A semi-supervised anomaly detection approach for detecting mechanical failures
        Saved in:
      
    
          | Published in | AI EDAM | 
|---|---|
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        13.11.2024
     | 
| Online Access | Get full text | 
| ISSN | 0890-0604 1469-1760  | 
| DOI | 10.1017/s0890060424000131 | 
Cover
| BookMark | eNplj7tOwzAYRj2UoRQegM0vELDjS-2xqrhJVVlgjv44v6klx4nsBJS3hwqYWL5POsORziVZpSEhITec3XLGt3eFGcuYZrKWjDEu-Iqsz6g6szU57mjBPlRlHjF_hIIdhTT0EBfa4YRuCkOiMI55AHeifsh_OL3THt0JUnAQqYcQ54zlilx4iAWvf39D3h7uX_dP1eHl8Xm_O1RO8HqqQHWKcSutbD1ua2EQlK-10Nq3qkWpeacVOGVtDZZ_DzdGSofa-haN0WJD6h_vnEZYPiHGZsyhh7w0nDXn8OZfuPgCFa1Reg | 
    
|---|---|
| ContentType | Journal Article | 
    
| DBID | ADTOC UNPAY  | 
    
| DOI | 10.1017/s0890060424000131 | 
    
| DatabaseName | Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| ExternalDocumentID | oai:archive.ugent.be:01GMVB08EB09ABX4QA1KX05ZDJ | 
    
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .DC .FH 09C 09E 0E1 0R~ 23N 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAFUK AAGFV AAKNA AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABXHF ABZCX ACBMC ACDLN ACEJA ACETC ACGFS ACGOD ACIMK ACIWK ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADMLS ADNMO ADOVH ADOVT ADTOC ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENGE AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AGQPQ AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO ANOYL AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCTKK CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG T9M UNPAY UT1 VH1 WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1  | 
    
| ID | FETCH-LOGICAL-c312t-a5d5019494bfe7238ea5f26366fb5be461d65ac5992a9192a18844ce69fbe8863 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0890-0604 1469-1760  | 
    
| IngestDate | Sun Oct 26 04:15:53 EDT 2025 | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c312t-a5d5019494bfe7238ea5f26366fb5be461d65ac5992a9192a18844ce69fbe8863 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://biblio.ugent.be/publication/01GMVB08EB09ABX4QA1KX05ZDJ | 
    
| ParticipantIDs | unpaywall_primary_10_1017_s0890060424000131 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-11-13 | 
    
| PublicationDateYYYYMMDD | 2024-11-13 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-13 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | AI EDAM | 
    
| PublicationYear | 2024 | 
    
| Score | 2.379034 | 
    
| SourceID | unpaywall | 
    
| SourceType | Open Access Repository | 
    
| Title | A semi-supervised anomaly detection approach for detecting mechanical failures | 
    
| URI | https://biblio.ugent.be/publication/01GMVB08EB09ABX4QA1KX05ZDJ | 
    
| UnpaywallVersion | publishedVersion | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27T8MwEMZPUAZg4I14ywMbSokb28RjylMgKpAoKiyV7VxQRZtWJBGCvx47TQHBBGvswZIv9mf7u98B7HMtueO-eUzZswkLE-opLdFLNLPbh4l1UrL0rlvios0uO7xTXbhlJWhb93vDeuHyiuoaD0dfl1eHPj2_vm_64WnTl1Gzw24jetXx-ePJ5TTMCG61eA1m2q2b6KGUjtJVVCnrB9rVQDoS4uezJnUUUdvBtTsTpYPOzMNskY7U26vq979tMWeL0J0Mbuwsea4Xua6b9x_cxv-PfgkWKvVJonG4LMMUpiuwOKnsQKoffQXmv2EKV6EVkQwHPS8rRm5lyTAmKh0OVP-NxJiXXq6UTODkxKrgyef0iQzQpRa7SCCJ6jkPfLYG7bPTu-MLr6rD4JmANnJP8ZhbJcgk0wm6ImWoeNIQgRCJ5hqZoLHgynApG0paxahoGDJmUMhEYxiKYB1q6TDFDSBKGHlkKDcxchYYHfoSKSpfaZ-i9vUmHHxOQnc05m10x0a0o-6vKdv6U-9tmGtYReISCWmwA7X8pcBdqyhyvVeFzQftu8ZF | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27T8MwEMZPUAZg4I14ywMbSokb28RjylMgKpAoKiyV7VxQRZtWJBGCvx47TQHBBGvswZIv9mf7u98B7HMtueO-eUzZswkLE-opLdFLNLPbh4l1UrL0rlvios0uO7xTXbhlJWhb93vDeuHyiuoaD0dfl1eHPj2_vm_64WnTl1Gzw24jetXx-ePJ5TTMCG61eA1m2q2b6KGUjtJVVCnrB9rVQDoS4uezJnUUUdvBtTsTpYPOzMNskY7U26vq979tMWeL0J0Mbuwsea4Xua6b9x_cxv-PfgkWKvVJonG4LMMUpiuwOKnsQKoffQXmv2EKV6EVkQwHPS8rRm5lyTAmKh0OVP-NxJiXXq6UTODkxKrgyef0iQzQpRa7SCCJ6jkPfLYG7bPTu-MLr6rD4JmANnJP8ZhbJcgk0wm6ImWoeNIQgRCJ5hqZoLHgynApG0paxahoGDJmUMhEYxiKYB1q6TDFDSBKGHlkKDcxchYYHfoSKSpfaZ-i9vUmHHxOQnc05m10x0a0o-6vKdv6U-9tmGtYReISCWmwA7X8pcBdqyhyvVeFzQftu8ZF | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-supervised+anomaly+detection+approach+for+detecting+mechanical+failures&rft.jtitle=AI+EDAM&rft.date=2024-11-13&rft.issn=0890-0604&rft_id=info:doi/10.1017%2Fs0890060424000131&rft.externalDocID=oai%3Aarchive.ugent.be%3A01GMVB08EB09ABX4QA1KX05ZDJ | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-0604&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-0604&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-0604&client=summon |