A CNN-BiGRU sea level height prediction model combined with bayesian optimization algorithm

Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using neural network models adapted for nonlinear data. Currently, few researchers use a combination of convolutional neural networks and bidirectional...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 315; p. 119849
Main Authors Li, Xiao, Zhou, Shijian, Wang, Fengwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text
ISSN0029-8018
DOI10.1016/j.oceaneng.2024.119849

Cover

Abstract Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using neural network models adapted for nonlinear data. Currently, few researchers use a combination of convolutional neural networks and bidirectional gated recurrent units (CNN-BiGRU) optimized with hyperparameter tuning for sea level prediction. There is also a lack of detailed discussion on the randomness of neural network initialization in prediction domains. Therefore, this study employs the bayesian optimization algorithm (BO) to optimize the CNN-BiGRU model, resulting in the BO-CNN-BiGRU model. Experiments initially compared the BO-CNN-BiGRU model with five other models using data from ten tidal stations in the US, showing that the model outperformed the others. To address initialization randomness, we used ten random seeds for statistical analysis, which demonstrated that the BO-CNN-BiGRU model performed well in terms of predictive performance and robustness. Finally, the BO-CNN-BiGRU model was applied to satellite altimetry grid data from the Bohai and Yellow Seas in China, yielding a linear trend of 3.92 ± 0.63 mm/a from 1993 to 2023, consistent with the China Sea Level Bulletin, further validating the model's effectiveness. This model can be used to predict regional sea level change. •Bidirectional models aren't always better.•Fixed seeds avoid initialization randomness.•Bayesian optimization boosts prediction.
AbstractList Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using neural network models adapted for nonlinear data. Currently, few researchers use a combination of convolutional neural networks and bidirectional gated recurrent units (CNN-BiGRU) optimized with hyperparameter tuning for sea level prediction. There is also a lack of detailed discussion on the randomness of neural network initialization in prediction domains. Therefore, this study employs the bayesian optimization algorithm (BO) to optimize the CNN-BiGRU model, resulting in the BO-CNN-BiGRU model. Experiments initially compared the BO-CNN-BiGRU model with five other models using data from ten tidal stations in the US, showing that the model outperformed the others. To address initialization randomness, we used ten random seeds for statistical analysis, which demonstrated that the BO-CNN-BiGRU model performed well in terms of predictive performance and robustness. Finally, the BO-CNN-BiGRU model was applied to satellite altimetry grid data from the Bohai and Yellow Seas in China, yielding a linear trend of 3.92 ± 0.63 mm/a from 1993 to 2023, consistent with the China Sea Level Bulletin, further validating the model's effectiveness. This model can be used to predict regional sea level change. •Bidirectional models aren't always better.•Fixed seeds avoid initialization randomness.•Bayesian optimization boosts prediction.
ArticleNumber 119849
Author Zhou, Shijian
Wang, Fengwei
Li, Xiao
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0009-0002-4215-3542
  surname: Li
  fullname: Li, Xiao
  organization: School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang, 330013, China
– sequence: 2
  givenname: Shijian
  surname: Zhou
  fullname: Zhou, Shijian
  email: shjzhou@nchu.edu.cn
  organization: Nanchang Hangkong University, Nanchang, 330063, China
– sequence: 3
  givenname: Fengwei
  orcidid: 0000-0002-9738-2599
  surname: Wang
  fullname: Wang, Fengwei
  organization: State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
BookMark eNqFkE1Lw0AQhvdQwbb6F2T_QOJsNs0HeLAWrUKpIPXkYZlsJu2WJFt2Q6X-etNWL148DczM88L7jNigtS0xdiMgFCCS221oNWFL7TqMIIpDIfIszgdsCBDlQQYiu2Qj77cAkCQgh-xjymfLZfBg5m_v3BPymvZU8w2Z9abjO0el0Z2xLW9s2e-1bQrTUsk_TbfhBR7IG2y53XWmMV94-sR6bV1_bq7YRYW1p-ufOWarp8fV7DlYvM5fZtNFoKWIugBBFlokKU6iskx0ruMMMZlUqKEoJRZVGVUxVjKvZJqlkAtZTAiyGJIihUrIMUvOsdpZ7x1VaudMg-6gBKijFbVVv1bU0Yo6W-nBuz-gNt2pQ-fQ1P_j92ec-m57Q055bajVvTJHulOlNf9FfAOig4g6
CitedBy_id crossref_primary_10_3390_pr13030788
crossref_primary_10_3390_math13030338
crossref_primary_10_1016_j_seares_2025_102577
Cites_doi 10.1007/s13131-020-1569-1
10.1016/j.neucom.2020.07.061
10.1007/978-3-030-87440-7
10.1109/ACCESS.2020.3021527
10.1155/2009/167239
10.1016/j.neunet.2006.01.004
10.1016/j.engappai.2015.09.010
10.1007/s13131-021-1763-9
10.1007/BF02765119
10.1061/(ASCE)0733-950X(1999)125:4(195)
10.1175/2008JAMC1907.1
10.1109/ACCESS.2020.2998145
10.1016/j.apor.2014.07.003
10.1016/S0029-8018(03)00083-0
10.1016/j.cageo.2009.09.014
10.1016/j.oceaneng.2005.04.012
10.3390/rs16030551
10.1007/s00376-011-0113-9
10.3390/jmse11112052
10.1007/s00366-011-0241-y
10.1007/s11269-007-9200-1
10.1162/neco.1997.9.8.1735
10.1109/ACCESS.2020.3017089
10.1016/j.ecss.2004.06.004
10.1016/S0029-8018(01)00112-3
10.1109/JPROC.2015.2494218
10.1016/S1385-1101(03)00024-8
10.1016/j.cageo.2007.12.004
10.1109/TIP.2020.3040847
10.1007/s10661-024-12838-1
10.1007/s11356-022-21662-4
10.3390/rs15112881
10.1038/s41598-024-55266-4
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2024.119849
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2024_119849
S0029801824031871
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
R2-
SAC
SET
WUQ
~HD
ID FETCH-LOGICAL-c312t-a03bc167a52dd6c9c48aa65fac0bd3abfd2f4af39f37870913b5e08406b70f13
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Wed Oct 01 04:40:28 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Sat Dec 28 15:52:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords The bayesian optimization algorithm
Bidirectional gated recurrent unit
Sea level height prediction
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-a03bc167a52dd6c9c48aa65fac0bd3abfd2f4af39f37870913b5e08406b70f13
ORCID 0009-0002-4215-3542
0000-0002-9738-2599
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2024_119849
crossref_citationtrail_10_1016_j_oceaneng_2024_119849
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_119849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Wu, Wang (bib11) 2014; 216
Alenezi, Alsulaili, Alkhalidi (bib2) 2023; 11
Makarynska, Makarynskyy (bib21) 2008; 34
Cheng, Wang, Xu, Chau (bib5) 2008; 22
Raj, Brown (bib27) 2023; 15
Cho, Van Merriënboer, Bahdanau, Bengio (bib6) 2014
Katipoğlu, Mohammadi, Keblouti (bib16) 2024; 196
Nitsure, Londhe, Khare (bib24) 2014; 47
Tsai, Lee (bib32) 1999; 125
Raj, Pasfield-Neofitou (bib28) 2024; 16
Yang, Shami (bib39) 2020; 415
Chen, Chau, Busari (bib4) 2015; 46
Lee (bib18) 2006; 33
Zhu (bib41) 2020; 3
Sztobryn (bib31) 2003; 49
(bib23) 2024
Huang, Murray, Kraus, Rosati (bib14) 2003; 30
Li, Ma, Xiao, Xiao, Wang, Zhang (bib19) 2022; 208
Huang, Xiang, Zhao, Cheng (bib15) 2020; 8
Yang, Wu, Hsieh (bib38) 2020; 8
Wu, Hsieh, Tang (bib36) 2006; 19
You, Lee, Lee (bib40) 2011; 28
De Oliveira, Ebecken, De Oliveira, de Azevedo Santos (bib8) 2009; 48
Hochreiter, Schmidhuber (bib12) 1997; 9
Li, Zhou, Wang, Fu (bib20) 2024; 14
Choi, Kil (bib7) 2020; 30
Kayarvizhy, Kanmani, Uthariaraj (bib17) 2013; 73
Wang, Wang, Wu, Xi, Wang (bib35) 2020; 39
Gandomi, Yang, Alavi (bib9) 2013; 29
Bagheri, Ibrahim, Wolf, Akhir, Talaat, Oryani (bib3) 2023; 30
Qiao, Wu, Tang, Wu (bib26) 2022
Shahriari, Swersky, Wang, Adams, De Freitas (bib30) 2015; 104
Pugh (bib25) 1987
Makarynskyy, Makarynska, Kuhn, Featherstone (bib22) 2004; 61
Röske (bib29) 1997; 49
Tsai, Lin, Shen (bib33) 2002; 29
Aguilar-Martinez, Hsieh (bib1) 2009; 2009
Wang, Liu, Wang, Wu, Wang, Shen (bib34) 2021; 40
Huang, Wang, Hu (bib13) 2021; 47
Ghorbani, Khatibi, Aytek, Makarynskyy, Shiri (bib10) 2010; 36
Xie, Zhang, Lim (bib37) 2020; 8
Röske (10.1016/j.oceaneng.2024.119849_bib29) 1997; 49
Huang (10.1016/j.oceaneng.2024.119849_bib15) 2020; 8
Qiao (10.1016/j.oceaneng.2024.119849_bib26) 2022
Gandomi (10.1016/j.oceaneng.2024.119849_bib9) 2013; 29
Cho (10.1016/j.oceaneng.2024.119849_bib6) 2014
Makarynska (10.1016/j.oceaneng.2024.119849_bib21) 2008; 34
Cheng (10.1016/j.oceaneng.2024.119849_bib5) 2008; 22
Hochreiter (10.1016/j.oceaneng.2024.119849_bib12) 1997; 9
Sztobryn (10.1016/j.oceaneng.2024.119849_bib31) 2003; 49
Li (10.1016/j.oceaneng.2024.119849_bib20) 2024; 14
Lee (10.1016/j.oceaneng.2024.119849_bib18) 2006; 33
Tsai (10.1016/j.oceaneng.2024.119849_bib33) 2002; 29
De Oliveira (10.1016/j.oceaneng.2024.119849_bib8) 2009; 48
Yang (10.1016/j.oceaneng.2024.119849_bib39) 2020; 415
Han (10.1016/j.oceaneng.2024.119849_bib11) 2014; 216
Yang (10.1016/j.oceaneng.2024.119849_bib38) 2020; 8
Wu (10.1016/j.oceaneng.2024.119849_bib36) 2006; 19
Aguilar-Martinez (10.1016/j.oceaneng.2024.119849_bib1) 2009; 2009
Raj (10.1016/j.oceaneng.2024.119849_bib28) 2024; 16
Bagheri (10.1016/j.oceaneng.2024.119849_bib3) 2023; 30
Shahriari (10.1016/j.oceaneng.2024.119849_bib30) 2015; 104
Nitsure (10.1016/j.oceaneng.2024.119849_bib24) 2014; 47
Raj (10.1016/j.oceaneng.2024.119849_bib27) 2023; 15
Xie (10.1016/j.oceaneng.2024.119849_bib37) 2020; 8
Zhu (10.1016/j.oceaneng.2024.119849_bib41) 2020; 3
Choi (10.1016/j.oceaneng.2024.119849_bib7) 2020; 30
Katipoğlu (10.1016/j.oceaneng.2024.119849_bib16) 2024; 196
Wang (10.1016/j.oceaneng.2024.119849_bib35) 2020; 39
Wang (10.1016/j.oceaneng.2024.119849_bib34) 2021; 40
Huang (10.1016/j.oceaneng.2024.119849_bib14) 2003; 30
You (10.1016/j.oceaneng.2024.119849_bib40) 2011; 28
Tsai (10.1016/j.oceaneng.2024.119849_bib32) 1999; 125
Kayarvizhy (10.1016/j.oceaneng.2024.119849_bib17) 2013; 73
Huang (10.1016/j.oceaneng.2024.119849_bib13) 2021; 47
Chen (10.1016/j.oceaneng.2024.119849_bib4) 2015; 46
Pugh (10.1016/j.oceaneng.2024.119849_bib25) 1987
Alenezi (10.1016/j.oceaneng.2024.119849_bib2) 2023; 11
Ghorbani (10.1016/j.oceaneng.2024.119849_bib10) 2010; 36
Makarynskyy (10.1016/j.oceaneng.2024.119849_bib22) 2004; 61
Li (10.1016/j.oceaneng.2024.119849_bib19) 2022; 208
References_xml – volume: 30
  start-page: 1015
  year: 2020
  end-page: 1029
  ident: bib7
  article-title: Face video retrieval based on the deep CNN with RBF loss
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 161519
  year: 2020
  end-page: 161541
  ident: bib37
  article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer
  publication-title: IEEE Access
– volume: 19
  start-page: 145
  year: 2006
  end-page: 154
  ident: bib36
  article-title: Neural network forecasts of the tropical Pacific sea surface temperatures
  publication-title: Neural Network.
– volume: 3
  year: 2020
  ident: bib41
  article-title: Research on short-term tide forecast based on Bi-LSTM recurrent neural network
  publication-title: International Journal of Social Science and Education Research
– volume: 47
  start-page: 80
  year: 2021
  end-page: 84
  ident: bib13
  article-title: Tide level prediction for tidal power station based on CNN-BiLSTM network model
  publication-title: Water Power
– volume: 73
  start-page: 975
  year: 2013
  end-page: 8887
  ident: bib17
  article-title: Improving Fault prediction using ANN-PSO in object oriented systems
  publication-title: Int. J. Comput. Appl.
– volume: 11
  start-page: 2052
  year: 2023
  ident: bib2
  article-title: Prediction of Sea Level in the arabian Gulf using artificial neural networks
  publication-title: J. Mar. Sci. Eng.
– year: 2014
  ident: bib6
  article-title: On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
– volume: 61
  start-page: 351
  year: 2004
  end-page: 360
  ident: bib22
  article-title: Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia
  publication-title: Estuar. Coast Shelf Sci.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib12
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 33
  start-page: 483
  year: 2006
  end-page: 494
  ident: bib18
  article-title: Neural network prediction of a storm surge
  publication-title: Ocean Eng.
– volume: 15
  start-page: 2881
  year: 2023
  ident: bib27
  article-title: Prediction of Mean Sea Level with GNSS-VLM correction using a hybrid deep learning model in Australia
  publication-title: Rem. Sens.
– volume: 16
  start-page: 551
  year: 2024
  ident: bib28
  article-title: Assessment and prediction of Sea Level and coastal wetland changes in small Islands using remote sensing and artificial intelligence
  publication-title: Rem. Sens.
– volume: 30
  start-page: 81839
  year: 2023
  end-page: 81857
  ident: bib3
  article-title: Sea-level projections using a NARX-NN model of tide gauge data for the coastal city of Kuala Terengganu in Malaysia
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 46
  start-page: 258
  year: 2015
  end-page: 268
  ident: bib4
  article-title: A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model
  publication-title: Eng. Appl. Artif. Intell.
– volume: 216
  start-page: 28
  year: 2014
  end-page: 31
  ident: bib11
  article-title: Gas concentration prediction based on Markov residual correction
  publication-title: Ind. Mine Autom.
– start-page: 342
  year: 2022
  end-page: 347
  ident: bib26
  article-title: Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism
  publication-title: 2022 24th International Conference on Advanced Communication Technology (ICACT)
– volume: 8
  start-page: 159389
  year: 2020
  end-page: 159401
  ident: bib38
  article-title: Long short-term memory recurrent neural network for tidal level forecasting
  publication-title: IEEE Access
– volume: 196
  start-page: 724
  year: 2024
  ident: bib16
  article-title: Bee-inspired insights: unleashing the potential of artificial bee colony optimized hybrid neural networks for enhanced groundwater level time series prediction
  publication-title: Environ. Monit. Assess.
– volume: 125
  start-page: 195
  year: 1999
  end-page: 202
  ident: bib32
  article-title: Back-propagation neural network in tidal-level forecasting
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
– volume: 208
  year: 2022
  ident: bib19
  article-title: Time-series production forecasting method based on the integration of bidirectional gated recurrent unit (Bi-GRU) network and sparrow search algorithm (SSA)
  publication-title: J. Petrol. Sci. Eng.
– volume: 28
  start-page: 1067
  year: 2011
  end-page: 1076
  ident: bib40
  article-title: Parameterization and application of storm surge/tide modeling using a genetic algorithm for typhoon periods
  publication-title: Adv. Atmos. Sci.
– volume: 49
  start-page: 317
  year: 2003
  end-page: 322
  ident: bib31
  article-title: Forecast of storm surge by means of artificial neural network
  publication-title: J. Sea Res.
– volume: 30
  start-page: 2275
  year: 2003
  end-page: 2295
  ident: bib14
  article-title: Development of a regional neural network for coastal water level predictions
  publication-title: Ocean Eng.
– volume: 39
  start-page: 157
  year: 2020
  end-page: 167
  ident: bib35
  article-title: Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information
  publication-title: Acta Oceanol. Sin.
– volume: 34
  start-page: 1910
  year: 2008
  end-page: 1917
  ident: bib21
  article-title: Predicting sea-level variations at the Cocos (Keeling) Islands with artificial neural networks
  publication-title: Comput. Geosci.
– volume: 49
  start-page: 71
  year: 1997
  end-page: 99
  ident: bib29
  article-title: Sea level forecasts using neural networks
  publication-title: Dtsch. Hydrogr. Z.
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: bib39
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
  publication-title: Neurocomputing
– year: 2024
  ident: bib23
  article-title: China Sea Level Bulletin 2023
– volume: 47
  start-page: 344
  year: 2014
  end-page: 351
  ident: bib24
  article-title: Prediction of sea water levels using wind information and soft computing techniques
  publication-title: Appl. Ocean Res.
– year: 1987
  ident: bib25
  article-title: Tides, Surges and Mean Sea Level
– volume: 22
  start-page: 895
  year: 2008
  end-page: 909
  ident: bib5
  article-title: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos
  publication-title: Water Resour. Manag.
– volume: 29
  start-page: 1683
  year: 2002
  end-page: 1695
  ident: bib33
  article-title: Neural network for wave forecasting among multi-stations
  publication-title: Ocean Eng.
– volume: 40
  start-page: 104
  year: 2021
  end-page: 118
  ident: bib34
  article-title: Multi-step ahead short-term predictions of storm surge level using CNN and LSTM network
  publication-title: Acta Oceanol. Sin.
– volume: 2009
  year: 2009
  ident: bib1
  article-title: Forecasts of tropical Pacific sea surface temperatures by neural networks and support vector regression
  publication-title: International Journal of Oceanography
– volume: 48
  start-page: 143
  year: 2009
  end-page: 155
  ident: bib8
  article-title: Neural network model to predict a storm surge
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: bib9
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– volume: 14
  start-page: 4560
  year: 2024
  ident: bib20
  article-title: An improved sparrow search algorithm and CNN-BiLSTM neural network for predicting sea level height
  publication-title: Sci. Rep.
– volume: 36
  start-page: 620
  year: 2010
  end-page: 627
  ident: bib10
  article-title: Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
  publication-title: Comput. Geosci.
– volume: 104
  start-page: 148
  year: 2015
  end-page: 175
  ident: bib30
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc. IEEE
– volume: 8
  start-page: 99346
  year: 2020
  end-page: 99353
  ident: bib15
  article-title: Air quality prediction using improved PSO-BP neural network
  publication-title: IEEE Access
– volume: 39
  start-page: 157
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119849_bib35
  article-title: Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information
  publication-title: Acta Oceanol. Sin.
  doi: 10.1007/s13131-020-1569-1
– year: 2014
  ident: 10.1016/j.oceaneng.2024.119849_bib6
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119849_bib39
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 208
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119849_bib19
  article-title: Time-series production forecasting method based on the integration of bidirectional gated recurrent unit (Bi-GRU) network and sparrow search algorithm (SSA)
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1007/978-3-030-87440-7
– volume: 8
  start-page: 161519
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119849_bib37
  article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021527
– volume: 2009
  year: 2009
  ident: 10.1016/j.oceaneng.2024.119849_bib1
  article-title: Forecasts of tropical Pacific sea surface temperatures by neural networks and support vector regression
  publication-title: International Journal of Oceanography
  doi: 10.1155/2009/167239
– volume: 3
  issue: 4
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119849_bib41
  article-title: Research on short-term tide forecast based on Bi-LSTM recurrent neural network
  publication-title: International Journal of Social Science and Education Research
– volume: 19
  start-page: 145
  issue: 2
  year: 2006
  ident: 10.1016/j.oceaneng.2024.119849_bib36
  article-title: Neural network forecasts of the tropical Pacific sea surface temperatures
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2006.01.004
– volume: 46
  start-page: 258
  year: 2015
  ident: 10.1016/j.oceaneng.2024.119849_bib4
  article-title: A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.09.010
– volume: 40
  start-page: 104
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119849_bib34
  article-title: Multi-step ahead short-term predictions of storm surge level using CNN and LSTM network
  publication-title: Acta Oceanol. Sin.
  doi: 10.1007/s13131-021-1763-9
– volume: 47
  start-page: 80
  issue: 10
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119849_bib13
  article-title: Tide level prediction for tidal power station based on CNN-BiLSTM network model
  publication-title: Water Power
– volume: 49
  start-page: 71
  issue: 1
  year: 1997
  ident: 10.1016/j.oceaneng.2024.119849_bib29
  article-title: Sea level forecasts using neural networks
  publication-title: Dtsch. Hydrogr. Z.
  doi: 10.1007/BF02765119
– volume: 125
  start-page: 195
  issue: 4
  year: 1999
  ident: 10.1016/j.oceaneng.2024.119849_bib32
  article-title: Back-propagation neural network in tidal-level forecasting
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1999)125:4(195)
– volume: 48
  start-page: 143
  issue: 1
  year: 2009
  ident: 10.1016/j.oceaneng.2024.119849_bib8
  article-title: Neural network model to predict a storm surge
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2008JAMC1907.1
– year: 1987
  ident: 10.1016/j.oceaneng.2024.119849_bib25
– volume: 8
  start-page: 99346
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119849_bib15
  article-title: Air quality prediction using improved PSO-BP neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998145
– volume: 47
  start-page: 344
  year: 2014
  ident: 10.1016/j.oceaneng.2024.119849_bib24
  article-title: Prediction of sea water levels using wind information and soft computing techniques
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2014.07.003
– volume: 30
  start-page: 2275
  issue: 17
  year: 2003
  ident: 10.1016/j.oceaneng.2024.119849_bib14
  article-title: Development of a regional neural network for coastal water level predictions
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(03)00083-0
– volume: 36
  start-page: 620
  issue: 5
  year: 2010
  ident: 10.1016/j.oceaneng.2024.119849_bib10
  article-title: Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2009.09.014
– volume: 33
  start-page: 483
  issue: 3–4
  year: 2006
  ident: 10.1016/j.oceaneng.2024.119849_bib18
  article-title: Neural network prediction of a storm surge
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2005.04.012
– volume: 16
  start-page: 551
  issue: 3
  year: 2024
  ident: 10.1016/j.oceaneng.2024.119849_bib28
  article-title: Assessment and prediction of Sea Level and coastal wetland changes in small Islands using remote sensing and artificial intelligence
  publication-title: Rem. Sens.
  doi: 10.3390/rs16030551
– volume: 73
  start-page: 975
  issue: 3
  year: 2013
  ident: 10.1016/j.oceaneng.2024.119849_bib17
  article-title: Improving Fault prediction using ANN-PSO in object oriented systems
  publication-title: Int. J. Comput. Appl.
– volume: 28
  start-page: 1067
  year: 2011
  ident: 10.1016/j.oceaneng.2024.119849_bib40
  article-title: Parameterization and application of storm surge/tide modeling using a genetic algorithm for typhoon periods
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-011-0113-9
– volume: 11
  start-page: 2052
  issue: 11
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119849_bib2
  article-title: Prediction of Sea Level in the arabian Gulf using artificial neural networks
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse11112052
– volume: 29
  start-page: 17
  year: 2013
  ident: 10.1016/j.oceaneng.2024.119849_bib9
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– volume: 22
  start-page: 895
  year: 2008
  ident: 10.1016/j.oceaneng.2024.119849_bib5
  article-title: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-007-9200-1
– volume: 216
  start-page: 28
  year: 2014
  ident: 10.1016/j.oceaneng.2024.119849_bib11
  article-title: Gas concentration prediction based on Markov residual correction
  publication-title: Ind. Mine Autom.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.oceaneng.2024.119849_bib12
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 159389
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119849_bib38
  article-title: Long short-term memory recurrent neural network for tidal level forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017089
– volume: 61
  start-page: 351
  issue: 2
  year: 2004
  ident: 10.1016/j.oceaneng.2024.119849_bib22
  article-title: Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/j.ecss.2004.06.004
– volume: 29
  start-page: 1683
  issue: 13
  year: 2002
  ident: 10.1016/j.oceaneng.2024.119849_bib33
  article-title: Neural network for wave forecasting among multi-stations
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(01)00112-3
– volume: 104
  start-page: 148
  issue: 1
  year: 2015
  ident: 10.1016/j.oceaneng.2024.119849_bib30
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 49
  start-page: 317
  issue: 4
  year: 2003
  ident: 10.1016/j.oceaneng.2024.119849_bib31
  article-title: Forecast of storm surge by means of artificial neural network
  publication-title: J. Sea Res.
  doi: 10.1016/S1385-1101(03)00024-8
– volume: 34
  start-page: 1910
  issue: 12
  year: 2008
  ident: 10.1016/j.oceaneng.2024.119849_bib21
  article-title: Predicting sea-level variations at the Cocos (Keeling) Islands with artificial neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.12.004
– volume: 30
  start-page: 1015
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119849_bib7
  article-title: Face video retrieval based on the deep CNN with RBF loss
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3040847
– volume: 196
  start-page: 724
  issue: 8
  year: 2024
  ident: 10.1016/j.oceaneng.2024.119849_bib16
  article-title: Bee-inspired insights: unleashing the potential of artificial bee colony optimized hybrid neural networks for enhanced groundwater level time series prediction
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-024-12838-1
– volume: 30
  start-page: 81839
  issue: 34
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119849_bib3
  article-title: Sea-level projections using a NARX-NN model of tide gauge data for the coastal city of Kuala Terengganu in Malaysia
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-022-21662-4
– volume: 15
  start-page: 2881
  issue: 11
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119849_bib27
  article-title: Prediction of Mean Sea Level with GNSS-VLM correction using a hybrid deep learning model in Australia
  publication-title: Rem. Sens.
  doi: 10.3390/rs15112881
– start-page: 342
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119849_bib26
  article-title: Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism
– volume: 14
  start-page: 4560
  issue: 1
  year: 2024
  ident: 10.1016/j.oceaneng.2024.119849_bib20
  article-title: An improved sparrow search algorithm and CNN-BiLSTM neural network for predicting sea level height
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-55266-4
SSID ssj0006603
Score 2.4705904
Snippet Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119849
SubjectTerms Bidirectional gated recurrent unit
Convolutional neural network
Sea level height prediction
The bayesian optimization algorithm
Title A CNN-BiGRU sea level height prediction model combined with bayesian optimization algorithm
URI https://dx.doi.org/10.1016/j.oceaneng.2024.119849
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0029-8018
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection unibz
  issn: 0029-8018
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0029-8018
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0029-8018
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0029-8018
  databaseCode: AKRWK
  dateStart: 19700101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXlQQn1gfZQ9e026ym8cea7FWxQrSQsFD2GdtadNS6sGLv92dNNEKQg9ek0xIZjYzO5P5vkHoWhEhw0D7XqJF7DHfaE9aZj1KpMuHmFWCAhr5qRt1-uxhEA62UKvEwkBbZeH7Vz4999bFkUahzcZ8NAKMb8Cdf02AUc5Pchw5YzFMMah__rR5RBGhZZsHXL2GEh7XXYgQmcmGLk8MmPMePAFOzb8C1FrQaR-g_WK3iJurBzpEWyY7QrtrHIJHaO8Z7l4QTx-j1yZudbvezejupY_dMsYT6ArCb3kFFM8X8F8GbIHzETjYvbZLjY3GUI_FUnwYAFXimXMk0wKhicVkOFu409MT1Gvf9lodrxig4CnqB0tPECqVH8XCWUNHiiuWCBGFVigiNRXS6sAyYSm3FL5b7lMZGuJSvkjGxPr0FFWyWWbOEBZQGlEqSnTAmaWWS858wWOjCWXE6ioKS6WlqiAXhxkXk7TsIhunpbJTUHa6UnYVNb7l5it6jY0SvLRJ-muhpC4GbJA9_4fsBdoJYPRvXn25RJXl4t1cuf3IUtbyBVdD2837x073C--t4Wo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPfgA0apYn3vwGrvJbh57rEWt2laQCgUPYZ-1UtNS6sGLv92dNNEKggevSSYkM5uZncl83yB0poiQYaB9L9Ei9phvtCctsx4l0uVDzCpBAY3c7UXtR3Y7CAcV1CqxMNBWWfj-hU_PvXVxpFFoszEdjQDjG3DnXxNglPMTwJGvsDCIIQM7__ju84giQss-D7h8CSb8cu5ihMhMNnSJYsCc--AJkGr-FqGWos7VFtostou4uXiibVQxWQ2tL5EI1tDGPdy9YJ7eQU9N3Or1vIvR9cMjdusYj6EtCD_nJVA8ncGPGTAGzmfgYPfeLjc2GkNBFkvxbgBViSfOk7wWEE0sxsPJzJ1-3UX9q8t-q-0VExQ8Rf1g7glCpfKjWDhz6EhxxRIhotAKRaSmQlodWCYs5ZbCh8t9KkNDXM4XyZhYn-6hajbJzD7CAmojSkWJDjiz1HLJmS94bDShjFhdR2GptFQV7OIw5GKclm1kL2mp7BSUnS6UXUeNL7npgl_jTwle2iT9sVJSFwT-kD34h-wpWm33u520c9O7O0RrAcwBzksxR6g6n72ZY7c5mcuTfPF9Aj8-4v8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-BiGRU+sea+level+height+prediction+model+combined+with+bayesian+optimization+algorithm&rft.jtitle=Ocean+engineering&rft.au=Li%2C+Xiao&rft.au=Zhou%2C+Shijian&rft.au=Wang%2C+Fengwei&rft.date=2025-01-01&rft.issn=0029-8018&rft.volume=315&rft.spage=119849&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.119849&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2024_119849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon