Evaluation of a new local modelling approach for large and heterogeneous NIRS data sets
The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system. Due to this, fast and accurate technologies are required for developing real time decision systems. Sensors based on Near-Infrared Spectroscopy...
        Saved in:
      
    
          | Published in | Chemometrics and intelligent laboratory systems Vol. 101; no. 2; pp. 87 - 94 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.04.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0169-7439 1873-3239  | 
| DOI | 10.1016/j.chemolab.2010.01.004 | 
Cover
| Abstract | The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system. Due to this, fast and accurate technologies are required for developing real time decision systems. Sensors based on Near-Infrared Spectroscopy (NIRS), together with the use of chemometrics models, have been studied for on-line quality control as a Process Analytical Technology (PAT) tool in several industries. A critical issue is the development of robust and sufficiently accurate mathematical models that can contain hundreds of very heterogeneous samples representing the large natural variability of the process and product; this especially holds for the agro-food production. This paper evaluates the performance of different linear (PLS) and non-linear regression algorithms (LOCAL and Locally Weighted Regression — LWR) plus a new local approach for the prediction of ingredient composition in compound feeds (called, Local Central Algorithm — LCA). The comparison is based on complexity, accuracy and predicted percentages in test set samples. The new local modelling approach is based on the use of Principal Component Analysis (PCA) and the Mahalanobis Distance (MD) for selecting a training set and calculating the final prediction estimate using a central tendency statistics such as mean of the local neighbours for the unknown samples. The results show that the local strategy proposed in this work enables the prediction in seconds of all the unknown samples in the test set and performed comparable to LWR, although the RMSEP was somewhat higher than using LWR or LOCAL. However, it was found that this approach produced smaller prediction errors than the other methods for less commonly present ingredients that are not well represented by even a large number of training samples. This finding could be relevant for the start-up phase in the implementation of NIRS sensors in the feed industry at which stage the libraries build only on-line contain data of a limited production period. | 
    
|---|---|
| AbstractList | The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system. Due to this, fast and accurate technologies are required for developing real time decision systems. Sensors based on Near-Infrared Spectroscopy (NIRS), together with the use of chemometrics models, have been studied for on-line quality control as a Process Analytical Technology (PAT) tool in several industries. A critical issue is the development of robust and sufficiently accurate mathematical models that can contain hundreds of very heterogeneous samples representing the large natural variability of the process and product; this especially holds for the agro-food production. This paper evaluates the performance of different linear (PLS) and non-linear regression algorithms (LOCAL and Locally Weighted Regression — LWR) plus a new local approach for the prediction of ingredient composition in compound feeds (called, Local Central Algorithm — LCA). The comparison is based on complexity, accuracy and predicted percentages in test set samples. The new local modelling approach is based on the use of Principal Component Analysis (PCA) and the Mahalanobis Distance (MD) for selecting a training set and calculating the final prediction estimate using a central tendency statistics such as mean of the local neighbours for the unknown samples. The results show that the local strategy proposed in this work enables the prediction in seconds of all the unknown samples in the test set and performed comparable to LWR, although the RMSEP was somewhat higher than using LWR or LOCAL. However, it was found that this approach produced smaller prediction errors than the other methods for less commonly present ingredients that are not well represented by even a large number of training samples. This finding could be relevant for the start-up phase in the implementation of NIRS sensors in the feed industry at which stage the libraries build only on-line contain data of a limited production period. | 
    
| Author | Zamora-Rojas, E. Van den Berg, F. Guerrero-Ginel, J.E. Pérez-Marín, D.C. Garrido-Varo, A.  | 
    
| Author_xml | – sequence: 1 givenname: E. surname: Zamora-Rojas fullname: Zamora-Rojas, E. email: g32zaroe@uco.es organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain – sequence: 2 givenname: A. surname: Garrido-Varo fullname: Garrido-Varo, A. organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain – sequence: 3 givenname: F. surname: Van den Berg fullname: Van den Berg, F. organization: Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Denmark – sequence: 4 givenname: J.E. surname: Guerrero-Ginel fullname: Guerrero-Ginel, J.E. organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain – sequence: 5 givenname: D.C. surname: Pérez-Marín fullname: Pérez-Marín, D.C. organization: Department of Animal Production, Faculty of Agricultural and Forestry Engineering, University of Córdoba, Spain  | 
    
| BookMark | eNqFkN1KAzEQRoMo2FZfQfICWzObbXYDXiilaqEo-IOXIc1O2pR0U5Jtxbd3a_XGm14NM8z54Dt9ctqEBgm5AjYEBuJ6NTRLXAev58OcdUcGQ8aKE9KDquQZz7k8Jb3uUWZlweU56ae0Yvu9gB75mOy03-rWhYYGSzVt8JP6YLSn61Cj965ZUL3ZxKDNktoQqddxgVQ3NV1iizEssMGwTfRp-vJKa91qmrBNF-TMap_w8ncOyPv95G38mM2eH6bju1lmOORtJsHyuagYGGm45AIqJipRWJiPClGbmgOIQtaVtIBoNVhWVmVRFflIVFIKzQfk5pBrYkgpolXGtT912qidV8DUXpJaqT9Jai9JMVCdpA4X__BNdGsdv46DtwcQu3I7h1El47AxWLuIplV1cMcivgGujIcD | 
    
| CitedBy_id | crossref_primary_10_1255_jnirs_1213 crossref_primary_10_3390_s16060827 crossref_primary_10_1016_j_aca_2016_01_010 crossref_primary_10_1016_j_talanta_2020_121266 crossref_primary_10_1016_j_chemolab_2011_11_003 crossref_primary_10_1016_j_postharvbio_2019_110981 crossref_primary_10_1016_j_tifs_2015_02_010 crossref_primary_10_1016_j_biortech_2012_10_044 crossref_primary_10_1016_j_fuel_2012_01_001 crossref_primary_10_1016_j_postharvbio_2010_12_006 crossref_primary_10_1155_2016_5416506 crossref_primary_10_2184_lsj_39_243 crossref_primary_10_1016_j_saa_2022_121922 crossref_primary_10_1002_cem_3117 crossref_primary_10_1080_00405000_2024_2447616 crossref_primary_10_1177_09670335221078355 crossref_primary_10_1021_ac200974w crossref_primary_10_1039_c0ay00421a crossref_primary_10_1016_j_aca_2018_04_004 crossref_primary_10_1255_jnirs_1033 crossref_primary_10_1016_j_chemolab_2024_105173  | 
    
| Cites_doi | 10.1255/jnirs.43 10.1366/000370208784344389 10.1255/jnirs.352 10.1255/jnirs.397 10.1007/BF01205839 10.1366/000370206778397506 10.1366/000370206775382839 10.1366/0003702052940585 10.1016/S0165-9936(03)01005-7 10.1016/S0169-7439(01)00204-0 10.1255/jnirs.115 10.1255/jnirs.283 10.1021/ac00206a003 10.1016/j.talanta.2006.10.036 10.1016/j.chemolab.2004.06.003 10.1088/0957-0233/19/8/085601  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2010 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2010 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.chemolab.2010.01.004 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1873-3239 | 
    
| EndPage | 94 | 
    
| ExternalDocumentID | 10_1016_j_chemolab_2010_01_004 S0169743910000158  | 
    
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSW SSZ T5K UNMZH WUQ XFK XPP YK3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c312t-91f3b6801c9c39361806864f1b546dcd311649d89f1eefa1f07874842568996a3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0169-7439 | 
    
| IngestDate | Thu Oct 02 04:23:13 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Fri Feb 23 02:33:09 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | NIRS Robust calibrations Non-linear algorithms Local Central Algorithm Compound feed Ingredient composition  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c312t-91f3b6801c9c39361806864f1b546dcd311649d89f1eefa1f07874842568996a3 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_chemolab_2010_01_004 crossref_primary_10_1016_j_chemolab_2010_01_004 elsevier_sciencedirect_doi_10_1016_j_chemolab_2010_01_004  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-04-00 | 
    
| PublicationDateYYYYMMDD | 2010-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Chemometrics and intelligent laboratory systems | 
    
| PublicationYear | 2010 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | ISI, The complete software solution using a single screen for routine analysis, robust calibrations and networking. Infrasoft International Sylver Spring MD, USA (2000). Pérez-Marín, Garrido, Guerrero, Fearn, Davies (bib6) 2008; 62 Anderssen, Osborne, Wesley (bib9) 2003; 11 B.M. Wise, N.B. Gallagher, R. Bro and J.M. Shaver. PLS Toolbox version 4 for use with MATLAB. Eigenvector Research, Inc Wenatchee. USA. (2006). van den Berg (bib2) 2005; 2 Naes, Isaksson, Kowalski (bib18) 1990; 62 Williams, Sobering (bib19) 1996 Faber, Bro (bib14) 2002; 61 Davies, Britcher, Franklin, Ring, Grant, McLure (bib10) 1988; 1 Dardenne, Sinnaeve, Baeten (bib17) 2000; 8 Pérez-Marín, Garrido-Varo, Guerrero, Gutiérrez (bib5) 2006; 60 Verboven, Hubert (bib21) 2005; 75 Pérez-Marín, Garrido-Varo, Guerrero-Ginel (bib8) 2007; 72 Sinnaeve, Dardenne, Agneessens (bib3) 1994; 2 Fernández-Ahumada, Fearn, Gómez, Vallesquino, Guerrero, Pérez-Marín, Garrido-Varo (bib7) 2008; 19 Fernández-Cabanás, Garrido-Varo, Pérez-Marín, Dardenne (bib1) 2006; 60 Larrechi, Callao (bib15) 2003; 22 Fearn, Davies (bib11) 2003; 11 Barnes, Dhanoa, Lister (bib12) 1989; 43 Shenk, Westerhaus, Berzaghi (bib16) 1997; 5 Pérez-Marín, Garrido-Varo, Guerrero (bib4) 2005; 59 Davies (10.1016/j.chemolab.2010.01.004_bib10) 1988; 1 Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib8) 2007; 72 Shenk (10.1016/j.chemolab.2010.01.004_bib16) 1997; 5 Williams (10.1016/j.chemolab.2010.01.004_bib19) 1996 10.1016/j.chemolab.2010.01.004_bib20 Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib6) 2008; 62 Sinnaeve (10.1016/j.chemolab.2010.01.004_bib3) 1994; 2 Faber (10.1016/j.chemolab.2010.01.004_bib14) 2002; 61 Fearn (10.1016/j.chemolab.2010.01.004_bib11) 2003; 11 Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib5) 2006; 60 Larrechi (10.1016/j.chemolab.2010.01.004_bib15) 2003; 22 Naes (10.1016/j.chemolab.2010.01.004_bib18) 1990; 62 van den Berg (10.1016/j.chemolab.2010.01.004_bib2) 2005; 2 Anderssen (10.1016/j.chemolab.2010.01.004_bib9) 2003; 11 Pérez-Marín (10.1016/j.chemolab.2010.01.004_bib4) 2005; 59 Barnes (10.1016/j.chemolab.2010.01.004_bib12) 1989; 43 10.1016/j.chemolab.2010.01.004_bib13 Verboven (10.1016/j.chemolab.2010.01.004_bib21) 2005; 75 Fernández-Cabanás (10.1016/j.chemolab.2010.01.004_bib1) 2006; 60 Dardenne (10.1016/j.chemolab.2010.01.004_bib17) 2000; 8 Fernández-Ahumada (10.1016/j.chemolab.2010.01.004_bib7) 2008; 19  | 
    
| References_xml | – volume: 11 start-page: 467 year: 2003 end-page: 478 ident: bib11 article-title: Locally-biased regression publication-title: Journal of Near Infrared Spectroscopy – volume: 72 start-page: 28 year: 2007 end-page: 42 ident: bib8 article-title: Non-linear regression methods in NIRS quantitative analysis publication-title: Talanta – volume: 62 start-page: 664 year: 1990 end-page: 673 ident: bib18 article-title: Locally Weighted Regression and scatter correction for near-infrared reflectance data publication-title: Analytical Chemistry – volume: 2 start-page: 163 year: 1994 end-page: 175 ident: bib3 article-title: Global or local? A choice for NIR calibrations in analyses of forage quality publication-title: Journal of Near Infrared Spectroscopy – volume: 1 start-page: 61 year: 1988 end-page: 64 ident: bib10 article-title: The application of Fourier transformed near infrared spectrum to quantitative analysis by comparison of similarity indices (CARNAC) publication-title: Mikrochimica Acta – volume: 8 start-page: 229 year: 2000 end-page: 237 ident: bib17 article-title: Multivariate calibration and chemometrics for Near Infrared Spectroscopy: which method? publication-title: Journal of Near Infrared Spectroscopy – volume: 61 start-page: 133 year: 2002 end-page: 149 ident: bib14 article-title: Standard error of prediction for multiway PLS-1. Background and a simulation study publication-title: Chemometrics and Intelligent Laboratory System – volume: 43 start-page: 772 year: 1989 end-page: 777 ident: bib12 publication-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra, Applied Spectroscopy – start-page: 185 year: 1996 end-page: 188 ident: bib19 publication-title: Near Infrared Spectroscopy: The Future Waves – reference: ISI, The complete software solution using a single screen for routine analysis, robust calibrations and networking. Infrasoft International Sylver Spring MD, USA (2000). – volume: 2 start-page: 71 year: 2005 end-page: 73 ident: bib2 article-title: Process analytical technology for the food industry publication-title: New Food – volume: 59 start-page: 92 year: 2005 end-page: 100 ident: bib4 article-title: Implementation of LOCAL algorithm with Near-Infrared Spectroscopy for compliance assurance in compound feedingstuffs publication-title: Applied Spectroscopy – volume: 60 start-page: 1062 year: 2006 end-page: 1069 ident: bib5 article-title: Use of artificial neural networks in Near-Infrared Reflectance Spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs publication-title: Applied Spectroscopy – volume: 19 year: 2008 ident: bib7 article-title: Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs publication-title: Measurement Science and Technology – volume: 22 start-page: 634 year: 2003 end-page: 640 ident: bib15 article-title: Strategy for introducing NIR spectroscopy and multivariate calibration techniques in industry publication-title: Trends in Analytical Chemistry – reference: B.M. Wise, N.B. Gallagher, R. Bro and J.M. Shaver. PLS Toolbox version 4 for use with MATLAB. Eigenvector Research, Inc Wenatchee. USA. (2006). – volume: 11 start-page: 39 year: 2003 end-page: 48 ident: bib9 article-title: The application of localization to near infrared calibration and prediction through partial least squares regression publication-title: Journal of Near Infrared Spectroscopy – volume: 60 start-page: 17 year: 2006 end-page: 23 ident: bib1 article-title: Evaluation of pretreatment strategies for Near-Infrared Spectroscopy calibration development of unground and ground compound feedingstuffs publication-title: Applied Spectroscopy – volume: 62 start-page: 536 year: 2008 end-page: 541 ident: bib6 article-title: Advanced nonlinear approaches for predicting the ingredient composition in compound feedingstuffs by Near-Infrared Reflection Spectroscopy publication-title: Applied Spectroscopy – volume: 5 start-page: 223 year: 1997 end-page: 232 ident: bib16 article-title: Investigation of a LOCAL calibration procedure for near infrared instruments publication-title: Journal of Near Infrared Spectroscopy – volume: 75 start-page: 127 year: 2005 end-page: 136 ident: bib21 article-title: LIBRA: a MATLAB library for robust analysis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 2 start-page: 163 year: 1994 ident: 10.1016/j.chemolab.2010.01.004_bib3 article-title: Global or local? A choice for NIR calibrations in analyses of forage quality publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.43 – volume: 43 start-page: 772 year: 1989 ident: 10.1016/j.chemolab.2010.01.004_bib12 publication-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra, Applied Spectroscopy – ident: 10.1016/j.chemolab.2010.01.004_bib20 – volume: 62 start-page: 536 year: 2008 ident: 10.1016/j.chemolab.2010.01.004_bib6 article-title: Advanced nonlinear approaches for predicting the ingredient composition in compound feedingstuffs by Near-Infrared Reflection Spectroscopy publication-title: Applied Spectroscopy doi: 10.1366/000370208784344389 – volume: 11 start-page: 39 year: 2003 ident: 10.1016/j.chemolab.2010.01.004_bib9 article-title: The application of localization to near infrared calibration and prediction through partial least squares regression publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.352 – volume: 11 start-page: 467 year: 2003 ident: 10.1016/j.chemolab.2010.01.004_bib11 article-title: Locally-biased regression publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.397 – volume: 1 start-page: 61 year: 1988 ident: 10.1016/j.chemolab.2010.01.004_bib10 article-title: The application of Fourier transformed near infrared spectrum to quantitative analysis by comparison of similarity indices (CARNAC) publication-title: Mikrochimica Acta doi: 10.1007/BF01205839 – volume: 60 start-page: 1062 year: 2006 ident: 10.1016/j.chemolab.2010.01.004_bib5 article-title: Use of artificial neural networks in Near-Infrared Reflectance Spectroscopy calibrations for predicting the inclusion percentages of wheat and sunflower meal in compound feedingstuffs publication-title: Applied Spectroscopy doi: 10.1366/000370206778397506 – ident: 10.1016/j.chemolab.2010.01.004_bib13 – volume: 60 start-page: 17 year: 2006 ident: 10.1016/j.chemolab.2010.01.004_bib1 article-title: Evaluation of pretreatment strategies for Near-Infrared Spectroscopy calibration development of unground and ground compound feedingstuffs publication-title: Applied Spectroscopy doi: 10.1366/000370206775382839 – volume: 59 start-page: 92 year: 2005 ident: 10.1016/j.chemolab.2010.01.004_bib4 article-title: Implementation of LOCAL algorithm with Near-Infrared Spectroscopy for compliance assurance in compound feedingstuffs publication-title: Applied Spectroscopy doi: 10.1366/0003702052940585 – volume: 2 start-page: 71 year: 2005 ident: 10.1016/j.chemolab.2010.01.004_bib2 article-title: Process analytical technology for the food industry publication-title: New Food – volume: 22 start-page: 634 year: 2003 ident: 10.1016/j.chemolab.2010.01.004_bib15 article-title: Strategy for introducing NIR spectroscopy and multivariate calibration techniques in industry publication-title: Trends in Analytical Chemistry doi: 10.1016/S0165-9936(03)01005-7 – volume: 61 start-page: 133 year: 2002 ident: 10.1016/j.chemolab.2010.01.004_bib14 article-title: Standard error of prediction for multiway PLS-1. Background and a simulation study publication-title: Chemometrics and Intelligent Laboratory System doi: 10.1016/S0169-7439(01)00204-0 – volume: 5 start-page: 223 year: 1997 ident: 10.1016/j.chemolab.2010.01.004_bib16 article-title: Investigation of a LOCAL calibration procedure for near infrared instruments publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.115 – volume: 8 start-page: 229 year: 2000 ident: 10.1016/j.chemolab.2010.01.004_bib17 article-title: Multivariate calibration and chemometrics for Near Infrared Spectroscopy: which method? publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.283 – start-page: 185 year: 1996 ident: 10.1016/j.chemolab.2010.01.004_bib19 – volume: 62 start-page: 664 year: 1990 ident: 10.1016/j.chemolab.2010.01.004_bib18 article-title: Locally Weighted Regression and scatter correction for near-infrared reflectance data publication-title: Analytical Chemistry doi: 10.1021/ac00206a003 – volume: 72 start-page: 28 year: 2007 ident: 10.1016/j.chemolab.2010.01.004_bib8 article-title: Non-linear regression methods in NIRS quantitative analysis publication-title: Talanta doi: 10.1016/j.talanta.2006.10.036 – volume: 75 start-page: 127 year: 2005 ident: 10.1016/j.chemolab.2010.01.004_bib21 article-title: LIBRA: a MATLAB library for robust analysis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2004.06.003 – volume: 19 year: 2008 ident: 10.1016/j.chemolab.2010.01.004_bib7 article-title: Reducing NIR prediction errors with nonlinear methods and large populations of intact compound feedstuffs publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/19/8/085601  | 
    
| SSID | ssj0016941 | 
    
| Score | 2.0391793 | 
    
| Snippet | The industry is demanding quality control systems that enable not only certified safety of an end-product but also a secure and efficient production system.... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 87 | 
    
| SubjectTerms | Compound feed Ingredient composition Local Central Algorithm NIRS Non-linear algorithms Robust calibrations  | 
    
| Title | Evaluation of a new local modelling approach for large and heterogeneous NIRS data sets | 
    
| URI | https://dx.doi.org/10.1016/j.chemolab.2010.01.004 | 
    
| Volume | 101 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ3wcdCL8TPiB9mD19Iuu63tkRAIaOQgErk123Y3QhCIwNXf7gzdEowHDl6bTNO8bGfetG_eADwYFSRSGc-RRjQdSYvcQz-K8HX3UqGlUFLS7PDLIOiN5NPYH5egXczCkKzS5v48p2-ztb3iWjTd5WTiDslHhOh0_oXaD8tQxfoThhWotvrPvcHuZwLNauYW35FDAXuDwtMGQvOJTWRiVV684dmdbX9q1F7d6Z7CiSWMrJU_0xmU9PwcjtrFnrYLeO_sDLvZwjDFkCizbYli2zU3NG_OCutwhhyVzUj9zdQ8Yx8khlngGdKLzYoN-q9DRpJRttLr1SWMup23ds-x6xKcVPDmGtOWEUmAFSeNUhGJgIc0_iENT3wZZGkmOLZGURZGhmttFDfIDshJFEkPNl2BEldQmS_m-hqYr4NMSXJux-4P76uMULopjebhoxBS18AvAIpT6yVOKy1mcSEam8YFsDEBG3s8RmBr4O7ilrmbxsGIqMA__nUuYkz5B2Jv_hF7C8e5ToA0OndQWX9t9D3Sj3VSh3Ljm9ftIfsB_mnYPw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0gHvBi_Iz4uQevpV12W9qjIRBQ4CAQuW227W6EYCFSr_52Z_pBMB44eG06TfOynXnTvHlDyKNRXiiUcSxheNMSuMjdd4MAPncn4lpwJQTODg9HXm8qnmfurELa5SwMyiqL3J_n9CxbF1fsAk17PZ_bY_QRQTqd_6F2_QNyKNxmCzuwxvdW58FwUjM3-A4svH1nTHjRAGA-oIUMC40XazjFxrY_FWqn6nRPyHFBF-lT_kanpKKTM1Jrl1vazslbZ2vXTVeGKgo0mWYFimZLbnDanJbG4RQYKl2i9puqJKbvKIVZwQnS0P7TUf91TFEwSjc63VyQabczafesYlmCFXHWTCFpGR56UG-iIOIB95iPwx_CsNAVXhzFnEFjFMR-YJjWRjED3AB9RIHyQMvlKX5Jqskq0VeEutqLlUDfduj94LnKcKWbwmjmtzgXuk7cEiAZFU7iuNBiKUvJ2EKWwEoEVjpMArB1Ym_j1rmXxt6IoMRf_joVEhL-ntjrf8Q-kFpvMhzIQX_0ckOOcsUAqnVuSTX9_NJ3QETS8D47aD_GQ9kH | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+a+new+local+modelling+approach+for+large+and+heterogeneous+NIRS+data+sets&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Zamora-Rojas%2C+E.&rft.au=Garrido-Varo%2C+A.&rft.au=Van+den+Berg%2C+F.&rft.au=Guerrero-Ginel%2C+J.E.&rft.date=2010-04-01&rft.issn=0169-7439&rft.volume=101&rft.issue=2&rft.spage=87&rft.epage=94&rft_id=info:doi/10.1016%2Fj.chemolab.2010.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2010_01_004 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |