25
  article-title: Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2016.02.017
– volume: 104
  start-page: 507
  year: 2021
  ident: psac3879bib2
  article-title: Study on dynamical behavior of multiple lump solutions and interaction between solitons and lump wave
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-021-06322-5
– volume: 96
  year: 2021
  ident: psac3879bib7
  article-title: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+1)-dimensional dissipative long wave system
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac1990
– volume: 107
  year: 2020
  ident: psac3879bib34
  article-title: Rogue wave solutions for a higher-order nonlinear Schrödinger equation in an optical fiber [J]
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106382
– volume: 43
  start-page: 13
  year: 1997
  ident: psac3879bib36
  article-title: Symbolic methods to construct exact solutions of nonlinear partial differential equations
  publication-title: Math Comput Simul.
  doi: 10.1016/S0378-4754(96)00053-5
– volume: 80
  start-page: 1
  year: 2015
  ident: psac3879bib37
  article-title: Bäcklund transformations and soliton solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1321-5
– volume: 69
  start-page: 1
  year: 2021
  ident: psac3879bib39
  article-title: Lie symmetries, optimal system and group-invariant solutions of the (3+1)-dimensional generalized KP equation
  publication-title: Chinese J. Phys.
  doi: 10.1016/j.cjph.2020.11.013
– volume: 24
  start-page: 522
  year: 1983
  ident: psac3879bib8
  article-title: The Painlevé property of partial differential equations
  publication-title: J Math Phys A
  doi: 10.1063/1.525721
– volume: 379
  start-page: 1975
  year: 2015
  ident: psac3879bib24
  article-title: Lump solutions to the Kadomtsev-Petviashvili equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.06.061
– volume: 89
  start-page: 2855
  year: 2017
  ident: psac3879bib44
  article-title: Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensional extended shallow water wave equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3630-y
– volume: 95
  start-page: 2
  year: 2019
  ident: psac3879bib28
  article-title: Bright soliton interactions in a (2+1)-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain
  publication-title: Nonlinear Dyn.
SSID ssj0026269
Score 2.5944495
Snippet This paper investigates the new KP equation with variable coefficients of time ‘ t ’, broadly used to elucidate shallow water waves that arise in plasma...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 125255
SubjectTerms analytical solutions
breather waves
hirota method
KP equations
lumps
rogue waves
soliton solutions
Title A study of multi-soliton solutions, breather, lumps, and their interactions for kadomtsev-petviashvili equation with variable time coeffcient using hirota method
URI https://iopscience.iop.org/article/10.1088/1402-4896/ac3879
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1402-4896
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026269
  issn: 0031-8949
  databaseCode: IOP
  dateStart: 19700101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJSqGXvkvSF3NoD4VodyVLtkxPoTSEQh-HBnIoGFkaNUtS2107e-i_6T_tyHKWppRQCj4YeyyLkaz5xvpmhrEXptay9LngzgfNFQEEbpXTnBASGbPSaF_EaOT3H_KjY_XuRJ9ssdebWJi2m5b-GZ2mRMFJhRMhzszJJZBcmTKfW5eZotxmNzJDwDhG7338tPG2CKkn7JsJbkpVTnuUf2vhik3apvf-ZmIO77Avl51LzJKz2cVQz9yPP_I2_mfv77LbE_SEgyR6j21hc5_dHCmgrn_Afh7AmGsW2gAjzZD3kRvXNrCZnvtQrxJk3Ada1Dq6YBsP42YDxMQTqxQm0QNBYTizvv02kOXlhMzXS9ufrpfnS8DvKbs4xF_AsCZfPUZvQSxyD67FEMYQTYiE_K9wuly1g4VU5_ohOz58-_nNEZ8KOHCXCTlwWwgaBpQa0WQKg8iNLpwKTrog65IWS-EJMygRFphHnitKm2kMrkaVC8yzR2ynaRvcZbDwEfqUrrCFUQ5rs7BoNU00RFsGH_bY_HIIKzdlN49FNs6rcZfdmCoqvoqKr5Li99irzRNdyuxxjexLGs9q-rz7a-TgilzXV3RPSDo0-W5V58Pjf2zqCbslI31mZM48ZTvD6gKfEf4Z6ufjPP8Fwnn_rQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL74rynAMckOrddWInzrECVuVVeqBSb8bxg65akrBJ98C_4Z8yttMVRahCQsohSiZOMnY838TfzBDyXNYiq2zBqLFeUI4AgWpuBEWEhMasksKWIRr5436xd8jfHYmjsc5pjIVpu3Hqn-BuShScVDgS4uQUXYKMclkVU21yWVbTzvoNcjXmKQkRfJ8O1h4XovWEf3NGZcWrcZ3yb61csEsbeO_fzMz8Fvly_oCJXXIyORvqifnxR-7G_3iD2-TmCEFhN4nfIVdcc5dci1RQ098jP3ch5pyF1kOkG9I-cOTaBtbDdAfqZYKOO4CTW4cHdGMhLjpASECxTOESPSAkhhNt228DWmCKCH210P3xanG6APc9ZRmH8CsYVuizhyguCMXuwbTO-xiqCYGY_xWOF8t20JDqXd8nh_M3n1_t0bGQAzU5ywaqS4Zd4TLhnMy586yQojTcm8z4rK5w0mQWsQNnfuaKwHd1mc6F86Z2vGCuyLfIZtM27gGBmQ0QqDKlLiU3rpYz7bTAAeecrrz122R63o3KjFnOQ7GNUxVX26VUQfkqKF8l5W-Tl-srupTh4xLZF9inavzM-0vk4IJc1ys8xzLcBPpwCvv74T829YxcP3g9Vx_e7r9_RG5kgVETyTSPyeawPHNPEBIN9dM47H8BC20FHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+multi-soliton+solutions%2C+breather%2C+lumps%2C+and+their+interactions+for+kadomtsev-petviashvili+equation+with+variable+time+coeffcient+using+hirota+method&rft.jtitle=Physica+scripta&rft.au=Kumar%2C+Sachin&rft.au=Mohan%2C+Brij&rft.date=2021-12-01&rft.pub=IOP+Publishing&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=96&rft.issue=12&rft_id=info:doi/10.1088%2F1402-4896%2Fac3879&rft.externalDocID=psac3879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon