Evaluation of a new local modelling approach for large and heterogeneous NIRS data sets

The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system. Due to this, fast and accurate technologies are required for developing real time decision systems. Sensors based on Near-Infrared Spectroscopy...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 101; no. 2; pp. 87 - 94
Main Authors Zamora-Rojas, E., Garrido-Varo, A., Van den Berg, F., Guerrero-Ginel, J.E., Pérez-Marín, D.C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2010
Subjects
Online AccessGet full text
ISSN0169-7439
1873-3239
DOI10.1016/j.chemolab.2010.01.004

Cover

Abstract The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system. Due to this, fast and accurate technologies are required for developing real time decision systems. Sensors based on Near-Infrared Spectroscopy (NIRS), together with the use of chemometrics models, have been studied for on-line quality control as a Process Analytical Technology (PAT) tool in several industries. A critical issue is the development of robust and sufficiently accurate mathematical models that can contain hundreds of very heterogeneous samples representing the large natural variability of the process and product; this especially holds for the agro-food production. This paper evaluates the performance of different linear (PLS) and non-linear regression algorithms (LOCAL and Locally Weighted Regression — LWR) plus a new local approach for the prediction of ingredient composition in compound feeds (called, Local Central Algorithm — LCA). The comparison is based on complexity, accuracy and predicted percentages in test set samples. The new local modelling approach is based on the use of Principal Component Analysis (PCA) and the Mahalanobis Distance (MD) for selecting a training set and calculating the final prediction estimate using a central tendency statistics such as mean of the local neighbours for the unknown samples. The results show that the local strategy proposed in this work enables the prediction in seconds of all the unknown samples in the test set and performed comparable to LWR, although the RMSEP was somewhat higher than using LWR or LOCAL. However, it was found that this approach produced smaller prediction errors than the other methods for less commonly present ingredients that are not well represented by even a large number of training samples. This finding could be relevant for the start-up phase in the implementation of NIRS sensors in the feed industry at which stage the libraries build only on-line contain data of a limited production period.
AbstractList The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system. Due to this, fast and accurate technologies are required for developing real time decision systems. Sensors based on Near-Infrared Spectroscopy (NIRS), together with the use of chemometrics models, have been studied for on-line quality control as a Process Analytical Technology (PAT) tool in several industries. A critical issue is the development of robust and sufficiently accurate mathematical models that can contain hundreds of very heterogeneous samples representing the large natural variability of the process and product; this especially holds for the agro-food production. This paper evaluates the performance of different linear (PLS) and non-linear regression algorithms (LOCAL and Locally Weighted Regression — LWR) plus a new local approach for the prediction of ingredient composition in compound feeds (called, Local Central Algorithm — LCA). The comparison is based on complexity, accuracy and predicted percentages in test set samples. The new local modelling approach is based on the use of Principal Component Analysis (PCA) and the Mahalanobis Distance (MD) for selecting a training set and calculating the final prediction estimate using a central tendency statistics such as mean of the local neighbours for the unknown samples. The results show that the local strategy proposed in this work enables the prediction in seconds of all the unknown samples in the test set and performed comparable to LWR, although the RMSEP was somewhat higher than using LWR or LOCAL. However, it was found that this approach produced smaller prediction errors than the other methods for less commonly present ingredients that are not well represented by even a large number of training samples. This finding could be relevant for the start-up phase in the implementation of NIRS sensors in the feed industry at which stage the libraries build only on-line contain data of a limited production period.
Author Zamora-Rojas, E.
Van den Berg, F.
Guerrero-Ginel, J.E.
Pérez-Marín, D.C.
Garrido-Varo, A.
Author_xml – sequence: 1
  givenname: E.
  surname: Zamora-Rojas
  fullname: Zamora-Rojas, E.
  email: g32zaroe@uco.es
  organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain
– sequence: 2
  givenname: A.
  surname: Garrido-Varo
  fullname: Garrido-Varo, A.
  organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain
– sequence: 3
  givenname: F.
  surname: Van den Berg
  fullname: Van den Berg, F.
  organization: Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Denmark
– sequence: 4
  givenname: J.E.
  surname: Guerrero-Ginel
  fullname: Guerrero-Ginel, J.E.
  organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain
– sequence: 5
  givenname: D.C.
  surname: Pérez-Marín
  fullname: Pérez-Marín, D.C.
  organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain
BookMark eNqFkN1KAzEQRoMo2FZfQfICWzObbXYDXiilaqEo-IOXIc1O2pR0U5Jtxbd3a_XGm14NM8z54Dt9ctqEBgm5AjYEBuJ6NTRLXAev58OcdUcGQ8aKE9KDquQZz7k8Jb3uUWZlweU56ae0Yvu9gB75mOy03-rWhYYGSzVt8JP6YLSn61Cj965ZUL3ZxKDNktoQqddxgVQ3NV1iizEssMGwTfRp-vJKa91qmrBNF-TMap_w8ncOyPv95G38mM2eH6bju1lmOORtJsHyuagYGGm45AIqJipRWJiPClGbmgOIQtaVtIBoNVhWVmVRFflIVFIKzQfk5pBrYkgpolXGtT912qidV8DUXpJaqT9Jai9JMVCdpA4X__BNdGsdv46DtwcQu3I7h1El47AxWLuIplV1cMcivgGujIcD
CitedBy_id crossref_primary_10_1255_jnirs_1213
crossref_primary_10_3390_s16060827
crossref_primary_10_1016_j_aca_2016_01_010
crossref_primary_10_1016_j_talanta_2020_121266
crossref_primary_10_1016_j_chemolab_2011_11_003
crossref_primary_10_1016_j_postharvbio_2019_110981
crossref_primary_10_1016_j_tifs_2015_02_010
crossref_primary_10_1016_j_biortech_2012_10_044
crossref_primary_10_1016_j_fuel_2012_01_001
crossref_primary_10_1016_j_postharvbio_2010_12_006
crossref_primary_10_1155_2016_5416506
crossref_primary_10_2184_lsj_39_243
crossref_primary_10_1016_j_saa_2022_121922
crossref_primary_10_1002_cem_3117
crossref_primary_10_1080_00405000_2024_2447616
crossref_primary_10_1177_09670335221078355
crossref_primary_10_1021_ac200974w
crossref_primary_10_1039_c0ay00421a
crossref_primary_10_1016_j_aca_2018_04_004
crossref_primary_10_1255_jnirs_1033
crossref_primary_10_1016_j_chemolab_2024_105173
Cites_doi 10.1255/jnirs.43
10.1366/000370208784344389
10.1255/jnirs.352
10.1255/jnirs.397
10.1007/BF01205839
10.1366/000370206778397506
10.1366/000370206775382839
10.1366/0003702052940585
10.1016/S0165-9936(03)01005-7
10.1016/S0169-7439(01)00204-0
10.1255/jnirs.115
10.1255/jnirs.283
10.1021/ac00206a003
10.1016/j.talanta.2006.10.036
10.1016/j.chemolab.2004.06.003
10.1088/0957-0233/19/8/085601
ContentType Journal Article
Copyright 2010 Elsevier B.V.
Copyright_xml – notice: 2010 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2010.01.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
EndPage 94
ExternalDocumentID 10_1016_j_chemolab_2010_01_004
S0169743910000158
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
WUQ
XFK
XPP
YK3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-91f3b6801c9c39361806864f1b546dcd311649d89f1eefa1f07874842568996a3
IEDL.DBID AIKHN
ISSN 0169-7439
IngestDate Thu Oct 02 04:23:13 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords NIRS
Robust calibrations
Non-linear algorithms
Local Central Algorithm
Compound feed
Ingredient composition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-91f3b6801c9c39361806864f1b546dcd311649d89f1eefa1f07874842568996a3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2010_01_004
crossref_primary_10_1016_j_chemolab_2010_01_004
elsevier_sciencedirect_doi_10_1016_j_chemolab_2010_01_004
PublicationCentury 2000
PublicationDate 2010-04-00
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-00
PublicationDecade 2010
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2010
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References ISI, The complete software solution using a single screen for routine analysis, robust calibrations and networking. Infrasoft International Sylver Spring MD, USA (2000).
Pérez-Marín, Garrido, Guerrero, Fearn, Davies (bib6) 2008; 62
Anderssen, Osborne, Wesley (bib9) 2003; 11
B.M. Wise, N.B. Gallagher, R. Bro and J.M. Shaver. PLS Toolbox version 4 for use with MATLAB. Eigenvector Research, Inc Wenatchee. USA. (2006).
van den Berg (bib2) 2005; 2
Naes, Isaksson, Kowalski (bib18) 1990; 62
Williams, Sobering (bib19) 1996
Faber, Bro (bib14) 2002; 61
Davies, Britcher, Franklin, Ring, Grant, McLure (bib10) 1988; 1
Dardenne, Sinnaeve, Baeten (bib17) 2000; 8
Pérez-Marín, Garrido-Varo, Guerrero, Gutiérrez (bib5) 2006; 60
Verboven, Hubert (bib21) 2005; 75
Pérez-Marín, Garrido-Varo, Guerrero-Ginel (bib8) 2007; 72
Sinnaeve, Dardenne, Agneessens (bib3) 1994; 2
Fernández-Ahumada, Fearn, Gómez, Vallesquino, Guerrero, Pérez-Marín, Garrido-Varo (bib7) 2008; 19
Fernández-Cabanás, Garrido-Varo, Pérez-Marín, Dardenne (bib1) 2006; 60
Larrechi, Callao (bib15) 2003; 22
Fearn, Davies (bib11) 2003; 11
Barnes, Dhanoa, Lister (bib12) 1989; 43
Shenk, Westerhaus, Berzaghi (bib16) 1997; 5
Pérez-Marín, Garrido-Varo, Guerrero (bib4) 2005; 59
Davies (10.1016/j.chemolab.2010.01.004_bib10) 1988; 1
Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib8) 2007; 72
Shenk (10.1016/j.chemolab.2010.01.004_bib16) 1997; 5
Williams (10.1016/j.chemolab.2010.01.004_bib19) 1996
10.1016/j.chemolab.2010.01.004_bib20
Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib6) 2008; 62
Sinnaeve (10.1016/j.chemolab.2010.01.004_bib3) 1994; 2
Faber (10.1016/j.chemolab.2010.01.004_bib14) 2002; 61
Fearn (10.1016/j.chemolab.2010.01.004_bib11) 2003; 11
Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib5) 2006; 60
Larrechi (10.1016/j.chemolab.2010.01.004_bib15) 2003; 22
Naes (10.1016/j.chemolab.2010.01.004_bib18) 1990; 62
van den Berg (10.1016/j.chemolab.2010.01.004_bib2) 2005; 2
Anderssen (10.1016/j.chemolab.2010.01.004_bib9) 2003; 11
Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib4) 2005; 59
Barnes (10.1016/j.chemolab.2010.01.004_bib12) 1989; 43
10.1016/j.chemolab.2010.01.004_bib13
Verboven (10.1016/j.chemolab.2010.01.004_bib21) 2005; 75
Fernández-Cabanás (10.1016/j.chemolab.2010.01.004_bib1) 2006; 60
Dardenne (10.1016/j.chemolab.2010.01.004_bib17) 2000; 8
Fernández-Ahumada (10.1016/j.chemolab.2010.01.004_bib7) 2008; 19
References_xml – volume: 11
  start-page: 467
  year: 2003
  end-page: 478
  ident: bib11
  article-title: Locally-biased regression
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 72
  start-page: 28
  year: 2007
  end-page: 42
  ident: bib8
  article-title: Non-linear regression methods in NIRS quantitative analysis
  publication-title: Talanta
– volume: 62
  start-page: 664
  year: 1990
  end-page: 673
  ident: bib18
  article-title: Locally Weighted Regression and scatter correction for near-infrared reflectance data
  publication-title: Analytical Chemistry
– volume: 2
  start-page: 163
  year: 1994
  end-page: 175
  ident: bib3
  article-title: Global or local? A choice for NIR calibrations in analyses of forage quality
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 1
  start-page: 61
  year: 1988
  end-page: 64
  ident: bib10
  article-title: The application of Fourier transformed near infrared spectrum to quantitative analysis by comparison of similarity indices (CARNAC)
  publication-title: Mikrochimica Acta
– volume: 8
  start-page: 229
  year: 2000
  end-page: 237
  ident: bib17
  article-title: Multivariate calibration and chemometrics for Near Infrared Spectroscopy: which method?
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 61
  start-page: 133
  year: 2002
  end-page: 149
  ident: bib14
  article-title: Standard error of prediction for multiway PLS-1. Background and a simulation study
  publication-title: Chemometrics and Intelligent Laboratory System
– volume: 43
  start-page: 772
  year: 1989
  end-page: 777
  ident: bib12
  publication-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra, Applied Spectroscopy
– start-page: 185
  year: 1996
  end-page: 188
  ident: bib19
  publication-title: Near Infrared Spectroscopy: The Future Waves
– reference: ISI, The complete software solution using a single screen for routine analysis, robust calibrations and networking. Infrasoft International Sylver Spring MD, USA (2000).
– volume: 2
  start-page: 71
  year: 2005
  end-page: 73
  ident: bib2
  article-title: Process analytical technology for the food industry
  publication-title: New Food
– volume: 59
  start-page: 92
  year: 2005
  end-page: 100
  ident: bib4
  article-title: Implementation of LOCAL algorithm with Near-Infrared Spectroscopy for compliance assurance in compound feedingstuffs
  publication-title: Applied Spectroscopy
– volume: 60
  start-page: 1062
  year: 2006
  end-page: 1069
  ident: bib5
  article-title: Use of artificial neural networks in Near-Infrared Reflectance Spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs
  publication-title: Applied Spectroscopy
– volume: 19
  year: 2008
  ident: bib7
  article-title: Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs
  publication-title: Measurement Science and Technology
– volume: 22
  start-page: 634
  year: 2003
  end-page: 640
  ident: bib15
  article-title: Strategy for introducing NIR spectroscopy and multivariate calibration techniques in industry
  publication-title: Trends in Analytical Chemistry
– reference: B.M. Wise, N.B. Gallagher, R. Bro and J.M. Shaver. PLS Toolbox version 4 for use with MATLAB. Eigenvector Research, Inc Wenatchee. USA. (2006).
– volume: 11
  start-page: 39
  year: 2003
  end-page: 48
  ident: bib9
  article-title: The application of localization to near infrared calibration and prediction through partial least squares regression
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 60
  start-page: 17
  year: 2006
  end-page: 23
  ident: bib1
  article-title: Evaluation of pretreatment strategies for Near-Infrared Spectroscopy calibration development of unground and ground compound feedingstuffs
  publication-title: Applied Spectroscopy
– volume: 62
  start-page: 536
  year: 2008
  end-page: 541
  ident: bib6
  article-title: Advanced nonlinear approaches for predicting the ingredient composition in compound feedingstuffs by Near-Infrared Reflection Spectroscopy
  publication-title: Applied Spectroscopy
– volume: 5
  start-page: 223
  year: 1997
  end-page: 232
  ident: bib16
  article-title: Investigation of a LOCAL calibration procedure for near infrared instruments
  publication-title: Journal of Near Infrared Spectroscopy
– volume: 75
  start-page: 127
  year: 2005
  end-page: 136
  ident: bib21
  article-title: LIBRA: a MATLAB library for robust analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 2
  start-page: 163
  year: 1994
  ident: 10.1016/j.chemolab.2010.01.004_bib3
  article-title: Global or local? A choice for NIR calibrations in analyses of forage quality
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.43
– volume: 43
  start-page: 772
  year: 1989
  ident: 10.1016/j.chemolab.2010.01.004_bib12
  publication-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra, Applied Spectroscopy
– ident: 10.1016/j.chemolab.2010.01.004_bib20
– volume: 62
  start-page: 536
  year: 2008
  ident: 10.1016/j.chemolab.2010.01.004_bib6
  article-title: Advanced nonlinear approaches for predicting the ingredient composition in compound feedingstuffs by Near-Infrared Reflection Spectroscopy
  publication-title: Applied Spectroscopy
  doi: 10.1366/000370208784344389
– volume: 11
  start-page: 39
  year: 2003
  ident: 10.1016/j.chemolab.2010.01.004_bib9
  article-title: The application of localization to near infrared calibration and prediction through partial least squares regression
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.352
– volume: 11
  start-page: 467
  year: 2003
  ident: 10.1016/j.chemolab.2010.01.004_bib11
  article-title: Locally-biased regression
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.397
– volume: 1
  start-page: 61
  year: 1988
  ident: 10.1016/j.chemolab.2010.01.004_bib10
  article-title: The application of Fourier transformed near infrared spectrum to quantitative analysis by comparison of similarity indices (CARNAC)
  publication-title: Mikrochimica Acta
  doi: 10.1007/BF01205839
– volume: 60
  start-page: 1062
  year: 2006
  ident: 10.1016/j.chemolab.2010.01.004_bib5
  article-title: Use of artificial neural networks in Near-Infrared Reflectance Spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs
  publication-title: Applied Spectroscopy
  doi: 10.1366/000370206778397506
– ident: 10.1016/j.chemolab.2010.01.004_bib13
– volume: 60
  start-page: 17
  year: 2006
  ident: 10.1016/j.chemolab.2010.01.004_bib1
  article-title: Evaluation of pretreatment strategies for Near-Infrared Spectroscopy calibration development of unground and ground compound feedingstuffs
  publication-title: Applied Spectroscopy
  doi: 10.1366/000370206775382839
– volume: 59
  start-page: 92
  year: 2005
  ident: 10.1016/j.chemolab.2010.01.004_bib4
  article-title: Implementation of LOCAL algorithm with Near-Infrared Spectroscopy for compliance assurance in compound feedingstuffs
  publication-title: Applied Spectroscopy
  doi: 10.1366/0003702052940585
– volume: 2
  start-page: 71
  year: 2005
  ident: 10.1016/j.chemolab.2010.01.004_bib2
  article-title: Process analytical technology for the food industry
  publication-title: New Food
– volume: 22
  start-page: 634
  year: 2003
  ident: 10.1016/j.chemolab.2010.01.004_bib15
  article-title: Strategy for introducing NIR spectroscopy and multivariate calibration techniques in industry
  publication-title: Trends in Analytical Chemistry
  doi: 10.1016/S0165-9936(03)01005-7
– volume: 61
  start-page: 133
  year: 2002
  ident: 10.1016/j.chemolab.2010.01.004_bib14
  article-title: Standard error of prediction for multiway PLS-1. Background and a simulation study
  publication-title: Chemometrics and Intelligent Laboratory System
  doi: 10.1016/S0169-7439(01)00204-0
– volume: 5
  start-page: 223
  year: 1997
  ident: 10.1016/j.chemolab.2010.01.004_bib16
  article-title: Investigation of a LOCAL calibration procedure for near infrared instruments
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.115
– volume: 8
  start-page: 229
  year: 2000
  ident: 10.1016/j.chemolab.2010.01.004_bib17
  article-title: Multivariate calibration and chemometrics for Near Infrared Spectroscopy: which method?
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.283
– start-page: 185
  year: 1996
  ident: 10.1016/j.chemolab.2010.01.004_bib19
– volume: 62
  start-page: 664
  year: 1990
  ident: 10.1016/j.chemolab.2010.01.004_bib18
  article-title: Locally Weighted Regression and scatter correction for near-infrared reflectance data
  publication-title: Analytical Chemistry
  doi: 10.1021/ac00206a003
– volume: 72
  start-page: 28
  year: 2007
  ident: 10.1016/j.chemolab.2010.01.004_bib8
  article-title: Non-linear regression methods in NIRS quantitative analysis
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.10.036
– volume: 75
  start-page: 127
  year: 2005
  ident: 10.1016/j.chemolab.2010.01.004_bib21
  article-title: LIBRA: a MATLAB library for robust analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2004.06.003
– volume: 19
  year: 2008
  ident: 10.1016/j.chemolab.2010.01.004_bib7
  article-title: Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs
  publication-title: Measurement Science and Technology
  doi: 10.1088/0957-0233/19/8/085601
SSID ssj0016941
Score 2.0391793
Snippet The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 87
SubjectTerms Compound feed
Ingredient composition
Local Central Algorithm
NIRS
Non-linear algorithms
Robust calibrations
Title Evaluation of a new local modelling approach for large and heterogeneous NIRS data sets
URI https://dx.doi.org/10.1016/j.chemolab.2010.01.004
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ3wcdCL8TPiB9mD19Iuu63tkRAIaOQgErk123Y3QhCIwNXf7gzdEowHDl6bTNO8bGfetG_eADwYFSRSGc-RRjQdSYvcQz-K8HX3UqGlUFLS7PDLIOiN5NPYH5egXczCkKzS5v48p2-ztb3iWjTd5WTiDslHhOh0_oXaD8tQxfoThhWotvrPvcHuZwLNauYW35FDAXuDwtMGQvOJTWRiVV684dmdbX9q1F7d6Z7CiSWMrJU_0xmU9PwcjtrFnrYLeO_sDLvZwjDFkCizbYli2zU3NG_OCutwhhyVzUj9zdQ8Yx8khlngGdKLzYoN-q9DRpJRttLr1SWMup23ds-x6xKcVPDmGtOWEUmAFSeNUhGJgIc0_iENT3wZZGkmOLZGURZGhmttFDfIDshJFEkPNl2BEldQmS_m-hqYr4NMSXJux-4P76uMULopjebhoxBS18AvAIpT6yVOKy1mcSEam8YFsDEBG3s8RmBr4O7ilrmbxsGIqMA__nUuYkz5B2Jv_hF7C8e5ToA0OndQWX9t9D3Sj3VSh3Ljm9ftIfsB_mnYPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0gHvBi_Iz4uQevpV12W9qjIRBQ4CAQuW227W6EYCFSr_52Z_pBMB44eG06TfOynXnTvHlDyKNRXiiUcSxheNMSuMjdd4MAPncn4lpwJQTODg9HXm8qnmfurELa5SwMyiqL3J_n9CxbF1fsAk17PZ_bY_QRQTqd_6F2_QNyKNxmCzuwxvdW58FwUjM3-A4svH1nTHjRAGA-oIUMC40XazjFxrY_FWqn6nRPyHFBF-lT_kanpKKTM1Jrl1vazslbZ2vXTVeGKgo0mWYFimZLbnDanJbG4RQYKl2i9puqJKbvKIVZwQnS0P7TUf91TFEwSjc63VyQabczafesYlmCFXHWTCFpGR56UG-iIOIB95iPwx_CsNAVXhzFnEFjFMR-YJjWRjED3AB9RIHyQMvlKX5Jqskq0VeEutqLlUDfduj94LnKcKWbwmjmtzgXuk7cEiAZFU7iuNBiKUvJ2EKWwEoEVjpMArB1Ym_j1rmXxt6IoMRf_joVEhL-ntjrf8Q-kFpvMhzIQX_0ckOOcsUAqnVuSTX9_NJ3QETS8D47aD_GQ9kH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+a+new+local+modelling+approach+for+large+and+heterogeneous+NIRS+data+sets&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Zamora-Rojas%2C+E.&rft.au=Garrido-Varo%2C+A.&rft.au=Van+den+Berg%2C+F.&rft.au=Guerrero-Ginel%2C+J.E.&rft.date=2010-04-01&rft.issn=0169-7439&rft.volume=101&rft.issue=2&rft.spage=87&rft.epage=94&rft_id=info:doi/10.1016%2Fj.chemolab.2010.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2010_01_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon