A study of multi-soliton solutions, breather, lumps, and their interactions for kadomtsev-petviashvili equation with variable time coeffcient using hirota method
This paper investigates the new KP equation with variable coefficients of time ‘ t ’, broadly used to elucidate shallow water waves that arise in plasma physics, marine engineering, ocean physics, nonlinear sciences, and fluid dynamics. In 2020, Wazwaz [1] proposed two extensive KP equations with ti...
Saved in:
| Published in | Physica scripta Vol. 96; no. 12; pp. 125255 - 125265 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
01.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-8949 1402-4896 |
| DOI | 10.1088/1402-4896/ac3879 |
Cover
| Abstract | This paper investigates the new KP equation with variable coefficients of time ‘
t
’, broadly used to elucidate shallow water waves that arise in plasma physics, marine engineering, ocean physics, nonlinear sciences, and fluid dynamics. In 2020, Wazwaz [1] proposed two extensive KP equations with time-variable coefficients to obtain several soliton solutions and used Painlevé test to verify their integrability. In light of the research described above, we chose one of the integrated KP equations with time-variable coefficients to obtain multiple solitons, rogue waves, breather waves, lumps, and their interaction solutions relating to the suitable choice of time-dependent coefficients. For this KP equation, the multiple solitons and rogue waves up to fourth-order solutions, breather waves, and lump waves along with their interactions are achieved by employing Hirota's method. By taking advantage of
Wolfram Mathematica
, the time-dependent variable coefficient's effect on the newly established solutions can be observed through the three-dimensional wave profiles, corresponding contour plots. Some newly formed mathematical results and evolutionary dynamical behaviors of wave-wave interactions are shown in this work. The obtained results are often more advantageous for the analysis of shallow water waves in marine engineering, fluid dynamics, and dusty plasma, nonlinear sciences, and this approach has opened up a new way to explain the dynamical structures and properties of complex physical models. This study examines to be applicable in its influence on a wide-ranging class of nonlinear KP equations. |
|---|---|
| AbstractList | This paper investigates the new KP equation with variable coefficients of time ‘
t
’, broadly used to elucidate shallow water waves that arise in plasma physics, marine engineering, ocean physics, nonlinear sciences, and fluid dynamics. In 2020, Wazwaz [1] proposed two extensive KP equations with time-variable coefficients to obtain several soliton solutions and used Painlevé test to verify their integrability. In light of the research described above, we chose one of the integrated KP equations with time-variable coefficients to obtain multiple solitons, rogue waves, breather waves, lumps, and their interaction solutions relating to the suitable choice of time-dependent coefficients. For this KP equation, the multiple solitons and rogue waves up to fourth-order solutions, breather waves, and lump waves along with their interactions are achieved by employing Hirota's method. By taking advantage of
Wolfram Mathematica
, the time-dependent variable coefficient's effect on the newly established solutions can be observed through the three-dimensional wave profiles, corresponding contour plots. Some newly formed mathematical results and evolutionary dynamical behaviors of wave-wave interactions are shown in this work. The obtained results are often more advantageous for the analysis of shallow water waves in marine engineering, fluid dynamics, and dusty plasma, nonlinear sciences, and this approach has opened up a new way to explain the dynamical structures and properties of complex physical models. This study examines to be applicable in its influence on a wide-ranging class of nonlinear KP equations. |
| Author | Mohan, Brij Kumar, Sachin |
| Author_xml | – sequence: 1 givenname: Sachin orcidid: 0000-0003-4451-3206 surname: Kumar fullname: Kumar, Sachin organization: University of Delhi Department of Mathematics, Faculty of Mathematical Sciences, Delhi 110007, India – sequence: 2 givenname: Brij orcidid: 0000-0002-0400-4186 surname: Mohan fullname: Mohan, Brij organization: University of Delhi Department of Mathematics, Hansraj College, Delhi -110007, India |
| BookMark | eNp9kE9r3DAQxUVIIZtN7znOrZd1oz-21z6G0LSBQC_NWWjlUTypLbmSvCEfp9-03mzooZTAwIPH7w28d85OffDI2KXgnwVvmitRclmUTVtfGauabXvCVn-tU7biXImiacv2jJ2n9MS5rGXdrtjva0h57l4gOBjnIVORwkA5eFh0zhR82sAuosk9xg0M8zgthvEdLAZFIJ8xGvsKggsRfpoujDnhvpgw78mkfk8DAf6azQGCZ8o97E0ksxsQMo0INqBzltBnmBP5R-gphmxgxNyH7oJ9cGZI-PFN1-zh9suPm2_F_fevdzfX94VVQubCbMVSCWWF2KgSnaibamtLZ6V1ctdK0YqOS1UKx7FuK6VQGlWhszssa4G1WjN-_GtjSCmi01Ok0cQXLbg-TKwPe-rDnvo48RKp_4lYyq81czQ0vBfcHIMUJv0U5uiXZu_hn_6DT0kviJDLVbKq9NQ59QdHRaHi |
| CODEN | PHSTBO |
| CitedBy_id | crossref_primary_10_1088_1572_9494_ace350 crossref_primary_10_1016_j_chaos_2022_111832 crossref_primary_10_1016_j_ijleo_2023_171060 crossref_primary_10_1142_S0219887824501457 crossref_primary_10_1007_s12043_024_02784_5 crossref_primary_10_1142_S0217984922501111 crossref_primary_10_1088_1402_4896_ad5149 crossref_primary_10_1016_j_chaos_2022_112440 crossref_primary_10_1007_s12043_024_02740_3 crossref_primary_10_1016_j_cnsns_2023_107317 crossref_primary_10_1038_s41598_024_78047_5 crossref_primary_10_1007_s11071_024_10434_z crossref_primary_10_1515_phys_2023_0129 crossref_primary_10_1142_S0217979222500977 crossref_primary_10_1515_phys_2023_0205 crossref_primary_10_3390_math12203205 crossref_primary_10_1142_S0217984924504530 crossref_primary_10_1142_S0217984924503202 crossref_primary_10_1088_1402_4896_acf0fe crossref_primary_10_1515_phys_2022_0247 crossref_primary_10_1007_s12346_023_00813_z crossref_primary_10_1016_j_physleta_2022_128393 crossref_primary_10_1016_j_joes_2021_12_007 crossref_primary_10_1016_j_joes_2022_03_005 crossref_primary_10_11948_20230056 crossref_primary_10_1063_5_0083223 crossref_primary_10_1007_s11082_022_03613_y crossref_primary_10_1016_j_asej_2024_103085 crossref_primary_10_1016_j_chaos_2023_113421 crossref_primary_10_1016_j_rinp_2022_105394 crossref_primary_10_1007_s13324_023_00802_0 crossref_primary_10_1063_5_0195378 crossref_primary_10_1140_epjp_s13360_024_05132_z crossref_primary_10_1140_epjp_s13360_023_03818_4 crossref_primary_10_1007_s11082_022_04261_y crossref_primary_10_1063_5_0130950 crossref_primary_10_1088_1402_4896_ad8d3e crossref_primary_10_1007_s11082_023_04969_5 crossref_primary_10_1016_j_rinp_2022_105992 crossref_primary_10_1088_1674_1056_ac935b crossref_primary_10_1142_S0217984922501160 crossref_primary_10_1016_j_rinp_2022_105755 crossref_primary_10_1088_1402_4896_acecb2 crossref_primary_10_1140_epjp_s13360_022_03382_3 crossref_primary_10_1007_s11071_023_08430_w crossref_primary_10_1016_j_rinp_2023_106771 crossref_primary_10_1016_j_rinp_2023_107101 crossref_primary_10_1515_phys_2023_0103 crossref_primary_10_3934_math_20241593 crossref_primary_10_1088_1402_4896_aca2fa crossref_primary_10_1007_s11071_023_08938_1 crossref_primary_10_1016_j_chaos_2023_113430 crossref_primary_10_1088_1402_4896_ad6810 crossref_primary_10_3934_math_2022479 crossref_primary_10_1016_j_padiff_2025_101136 crossref_primary_10_1142_S0217984924504633 crossref_primary_10_1142_S0217984921506090 crossref_primary_10_1088_1402_4896_ac9dcc crossref_primary_10_1007_s11071_024_10645_4 crossref_primary_10_1007_s12648_024_03441_8 crossref_primary_10_1016_j_chaos_2024_115932 crossref_primary_10_1155_2023_6983877 crossref_primary_10_1007_s11071_024_10756_y crossref_primary_10_1016_j_physleta_2022_128574 crossref_primary_10_1016_j_physleta_2022_128503 crossref_primary_10_1016_j_joes_2022_06_019 crossref_primary_10_1063_5_0185772 crossref_primary_10_1063_5_0191954 crossref_primary_10_1007_s11082_022_03599_7 crossref_primary_10_1140_epjd_s10053_024_00874_y crossref_primary_10_1007_s11071_024_10774_w crossref_primary_10_1007_s11071_025_11013_6 crossref_primary_10_1088_1402_4896_ac4f9d crossref_primary_10_1007_s10773_024_05559_1 crossref_primary_10_1007_s11071_024_10792_8 crossref_primary_10_1016_j_cjph_2024_09_004 crossref_primary_10_3390_sym14030597 crossref_primary_10_1007_s11082_022_03801_w crossref_primary_10_3934_math_20231601 crossref_primary_10_1063_5_0194071 crossref_primary_10_1142_S0217984924502403 crossref_primary_10_1016_j_padiff_2022_100274 crossref_primary_10_1063_5_0160723 crossref_primary_10_1016_j_rinp_2023_106922 crossref_primary_10_1063_5_0180078 crossref_primary_10_1007_s11082_024_06456_x crossref_primary_10_1080_23311916_2024_2345516 crossref_primary_10_1142_S021798492150603X crossref_primary_10_1142_S0218863523500108 crossref_primary_10_1515_zna_2024_0148 crossref_primary_10_1088_1402_4896_ace862 |
| Cites_doi | 10.1080/17455030.2018.1559962 10.1088/1402-4896/aba5ae 10.1016/j.rinp.2021.104168 10.1016/j.cnsns.2009.06.024 10.1016/j.physleta.2021.127426 10.1016/j.aml.2016.10.003 10.1016/j.camwa.2017.04.034 10.1016/j.amc.2011.11.042 10.3934/math.2020080 10.1007/s11071-019-05294-x 10.1007/s11071-016-2894-y 10.1143/JPSJ.40.611 10.1007/s11071-019-05275-0 10.1007/s12043-021-02180-3 10.1016/j.rinp.2021.104013 10.1007/s11071-018-4085-5 10.2991/jnmp.2006.13.1.8 10.1017/CBO9780511623998 10.1016/j.aml.2021.107383 10.1016/j.chaos.2020.110507 10.1088/1402-4896/ab7f48 10.1140/epjp/s13360-021-01528-3 10.1007/s11071-020-05716-1 10.1016/j.camwa.2019.03.002 10.1007/BF02096873 10.1103/PhysRevE.74.027602 10.1016/j.aml.2015.08.018 10.1016/j.amc.2007.12.037 10.1007/s11071-016-3216-0 10.1016/j.cpc.2004.04.005 10.1007/s11071-021-06603-z 10.1007/s11071-021-06357-8 10.1007/s11071-013-0867-y 10.1016/j.camwa.2016.02.017 10.1007/s11071-021-06322-5 10.1088/1402-4896/ac1990 10.1016/j.aml.2020.106382 10.1016/S0378-4754(96)00053-5 10.1007/s11071-014-1321-5 10.1016/j.cjph.2020.11.013 10.1063/1.525721 10.1016/j.physleta.2015.06.061 10.1007/s11071-017-3630-y |
| ContentType | Journal Article |
| Copyright | 2021 IOP Publishing Ltd |
| Copyright_xml | – notice: 2021 IOP Publishing Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1088/1402-4896/ac3879 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1402-4896 |
| ExternalDocumentID | 10_1088_1402_4896_ac3879 psac3879 |
| GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT LAP M45 MV1 N5L N9A NS0 PJBAE RIN RNS ROL RPA SJN SY9 TN5 W28 WH7 XPP ~02 AAYXX ADEQX AEINN CITATION |
| ID | FETCH-LOGICAL-c312t-a71262e25ee834ef16857c4fc2cf2b92191d02341f0e69533e2a35efcbe461e63 |
| IEDL.DBID | IOP |
| ISSN | 0031-8949 |
| IngestDate | Thu Apr 24 22:53:48 EDT 2025 Wed Oct 01 02:19:55 EDT 2025 Wed Aug 21 03:34:59 EDT 2024 Wed Jun 07 11:19:05 EDT 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-a71262e25ee834ef16857c4fc2cf2b92191d02341f0e69533e2a35efcbe461e63 |
| Notes | PHYSSCR-115472.R2 |
| ORCID | 0000-0002-0400-4186 0000-0003-4451-3206 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1088_1402_4896_ac3879 crossref_primary_10_1088_1402_4896_ac3879 iop_journals_10_1088_1402_4896_ac3879 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Physica scripta |
| PublicationTitleAbbrev | PS |
| PublicationTitleAlternate | Phys. Scr |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Ma (psac3879bib24) 2015; 379 Yan (psac3879bib38) 2018; 92 Kumar (psac3879bib40) 2021; 136 Huang (psac3879bib44) 2017; 89 Wazwaz (psac3879bib1) 2020; 30 Jiang (psac3879bib32) 2013; 73 Kumar (psac3879bib41) 2019; 98 Zhao (psac3879bib16) 2021; 121 Han (psac3879bib3) 2021; 105 Tian (psac3879bib28) 2019; 95 Xu (psac3879bib10) 2004; 161 Li (psac3879bib35) 2016; 86 Huang (psac3879bib37) 2015; 80 Hirota (psac3879bib13) 1976; 40 Zhao (psac3879bib19) 2017; 65 Kumar (psac3879bib6) 2020; 95 Kumar (psac3879bib42) 2021; 142 Ma (psac3879bib27) 2019; 78 Baldwin (psac3879bib9) 2006; 13 Ma (psac3879bib22) 2021; 104 Kadomtsev (psac3879bib11) 1970; 15 Lan (psac3879bib21) 2020; 100 Zhou (psac3879bib46) 1990; 128 Lan (psac3879bib34) 2020; 107 Tian (psac3879bib2) 2021; 104 Jia (psac3879bib20) 2021; 405 Wang (psac3879bib23) 2017; 87 Chowdhury (psac3879bib17) 2021; 23 Kumar (psac3879bib7) 2021; 96 Weiss (psac3879bib8) 1983; 24 Wang (psac3879bib18) 2017; 74 Wazwaz (psac3879bib31) 2008; 201 Xu (psac3879bib47) 2006; 74 Kumar (psac3879bib4) 2020; 95 Ablowitz (psac3879bib14) 1991; vol 149 Hereman (psac3879bib36) 1997; 43 Zhang (psac3879bib26) 2021; 25 Ma (psac3879bib29) 2020; 5 Guan (psac3879bib33) 2019; 98 Kumar (psac3879bib5) 2021; 95 Hirota (psac3879bib30) 2004 Lu (psac3879bib25) 2016; 71 Wazwaz (psac3879bib15) 2016; 52 Asaad (psac3879bib43) 2012; 218 Kravchenko (psac3879bib45) 2020 Wazwaz (psac3879bib12) 2010; 15 Kumar (psac3879bib39) 2021; 69 |
| References_xml | – volume: 30 start-page: 776 year: 2020 ident: psac3879bib1 article-title: Two new integrable Kadomtsev-Petviashvili equations with time-dependent coefficients: multiple real and complex soliton solutions publication-title: Waves Random Complex Medium doi: 10.1080/17455030.2018.1559962 – volume: 95 year: 2020 ident: psac3879bib6 article-title: Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2 + 1)-dimensional NNV equations publication-title: Phys. Scr. doi: 10.1088/1402-4896/aba5ae – volume: 25 year: 2021 ident: psac3879bib26 article-title: N-lump and interaction solutions of localized waves to the (2 + 1)-dimensional generalized KP equation publication-title: Results in Physics doi: 10.1016/j.rinp.2021.104168 – volume: 15 start-page: 1466 year: 2010 ident: psac3879bib12 article-title: Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation publication-title: Commun. Nonlinear Sci. Numer. Simul doi: 10.1016/j.cnsns.2009.06.024 – volume: 405 year: 2021 ident: psac3879bib20 article-title: Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2021.127426 – volume: 65 start-page: 48 year: 2017 ident: psac3879bib19 article-title: Solitons, periodic waves, breathers and integrability for a nonisospectral and variable-coefficient fifth-order Korteweg-de Vries equation in fluids publication-title: Appl Math Lett. doi: 10.1016/j.aml.2016.10.003 – volume: 74 start-page: 556 year: 2017 ident: psac3879bib18 article-title: On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.04.034 – volume: 218 start-page: 5524 year: 2012 ident: psac3879bib43 article-title: Pfaffian solutions to a (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.11.042 – volume: 5 start-page: 1162 year: 2020 ident: psac3879bib29 article-title: Mixed lump and soliton solutions for a generalized (3.1)-dimensional Kadomtsev-Petviashvili equation publication-title: AIMS Math. doi: 10.3934/math.2020080 – volume: 98 start-page: 1891 year: 2019 ident: psac3879bib41 article-title: Lie symmetry reductions and group Invariant Solutions of (2+1)-dimensional modified Veronese web equation publication-title: Nonlinear Dyn doi: 10.1007/s11071-019-05294-x – year: 2020 ident: psac3879bib45 article-title: Inverse scattering transform method in direct and inverse sturm-liouville problems – volume: 86 start-page: 369 year: 2016 ident: psac3879bib35 article-title: Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2894-y – volume: 40 start-page: 611 year: 1976 ident: psac3879bib13 article-title: N-soliton solutions of model equations for shallow water waves publication-title: J Phys Soc Jpn. doi: 10.1143/JPSJ.40.611 – volume: 98 start-page: 1491 year: 2019 ident: psac3879bib33 article-title: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05275-0 – volume: 95 start-page: 161 year: 2021 ident: psac3879bib5 article-title: Some new families of exact solitary wave solutions of the Klein-Gordon-Zakharov equations in plasma physics publication-title: Pramana—J Phys. doi: 10.1007/s12043-021-02180-3 – volume: 23 year: 2021 ident: psac3879bib17 article-title: An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions publication-title: Results in Physics doi: 10.1016/j.rinp.2021.104013 – year: 2004 ident: psac3879bib30 – volume: 92 start-page: 709 year: 2018 ident: psac3879bib38 article-title: Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)(3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4085-5 – volume: 13 start-page: 90 year: 2006 ident: psac3879bib9 article-title: Symbolic software for the Painlevé test of nonlinear differential ordinary and partial equations publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2006.13.1.8 – volume: vol 149 year: 1991 ident: psac3879bib14 doi: 10.1017/CBO9780511623998 – volume: 121 year: 2021 ident: psac3879bib16 article-title: Dark soliton solutions for a coupled nonlinear Schrödinger system publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2021.107383 – volume: 142 year: 2021 ident: psac3879bib42 article-title: Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation publication-title: Chaos Soliton and Fractals doi: 10.1016/j.chaos.2020.110507 – volume: 95 year: 2020 ident: psac3879bib4 article-title: Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab7f48 – volume: 136 start-page: 531 year: 2021 ident: psac3879bib40 article-title: Lie symmetries, optimal system, group-invariant solutions and dynamical behaviors of solitary wave solutions for a (3+1)-dimensional KdV-type equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01528-3 – volume: 100 start-page: 3771 year: 2020 ident: psac3879bib21 article-title: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized plasma publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05716-1 – volume: 78 start-page: 827 year: 2019 ident: psac3879bib27 article-title: Interactions between rogue wave and soliton for a (2+1)-dimensional generalized breaking soliton system: hidden rogue wave and hidden soliton publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.03.002 – volume: 128 start-page: 551 year: 1990 ident: psac3879bib46 article-title: Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation publication-title: Commun. Math. Phys. doi: 10.1007/BF02096873 – volume: 74 year: 2006 ident: psac3879bib47 article-title: Painlevé classiffication of a generalized coupled Hirota system publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.027602 – volume: 52 start-page: 74 year: 2016 ident: psac3879bib15 article-title: Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2015.08.018 – volume: 201 start-page: 489 year: 2008 ident: psac3879bib31 article-title: The Hirota’s direct method for multiple soliton solutions for three model equations of shallow water waves publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.12.037 – volume: 87 start-page: 2635 year: 2017 ident: psac3879bib23 article-title: Lump solution and integrability for the associated Hirota bilinear equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3216-0 – volume: 161 start-page: 65 year: 2004 ident: psac3879bib10 article-title: Symbolic computation of the Painlevé test for nonlinear partial differential equations using Maple publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2004.04.005 – volume: 15 start-page: 539 year: 1970 ident: psac3879bib11 article-title: On the stability of solitary waves in weakly dispersive media publication-title: Sov. Phys. Dokl. – volume: 105 start-page: 717 year: 2021 ident: psac3879bib3 article-title: Interaction of multiple superposition solutions for the (4+1)-dimensional Boiti-LeonManna-Pempinelli equation publication-title: Nonlinear Dyn doi: 10.1007/s11071-021-06603-z – volume: 104 start-page: 1581 year: 2021 ident: psac3879bib22 article-title: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06357-8 – volume: 73 start-page: 1343 year: 2013 ident: psac3879bib32 article-title: Bilinear form and soliton interactions for the modified Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-0867-y – volume: 71 start-page: 1560 year: 2016 ident: psac3879bib25 article-title: Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation publication-title: Computers and Mathematics with Applications doi: 10.1016/j.camwa.2016.02.017 – volume: 104 start-page: 507 year: 2021 ident: psac3879bib2 article-title: Study on dynamical behavior of multiple lump solutions and interaction between solitons and lump wave publication-title: Nonlinear Dyn doi: 10.1007/s11071-021-06322-5 – volume: 96 year: 2021 ident: psac3879bib7 article-title: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+1)-dimensional dissipative long wave system publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac1990 – volume: 107 year: 2020 ident: psac3879bib34 article-title: Rogue wave solutions for a higher-order nonlinear Schrödinger equation in an optical fiber [J] publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106382 – volume: 43 start-page: 13 year: 1997 ident: psac3879bib36 article-title: Symbolic methods to construct exact solutions of nonlinear partial differential equations publication-title: Math Comput Simul. doi: 10.1016/S0378-4754(96)00053-5 – volume: 80 start-page: 1 year: 2015 ident: psac3879bib37 article-title: Bäcklund transformations and soliton solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1321-5 – volume: 69 start-page: 1 year: 2021 ident: psac3879bib39 article-title: Lie symmetries, optimal system and group-invariant solutions of the (3+1)-dimensional generalized KP equation publication-title: Chinese J. Phys. doi: 10.1016/j.cjph.2020.11.013 – volume: 24 start-page: 522 year: 1983 ident: psac3879bib8 article-title: The Painlevé property of partial differential equations publication-title: J Math Phys A doi: 10.1063/1.525721 – volume: 379 start-page: 1975 year: 2015 ident: psac3879bib24 article-title: Lump solutions to the Kadomtsev-Petviashvili equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.06.061 – volume: 89 start-page: 2855 year: 2017 ident: psac3879bib44 article-title: Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensional extended shallow water wave equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3630-y – volume: 95 start-page: 2 year: 2019 ident: psac3879bib28 article-title: Bright soliton interactions in a (2+1)-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain publication-title: Nonlinear Dyn. |
| SSID | ssj0026269 |
| Score | 2.5944495 |
| Snippet | This paper investigates the new KP equation with variable coefficients of time ‘
t
’, broadly used to elucidate shallow water waves that arise in plasma... |
| SourceID | crossref iop |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 125255 |
| SubjectTerms | analytical solutions breather waves hirota method KP equations lumps rogue waves soliton solutions |
| Title | A study of multi-soliton solutions, breather, lumps, and their interactions for kadomtsev-petviashvili equation with variable time coeffcient using hirota method |
| URI | https://iopscience.iop.org/article/10.1088/1402-4896/ac3879 |
| Volume | 96 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1402-4896 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026269 issn: 0031-8949 databaseCode: IOP dateStart: 19700101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJSqGXvkvSF3NoD4VodyVLtkxPoTSEQh-HBnIoGFkaNUtS2107e-i_6T_tyHKWppRQCj4YeyyLkaz5xvpmhrEXptay9LngzgfNFQEEbpXTnBASGbPSaF_EaOT3H_KjY_XuRJ9ssdebWJi2m5b-GZ2mRMFJhRMhzszJJZBcmTKfW5eZotxmNzJDwDhG7338tPG2CKkn7JsJbkpVTnuUf2vhik3apvf-ZmIO77Avl51LzJKz2cVQz9yPP_I2_mfv77LbE_SEgyR6j21hc5_dHCmgrn_Afh7AmGsW2gAjzZD3kRvXNrCZnvtQrxJk3Ada1Dq6YBsP42YDxMQTqxQm0QNBYTizvv02kOXlhMzXS9ufrpfnS8DvKbs4xF_AsCZfPUZvQSxyD67FEMYQTYiE_K9wuly1g4VU5_ohOz58-_nNEZ8KOHCXCTlwWwgaBpQa0WQKg8iNLpwKTrog65IWS-EJMygRFphHnitKm2kMrkaVC8yzR2ynaRvcZbDwEfqUrrCFUQ5rs7BoNU00RFsGH_bY_HIIKzdlN49FNs6rcZfdmCoqvoqKr5Li99irzRNdyuxxjexLGs9q-rz7a-TgilzXV3RPSDo0-W5V58Pjf2zqCbslI31mZM48ZTvD6gKfEf4Z6ufjPP8Fwnn_rQ |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL74rynAMckOrddWInzrECVuVVeqBSb8bxg65akrBJ98C_4Z8yttMVRahCQsohSiZOMnY838TfzBDyXNYiq2zBqLFeUI4AgWpuBEWEhMasksKWIRr5436xd8jfHYmjsc5pjIVpu3Hqn-BuShScVDgS4uQUXYKMclkVU21yWVbTzvoNcjXmKQkRfJ8O1h4XovWEf3NGZcWrcZ3yb61csEsbeO_fzMz8Fvly_oCJXXIyORvqifnxR-7G_3iD2-TmCEFhN4nfIVdcc5dci1RQ098jP3ch5pyF1kOkG9I-cOTaBtbDdAfqZYKOO4CTW4cHdGMhLjpASECxTOESPSAkhhNt228DWmCKCH210P3xanG6APc9ZRmH8CsYVuizhyguCMXuwbTO-xiqCYGY_xWOF8t20JDqXd8nh_M3n1_t0bGQAzU5ywaqS4Zd4TLhnMy586yQojTcm8z4rK5w0mQWsQNnfuaKwHd1mc6F86Z2vGCuyLfIZtM27gGBmQ0QqDKlLiU3rpYz7bTAAeecrrz122R63o3KjFnOQ7GNUxVX26VUQfkqKF8l5W-Tl-srupTh4xLZF9inavzM-0vk4IJc1ys8xzLcBPpwCvv74T829YxcP3g9Vx_e7r9_RG5kgVETyTSPyeawPHNPEBIN9dM47H8BC20FHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+multi-soliton+solutions%2C+breather%2C+lumps%2C+and+their+interactions+for+kadomtsev-petviashvili+equation+with+variable+time+coeffcient+using+hirota+method&rft.jtitle=Physica+scripta&rft.au=Kumar%2C+Sachin&rft.au=Mohan%2C+Brij&rft.date=2021-12-01&rft.pub=IOP+Publishing&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=96&rft.issue=12&rft_id=info:doi/10.1088%2F1402-4896%2Fac3879&rft.externalDocID=psac3879 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon |