A CNN-BiGRU sea level height prediction model combined with bayesian optimization algorithm
Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using neural network models adapted for nonlinear data. Currently, few researchers use a combination of convolutional neural networks and bidirectional...
        Saved in:
      
    
          | Published in | Ocean engineering Vol. 315; p. 119849 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.01.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0029-8018 | 
| DOI | 10.1016/j.oceaneng.2024.119849 | 
Cover
| Abstract | Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using neural network models adapted for nonlinear data. Currently, few researchers use a combination of convolutional neural networks and bidirectional gated recurrent units (CNN-BiGRU) optimized with hyperparameter tuning for sea level prediction. There is also a lack of detailed discussion on the randomness of neural network initialization in prediction domains. Therefore, this study employs the bayesian optimization algorithm (BO) to optimize the CNN-BiGRU model, resulting in the BO-CNN-BiGRU model. Experiments initially compared the BO-CNN-BiGRU model with five other models using data from ten tidal stations in the US, showing that the model outperformed the others. To address initialization randomness, we used ten random seeds for statistical analysis, which demonstrated that the BO-CNN-BiGRU model performed well in terms of predictive performance and robustness. Finally, the BO-CNN-BiGRU model was applied to satellite altimetry grid data from the Bohai and Yellow Seas in China, yielding a linear trend of 3.92 ± 0.63 mm/a from 1993 to 2023, consistent with the China Sea Level Bulletin, further validating the model's effectiveness. This model can be used to predict regional sea level change.
•Bidirectional models aren't always better.•Fixed seeds avoid initialization randomness.•Bayesian optimization boosts prediction. | 
    
|---|---|
| AbstractList | Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using neural network models adapted for nonlinear data. Currently, few researchers use a combination of convolutional neural networks and bidirectional gated recurrent units (CNN-BiGRU) optimized with hyperparameter tuning for sea level prediction. There is also a lack of detailed discussion on the randomness of neural network initialization in prediction domains. Therefore, this study employs the bayesian optimization algorithm (BO) to optimize the CNN-BiGRU model, resulting in the BO-CNN-BiGRU model. Experiments initially compared the BO-CNN-BiGRU model with five other models using data from ten tidal stations in the US, showing that the model outperformed the others. To address initialization randomness, we used ten random seeds for statistical analysis, which demonstrated that the BO-CNN-BiGRU model performed well in terms of predictive performance and robustness. Finally, the BO-CNN-BiGRU model was applied to satellite altimetry grid data from the Bohai and Yellow Seas in China, yielding a linear trend of 3.92 ± 0.63 mm/a from 1993 to 2023, consistent with the China Sea Level Bulletin, further validating the model's effectiveness. This model can be used to predict regional sea level change.
•Bidirectional models aren't always better.•Fixed seeds avoid initialization randomness.•Bayesian optimization boosts prediction. | 
    
| ArticleNumber | 119849 | 
    
| Author | Zhou, Shijian Wang, Fengwei Li, Xiao  | 
    
| Author_xml | – sequence: 1 givenname: Xiao orcidid: 0009-0002-4215-3542 surname: Li fullname: Li, Xiao organization: School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang, 330013, China – sequence: 2 givenname: Shijian surname: Zhou fullname: Zhou, Shijian email: shjzhou@nchu.edu.cn organization: Nanchang Hangkong University, Nanchang, 330063, China – sequence: 3 givenname: Fengwei orcidid: 0000-0002-9738-2599 surname: Wang fullname: Wang, Fengwei organization: State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China  | 
    
| BookMark | eNqFkE1Lw0AQhvdQwbb6F2T_QOJsNs0HeLAWrUKpIPXkYZlsJu2WJFt2Q6X-etNWL148DczM88L7jNigtS0xdiMgFCCS221oNWFL7TqMIIpDIfIszgdsCBDlQQYiu2Qj77cAkCQgh-xjymfLZfBg5m_v3BPymvZU8w2Z9abjO0el0Z2xLW9s2e-1bQrTUsk_TbfhBR7IG2y53XWmMV94-sR6bV1_bq7YRYW1p-ufOWarp8fV7DlYvM5fZtNFoKWIugBBFlokKU6iskx0ruMMMZlUqKEoJRZVGVUxVjKvZJqlkAtZTAiyGJIihUrIMUvOsdpZ7x1VaudMg-6gBKijFbVVv1bU0Yo6W-nBuz-gNt2pQ-fQ1P_j92ec-m57Q055bajVvTJHulOlNf9FfAOig4g6 | 
    
| CitedBy_id | crossref_primary_10_3390_pr13030788 crossref_primary_10_3390_math13030338 crossref_primary_10_1016_j_seares_2025_102577  | 
    
| Cites_doi | 10.1007/s13131-020-1569-1 10.1016/j.neucom.2020.07.061 10.1007/978-3-030-87440-7 10.1109/ACCESS.2020.3021527 10.1155/2009/167239 10.1016/j.neunet.2006.01.004 10.1016/j.engappai.2015.09.010 10.1007/s13131-021-1763-9 10.1007/BF02765119 10.1061/(ASCE)0733-950X(1999)125:4(195) 10.1175/2008JAMC1907.1 10.1109/ACCESS.2020.2998145 10.1016/j.apor.2014.07.003 10.1016/S0029-8018(03)00083-0 10.1016/j.cageo.2009.09.014 10.1016/j.oceaneng.2005.04.012 10.3390/rs16030551 10.1007/s00376-011-0113-9 10.3390/jmse11112052 10.1007/s00366-011-0241-y 10.1007/s11269-007-9200-1 10.1162/neco.1997.9.8.1735 10.1109/ACCESS.2020.3017089 10.1016/j.ecss.2004.06.004 10.1016/S0029-8018(01)00112-3 10.1109/JPROC.2015.2494218 10.1016/S1385-1101(03)00024-8 10.1016/j.cageo.2007.12.004 10.1109/TIP.2020.3040847 10.1007/s10661-024-12838-1 10.1007/s11356-022-21662-4 10.3390/rs15112881 10.1038/s41598-024-55266-4  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.oceaneng.2024.119849 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Oceanography  | 
    
| ExternalDocumentID | 10_1016_j_oceaneng_2024_119849 S0029801824031871  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 R2- SAC SET WUQ ~HD  | 
    
| ID | FETCH-LOGICAL-c312t-a03bc167a52dd6c9c48aa65fac0bd3abfd2f4af39f37870913b5e08406b70f13 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0029-8018 | 
    
| IngestDate | Wed Oct 01 04:40:28 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Sat Dec 28 15:52:37 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | The bayesian optimization algorithm Bidirectional gated recurrent unit Sea level height prediction Convolutional neural network  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c312t-a03bc167a52dd6c9c48aa65fac0bd3abfd2f4af39f37870913b5e08406b70f13 | 
    
| ORCID | 0009-0002-4215-3542 0000-0002-9738-2599  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2024_119849 crossref_citationtrail_10_1016_j_oceaneng_2024_119849 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_119849  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-01 2025-01-00  | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Ocean engineering | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Han, Wu, Wang (bib11) 2014; 216 Alenezi, Alsulaili, Alkhalidi (bib2) 2023; 11 Makarynska, Makarynskyy (bib21) 2008; 34 Cheng, Wang, Xu, Chau (bib5) 2008; 22 Raj, Brown (bib27) 2023; 15 Cho, Van Merriënboer, Bahdanau, Bengio (bib6) 2014 Katipoğlu, Mohammadi, Keblouti (bib16) 2024; 196 Nitsure, Londhe, Khare (bib24) 2014; 47 Tsai, Lee (bib32) 1999; 125 Raj, Pasfield-Neofitou (bib28) 2024; 16 Yang, Shami (bib39) 2020; 415 Chen, Chau, Busari (bib4) 2015; 46 Lee (bib18) 2006; 33 Zhu (bib41) 2020; 3 Sztobryn (bib31) 2003; 49 (bib23) 2024 Huang, Murray, Kraus, Rosati (bib14) 2003; 30 Li, Ma, Xiao, Xiao, Wang, Zhang (bib19) 2022; 208 Huang, Xiang, Zhao, Cheng (bib15) 2020; 8 Yang, Wu, Hsieh (bib38) 2020; 8 Wu, Hsieh, Tang (bib36) 2006; 19 You, Lee, Lee (bib40) 2011; 28 De Oliveira, Ebecken, De Oliveira, de Azevedo Santos (bib8) 2009; 48 Hochreiter, Schmidhuber (bib12) 1997; 9 Li, Zhou, Wang, Fu (bib20) 2024; 14 Choi, Kil (bib7) 2020; 30 Kayarvizhy, Kanmani, Uthariaraj (bib17) 2013; 73 Wang, Wang, Wu, Xi, Wang (bib35) 2020; 39 Gandomi, Yang, Alavi (bib9) 2013; 29 Bagheri, Ibrahim, Wolf, Akhir, Talaat, Oryani (bib3) 2023; 30 Qiao, Wu, Tang, Wu (bib26) 2022 Shahriari, Swersky, Wang, Adams, De Freitas (bib30) 2015; 104 Pugh (bib25) 1987 Makarynskyy, Makarynska, Kuhn, Featherstone (bib22) 2004; 61 Röske (bib29) 1997; 49 Tsai, Lin, Shen (bib33) 2002; 29 Aguilar-Martinez, Hsieh (bib1) 2009; 2009 Wang, Liu, Wang, Wu, Wang, Shen (bib34) 2021; 40 Huang, Wang, Hu (bib13) 2021; 47 Ghorbani, Khatibi, Aytek, Makarynskyy, Shiri (bib10) 2010; 36 Xie, Zhang, Lim (bib37) 2020; 8 Röske (10.1016/j.oceaneng.2024.119849_bib29) 1997; 49 Huang (10.1016/j.oceaneng.2024.119849_bib15) 2020; 8 Qiao (10.1016/j.oceaneng.2024.119849_bib26) 2022 Gandomi (10.1016/j.oceaneng.2024.119849_bib9) 2013; 29 Cho (10.1016/j.oceaneng.2024.119849_bib6) 2014 Makarynska (10.1016/j.oceaneng.2024.119849_bib21) 2008; 34 Cheng (10.1016/j.oceaneng.2024.119849_bib5) 2008; 22 Hochreiter (10.1016/j.oceaneng.2024.119849_bib12) 1997; 9 Sztobryn (10.1016/j.oceaneng.2024.119849_bib31) 2003; 49 Li (10.1016/j.oceaneng.2024.119849_bib20) 2024; 14 Lee (10.1016/j.oceaneng.2024.119849_bib18) 2006; 33 Tsai (10.1016/j.oceaneng.2024.119849_bib33) 2002; 29 De Oliveira (10.1016/j.oceaneng.2024.119849_bib8) 2009; 48 Yang (10.1016/j.oceaneng.2024.119849_bib39) 2020; 415 Han (10.1016/j.oceaneng.2024.119849_bib11) 2014; 216 Yang (10.1016/j.oceaneng.2024.119849_bib38) 2020; 8 Wu (10.1016/j.oceaneng.2024.119849_bib36) 2006; 19 Aguilar-Martinez (10.1016/j.oceaneng.2024.119849_bib1) 2009; 2009 Raj (10.1016/j.oceaneng.2024.119849_bib28) 2024; 16 Bagheri (10.1016/j.oceaneng.2024.119849_bib3) 2023; 30 Shahriari (10.1016/j.oceaneng.2024.119849_bib30) 2015; 104 Nitsure (10.1016/j.oceaneng.2024.119849_bib24) 2014; 47 Raj (10.1016/j.oceaneng.2024.119849_bib27) 2023; 15 Xie (10.1016/j.oceaneng.2024.119849_bib37) 2020; 8 Zhu (10.1016/j.oceaneng.2024.119849_bib41) 2020; 3 Choi (10.1016/j.oceaneng.2024.119849_bib7) 2020; 30 Katipoğlu (10.1016/j.oceaneng.2024.119849_bib16) 2024; 196 Wang (10.1016/j.oceaneng.2024.119849_bib35) 2020; 39 Wang (10.1016/j.oceaneng.2024.119849_bib34) 2021; 40 Huang (10.1016/j.oceaneng.2024.119849_bib14) 2003; 30 You (10.1016/j.oceaneng.2024.119849_bib40) 2011; 28 Tsai (10.1016/j.oceaneng.2024.119849_bib32) 1999; 125 Kayarvizhy (10.1016/j.oceaneng.2024.119849_bib17) 2013; 73 Huang (10.1016/j.oceaneng.2024.119849_bib13) 2021; 47 Chen (10.1016/j.oceaneng.2024.119849_bib4) 2015; 46 Pugh (10.1016/j.oceaneng.2024.119849_bib25) 1987 Alenezi (10.1016/j.oceaneng.2024.119849_bib2) 2023; 11 Ghorbani (10.1016/j.oceaneng.2024.119849_bib10) 2010; 36 Makarynskyy (10.1016/j.oceaneng.2024.119849_bib22) 2004; 61 Li (10.1016/j.oceaneng.2024.119849_bib19) 2022; 208  | 
    
| References_xml | – volume: 30 start-page: 1015 year: 2020 end-page: 1029 ident: bib7 article-title: Face video retrieval based on the deep CNN with RBF loss publication-title: IEEE Trans. Image Process. – volume: 8 start-page: 161519 year: 2020 end-page: 161541 ident: bib37 article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer publication-title: IEEE Access – volume: 19 start-page: 145 year: 2006 end-page: 154 ident: bib36 article-title: Neural network forecasts of the tropical Pacific sea surface temperatures publication-title: Neural Network. – volume: 3 year: 2020 ident: bib41 article-title: Research on short-term tide forecast based on Bi-LSTM recurrent neural network publication-title: International Journal of Social Science and Education Research – volume: 47 start-page: 80 year: 2021 end-page: 84 ident: bib13 article-title: Tide level prediction for tidal power station based on CNN-BiLSTM network model publication-title: Water Power – volume: 73 start-page: 975 year: 2013 end-page: 8887 ident: bib17 article-title: Improving Fault prediction using ANN-PSO in object oriented systems publication-title: Int. J. Comput. Appl. – volume: 11 start-page: 2052 year: 2023 ident: bib2 article-title: Prediction of Sea Level in the arabian Gulf using artificial neural networks publication-title: J. Mar. Sci. Eng. – year: 2014 ident: bib6 article-title: On the Properties of Neural Machine Translation: Encoder-Decoder Approaches – volume: 61 start-page: 351 year: 2004 end-page: 360 ident: bib22 article-title: Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia publication-title: Estuar. Coast Shelf Sci. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib12 article-title: Long short-term memory publication-title: Neural Comput. – volume: 33 start-page: 483 year: 2006 end-page: 494 ident: bib18 article-title: Neural network prediction of a storm surge publication-title: Ocean Eng. – volume: 15 start-page: 2881 year: 2023 ident: bib27 article-title: Prediction of Mean Sea Level with GNSS-VLM correction using a hybrid deep learning model in Australia publication-title: Rem. Sens. – volume: 16 start-page: 551 year: 2024 ident: bib28 article-title: Assessment and prediction of Sea Level and coastal wetland changes in small Islands using remote sensing and artificial intelligence publication-title: Rem. Sens. – volume: 30 start-page: 81839 year: 2023 end-page: 81857 ident: bib3 article-title: Sea-level projections using a NARX-NN model of tide gauge data for the coastal city of Kuala Terengganu in Malaysia publication-title: Environ. Sci. Pollut. Control Ser. – volume: 46 start-page: 258 year: 2015 end-page: 268 ident: bib4 article-title: A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model publication-title: Eng. Appl. Artif. Intell. – volume: 216 start-page: 28 year: 2014 end-page: 31 ident: bib11 article-title: Gas concentration prediction based on Markov residual correction publication-title: Ind. Mine Autom. – start-page: 342 year: 2022 end-page: 347 ident: bib26 article-title: Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism publication-title: 2022 24th International Conference on Advanced Communication Technology (ICACT) – volume: 8 start-page: 159389 year: 2020 end-page: 159401 ident: bib38 article-title: Long short-term memory recurrent neural network for tidal level forecasting publication-title: IEEE Access – volume: 196 start-page: 724 year: 2024 ident: bib16 article-title: Bee-inspired insights: unleashing the potential of artificial bee colony optimized hybrid neural networks for enhanced groundwater level time series prediction publication-title: Environ. Monit. Assess. – volume: 125 start-page: 195 year: 1999 end-page: 202 ident: bib32 article-title: Back-propagation neural network in tidal-level forecasting publication-title: J. Waterw. Port, Coast. Ocean Eng. – volume: 208 year: 2022 ident: bib19 article-title: Time-series production forecasting method based on the integration of bidirectional gated recurrent unit (Bi-GRU) network and sparrow search algorithm (SSA) publication-title: J. Petrol. Sci. Eng. – volume: 28 start-page: 1067 year: 2011 end-page: 1076 ident: bib40 article-title: Parameterization and application of storm surge/tide modeling using a genetic algorithm for typhoon periods publication-title: Adv. Atmos. Sci. – volume: 49 start-page: 317 year: 2003 end-page: 322 ident: bib31 article-title: Forecast of storm surge by means of artificial neural network publication-title: J. Sea Res. – volume: 30 start-page: 2275 year: 2003 end-page: 2295 ident: bib14 article-title: Development of a regional neural network for coastal water level predictions publication-title: Ocean Eng. – volume: 39 start-page: 157 year: 2020 end-page: 167 ident: bib35 article-title: Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information publication-title: Acta Oceanol. Sin. – volume: 34 start-page: 1910 year: 2008 end-page: 1917 ident: bib21 article-title: Predicting sea-level variations at the Cocos (Keeling) Islands with artificial neural networks publication-title: Comput. Geosci. – volume: 49 start-page: 71 year: 1997 end-page: 99 ident: bib29 article-title: Sea level forecasts using neural networks publication-title: Dtsch. Hydrogr. Z. – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: bib39 article-title: On hyperparameter optimization of machine learning algorithms: theory and practice publication-title: Neurocomputing – year: 2024 ident: bib23 article-title: China Sea Level Bulletin 2023 – volume: 47 start-page: 344 year: 2014 end-page: 351 ident: bib24 article-title: Prediction of sea water levels using wind information and soft computing techniques publication-title: Appl. Ocean Res. – year: 1987 ident: bib25 article-title: Tides, Surges and Mean Sea Level – volume: 22 start-page: 895 year: 2008 end-page: 909 ident: bib5 article-title: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos publication-title: Water Resour. Manag. – volume: 29 start-page: 1683 year: 2002 end-page: 1695 ident: bib33 article-title: Neural network for wave forecasting among multi-stations publication-title: Ocean Eng. – volume: 40 start-page: 104 year: 2021 end-page: 118 ident: bib34 article-title: Multi-step ahead short-term predictions of storm surge level using CNN and LSTM network publication-title: Acta Oceanol. Sin. – volume: 2009 year: 2009 ident: bib1 article-title: Forecasts of tropical Pacific sea surface temperatures by neural networks and support vector regression publication-title: International Journal of Oceanography – volume: 48 start-page: 143 year: 2009 end-page: 155 ident: bib8 article-title: Neural network model to predict a storm surge publication-title: J. Appl. Meteorol. Climatol. – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: bib9 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. – volume: 14 start-page: 4560 year: 2024 ident: bib20 article-title: An improved sparrow search algorithm and CNN-BiLSTM neural network for predicting sea level height publication-title: Sci. Rep. – volume: 36 start-page: 620 year: 2010 end-page: 627 ident: bib10 article-title: Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks publication-title: Comput. Geosci. – volume: 104 start-page: 148 year: 2015 end-page: 175 ident: bib30 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: Proc. IEEE – volume: 8 start-page: 99346 year: 2020 end-page: 99353 ident: bib15 article-title: Air quality prediction using improved PSO-BP neural network publication-title: IEEE Access – volume: 39 start-page: 157 year: 2020 ident: 10.1016/j.oceaneng.2024.119849_bib35 article-title: Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information publication-title: Acta Oceanol. Sin. doi: 10.1007/s13131-020-1569-1 – year: 2014 ident: 10.1016/j.oceaneng.2024.119849_bib6 – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.oceaneng.2024.119849_bib39 article-title: On hyperparameter optimization of machine learning algorithms: theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 208 year: 2022 ident: 10.1016/j.oceaneng.2024.119849_bib19 article-title: Time-series production forecasting method based on the integration of bidirectional gated recurrent unit (Bi-GRU) network and sparrow search algorithm (SSA) publication-title: J. Petrol. Sci. Eng. doi: 10.1007/978-3-030-87440-7 – volume: 8 start-page: 161519 year: 2020 ident: 10.1016/j.oceaneng.2024.119849_bib37 article-title: Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021527 – volume: 2009 year: 2009 ident: 10.1016/j.oceaneng.2024.119849_bib1 article-title: Forecasts of tropical Pacific sea surface temperatures by neural networks and support vector regression publication-title: International Journal of Oceanography doi: 10.1155/2009/167239 – volume: 3 issue: 4 year: 2020 ident: 10.1016/j.oceaneng.2024.119849_bib41 article-title: Research on short-term tide forecast based on Bi-LSTM recurrent neural network publication-title: International Journal of Social Science and Education Research – volume: 19 start-page: 145 issue: 2 year: 2006 ident: 10.1016/j.oceaneng.2024.119849_bib36 article-title: Neural network forecasts of the tropical Pacific sea surface temperatures publication-title: Neural Network. doi: 10.1016/j.neunet.2006.01.004 – volume: 46 start-page: 258 year: 2015 ident: 10.1016/j.oceaneng.2024.119849_bib4 article-title: A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.09.010 – volume: 40 start-page: 104 year: 2021 ident: 10.1016/j.oceaneng.2024.119849_bib34 article-title: Multi-step ahead short-term predictions of storm surge level using CNN and LSTM network publication-title: Acta Oceanol. Sin. doi: 10.1007/s13131-021-1763-9 – volume: 47 start-page: 80 issue: 10 year: 2021 ident: 10.1016/j.oceaneng.2024.119849_bib13 article-title: Tide level prediction for tidal power station based on CNN-BiLSTM network model publication-title: Water Power – volume: 49 start-page: 71 issue: 1 year: 1997 ident: 10.1016/j.oceaneng.2024.119849_bib29 article-title: Sea level forecasts using neural networks publication-title: Dtsch. Hydrogr. Z. doi: 10.1007/BF02765119 – volume: 125 start-page: 195 issue: 4 year: 1999 ident: 10.1016/j.oceaneng.2024.119849_bib32 article-title: Back-propagation neural network in tidal-level forecasting publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1999)125:4(195) – volume: 48 start-page: 143 issue: 1 year: 2009 ident: 10.1016/j.oceaneng.2024.119849_bib8 article-title: Neural network model to predict a storm surge publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2008JAMC1907.1 – year: 1987 ident: 10.1016/j.oceaneng.2024.119849_bib25 – volume: 8 start-page: 99346 year: 2020 ident: 10.1016/j.oceaneng.2024.119849_bib15 article-title: Air quality prediction using improved PSO-BP neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998145 – volume: 47 start-page: 344 year: 2014 ident: 10.1016/j.oceaneng.2024.119849_bib24 article-title: Prediction of sea water levels using wind information and soft computing techniques publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2014.07.003 – volume: 30 start-page: 2275 issue: 17 year: 2003 ident: 10.1016/j.oceaneng.2024.119849_bib14 article-title: Development of a regional neural network for coastal water level predictions publication-title: Ocean Eng. doi: 10.1016/S0029-8018(03)00083-0 – volume: 36 start-page: 620 issue: 5 year: 2010 ident: 10.1016/j.oceaneng.2024.119849_bib10 article-title: Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2009.09.014 – volume: 33 start-page: 483 issue: 3–4 year: 2006 ident: 10.1016/j.oceaneng.2024.119849_bib18 article-title: Neural network prediction of a storm surge publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2005.04.012 – volume: 16 start-page: 551 issue: 3 year: 2024 ident: 10.1016/j.oceaneng.2024.119849_bib28 article-title: Assessment and prediction of Sea Level and coastal wetland changes in small Islands using remote sensing and artificial intelligence publication-title: Rem. Sens. doi: 10.3390/rs16030551 – volume: 73 start-page: 975 issue: 3 year: 2013 ident: 10.1016/j.oceaneng.2024.119849_bib17 article-title: Improving Fault prediction using ANN-PSO in object oriented systems publication-title: Int. J. Comput. Appl. – volume: 28 start-page: 1067 year: 2011 ident: 10.1016/j.oceaneng.2024.119849_bib40 article-title: Parameterization and application of storm surge/tide modeling using a genetic algorithm for typhoon periods publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-011-0113-9 – volume: 11 start-page: 2052 issue: 11 year: 2023 ident: 10.1016/j.oceaneng.2024.119849_bib2 article-title: Prediction of Sea Level in the arabian Gulf using artificial neural networks publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse11112052 – volume: 29 start-page: 17 year: 2013 ident: 10.1016/j.oceaneng.2024.119849_bib9 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – volume: 22 start-page: 895 year: 2008 ident: 10.1016/j.oceaneng.2024.119849_bib5 article-title: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos publication-title: Water Resour. Manag. doi: 10.1007/s11269-007-9200-1 – volume: 216 start-page: 28 year: 2014 ident: 10.1016/j.oceaneng.2024.119849_bib11 article-title: Gas concentration prediction based on Markov residual correction publication-title: Ind. Mine Autom. – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.oceaneng.2024.119849_bib12 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 8 start-page: 159389 year: 2020 ident: 10.1016/j.oceaneng.2024.119849_bib38 article-title: Long short-term memory recurrent neural network for tidal level forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3017089 – volume: 61 start-page: 351 issue: 2 year: 2004 ident: 10.1016/j.oceaneng.2024.119849_bib22 article-title: Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/j.ecss.2004.06.004 – volume: 29 start-page: 1683 issue: 13 year: 2002 ident: 10.1016/j.oceaneng.2024.119849_bib33 article-title: Neural network for wave forecasting among multi-stations publication-title: Ocean Eng. doi: 10.1016/S0029-8018(01)00112-3 – volume: 104 start-page: 148 issue: 1 year: 2015 ident: 10.1016/j.oceaneng.2024.119849_bib30 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 49 start-page: 317 issue: 4 year: 2003 ident: 10.1016/j.oceaneng.2024.119849_bib31 article-title: Forecast of storm surge by means of artificial neural network publication-title: J. Sea Res. doi: 10.1016/S1385-1101(03)00024-8 – volume: 34 start-page: 1910 issue: 12 year: 2008 ident: 10.1016/j.oceaneng.2024.119849_bib21 article-title: Predicting sea-level variations at the Cocos (Keeling) Islands with artificial neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2007.12.004 – volume: 30 start-page: 1015 year: 2020 ident: 10.1016/j.oceaneng.2024.119849_bib7 article-title: Face video retrieval based on the deep CNN with RBF loss publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3040847 – volume: 196 start-page: 724 issue: 8 year: 2024 ident: 10.1016/j.oceaneng.2024.119849_bib16 article-title: Bee-inspired insights: unleashing the potential of artificial bee colony optimized hybrid neural networks for enhanced groundwater level time series prediction publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-024-12838-1 – volume: 30 start-page: 81839 issue: 34 year: 2023 ident: 10.1016/j.oceaneng.2024.119849_bib3 article-title: Sea-level projections using a NARX-NN model of tide gauge data for the coastal city of Kuala Terengganu in Malaysia publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-022-21662-4 – volume: 15 start-page: 2881 issue: 11 year: 2023 ident: 10.1016/j.oceaneng.2024.119849_bib27 article-title: Prediction of Mean Sea Level with GNSS-VLM correction using a hybrid deep learning model in Australia publication-title: Rem. Sens. doi: 10.3390/rs15112881 – start-page: 342 year: 2022 ident: 10.1016/j.oceaneng.2024.119849_bib26 article-title: Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism – volume: 14 start-page: 4560 issue: 1 year: 2024 ident: 10.1016/j.oceaneng.2024.119849_bib20 article-title: An improved sparrow search algorithm and CNN-BiLSTM neural network for predicting sea level height publication-title: Sci. Rep. doi: 10.1038/s41598-024-55266-4  | 
    
| SSID | ssj0006603 | 
    
| Score | 2.4705904 | 
    
| Snippet | Traditional linear models are insufficient for capturing the complex dynamics of sea level changes. This paper aims to predict sea level time series using... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 119849 | 
    
| SubjectTerms | Bidirectional gated recurrent unit Convolutional neural network Sea level height prediction The bayesian optimization algorithm  | 
    
| Title | A CNN-BiGRU sea level height prediction model combined with bayesian optimization algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.oceaneng.2024.119849 | 
    
| Volume | 315 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0029-8018 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection unibz issn: 0029-8018 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0029-8018 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0029-8018 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0029-8018 databaseCode: AKRWK dateStart: 19700101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXlQQn1gfZQ9e026ym8cea7FWxQrSQsFD2GdtadNS6sGLv92dNNEKQg9ek0xIZjYzO5P5vkHoWhEhw0D7XqJF7DHfaE9aZj1KpMuHmFWCAhr5qRt1-uxhEA62UKvEwkBbZeH7Vz4999bFkUahzcZ8NAKMb8Cdf02AUc5Pchw5YzFMMah__rR5RBGhZZsHXL2GEh7XXYgQmcmGLk8MmPMePAFOzb8C1FrQaR-g_WK3iJurBzpEWyY7QrtrHIJHaO8Z7l4QTx-j1yZudbvezejupY_dMsYT6ArCb3kFFM8X8F8GbIHzETjYvbZLjY3GUI_FUnwYAFXimXMk0wKhicVkOFu409MT1Gvf9lodrxig4CnqB0tPECqVH8XCWUNHiiuWCBGFVigiNRXS6sAyYSm3FL5b7lMZGuJSvkjGxPr0FFWyWWbOEBZQGlEqSnTAmaWWS858wWOjCWXE6ioKS6WlqiAXhxkXk7TsIhunpbJTUHa6UnYVNb7l5it6jY0SvLRJ-muhpC4GbJA9_4fsBdoJYPRvXn25RJXl4t1cuf3IUtbyBVdD2837x073C--t4Wo | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPfgA0apYn3vwGrvJbh57rEWt2laQCgUPYZ-1UtNS6sGLv92dNNEKggevSSYkM5uZncl83yB0poiQYaB9L9Ei9phvtCctsx4l0uVDzCpBAY3c7UXtR3Y7CAcV1CqxMNBWWfj-hU_PvXVxpFFoszEdjQDjG3DnXxNglPMTwJGvsDCIIQM7__ju84giQss-D7h8CSb8cu5ihMhMNnSJYsCc--AJkGr-FqGWos7VFtostou4uXiibVQxWQ2tL5EI1tDGPdy9YJ7eQU9N3Or1vIvR9cMjdusYj6EtCD_nJVA8ncGPGTAGzmfgYPfeLjc2GkNBFkvxbgBViSfOk7wWEE0sxsPJzJ1-3UX9q8t-q-0VExQ8Rf1g7glCpfKjWDhz6EhxxRIhotAKRaSmQlodWCYs5ZbCh8t9KkNDXM4XyZhYn-6hajbJzD7CAmojSkWJDjiz1HLJmS94bDShjFhdR2GptFQV7OIw5GKclm1kL2mp7BSUnS6UXUeNL7npgl_jTwle2iT9sVJSFwT-kD34h-wpWm33u520c9O7O0RrAcwBzksxR6g6n72ZY7c5mcuTfPF9Aj8-4v8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-BiGRU+sea+level+height+prediction+model+combined+with+bayesian+optimization+algorithm&rft.jtitle=Ocean+engineering&rft.au=Li%2C+Xiao&rft.au=Zhou%2C+Shijian&rft.au=Wang%2C+Fengwei&rft.date=2025-01-01&rft.issn=0029-8018&rft.volume=315&rft.spage=119849&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.119849&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2024_119849 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |