Improvement of multi-objective evolutionary algorithm and optimization of mechanical bearing

In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems, it is found that the distribution of congestion degree is not ideal. Sub-problems with relatively high degree of congestion are often distri...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 120; p. 105889
Main Authors Gao, Shuzhi, Ren, Xuepeng, Zhang, Yimin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2023.105889

Cover

Abstract In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems, it is found that the distribution of congestion degree is not ideal. Sub-problems with relatively high degree of congestion are often distributed in the center of Pareto frontier, while sub-problems with relatively low degree of congestion are distributed at the edges of Pareto frontier, especially the Pareto frontier shape is convex and reference vectors are constructed from the ideal point using Das and Dennis’s method for generation of points on unit simplex. To solve the above problems, an improved multi-objective evolutionary algorithm is proposed, called MOEA/D-ROE, and a weight vector adjustment strategy based on regional online evaluation is proposed by using the modified form of Tchebycheff function. In MOEA/D-ROE, subproblems with different congestion levels are divided into different areas. By setting corresponding parameters for each region and introducing Pareto advantages, the weights are adjusted regularly. Therefore, the weights of subproblems can be redistributed more evenly to obtain more uniform solutions. Finally, the regional online evaluation strategy is embedded into other algorithms to verify the effectiveness and portability of this strategy, and MOEA/D-ROE algorithm is applied to an application example. At the same time, it is proved that the improvement of the algorithm is meaningful for the optimization of practical problems.
AbstractList In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems, it is found that the distribution of congestion degree is not ideal. Sub-problems with relatively high degree of congestion are often distributed in the center of Pareto frontier, while sub-problems with relatively low degree of congestion are distributed at the edges of Pareto frontier, especially the Pareto frontier shape is convex and reference vectors are constructed from the ideal point using Das and Dennis’s method for generation of points on unit simplex. To solve the above problems, an improved multi-objective evolutionary algorithm is proposed, called MOEA/D-ROE, and a weight vector adjustment strategy based on regional online evaluation is proposed by using the modified form of Tchebycheff function. In MOEA/D-ROE, subproblems with different congestion levels are divided into different areas. By setting corresponding parameters for each region and introducing Pareto advantages, the weights are adjusted regularly. Therefore, the weights of subproblems can be redistributed more evenly to obtain more uniform solutions. Finally, the regional online evaluation strategy is embedded into other algorithms to verify the effectiveness and portability of this strategy, and MOEA/D-ROE algorithm is applied to an application example. At the same time, it is proved that the improvement of the algorithm is meaningful for the optimization of practical problems.
ArticleNumber 105889
Author Ren, Xuepeng
Zhang, Yimin
Gao, Shuzhi
Author_xml – sequence: 1
  givenname: Shuzhi
  surname: Gao
  fullname: Gao, Shuzhi
  organization: Shenyang University of Chemical Technology, Equipment Reliability Institute, Shenyang 110142, PR China
– sequence: 2
  givenname: Xuepeng
  surname: Ren
  fullname: Ren, Xuepeng
  organization: Shenyang University of Chemical Technology, College of Information Engineering, Shenyang 110142, PR China
– sequence: 3
  givenname: Yimin
  orcidid: 0000-0001-7576-0934
  surname: Zhang
  fullname: Zhang, Yimin
  email: zhangyimin_126163@126.com
  organization: Shenyang University of Chemical Technology, Equipment Reliability Institute, Shenyang 110142, PR China
BookMark eNqFkF1LwzAUhoNMcJv-Bekf6EzaNU3BC2X4MRh4o3dCSNLT7ZQ2KWlW0F9vt-mNN7s6cA7Py3mfGZlYZ4GQW0YXjDJ-Vy_AblXXKVwkNEnHZSZEcUGmTORpzHNeTMiUFlkSsyLnV2TW9zWlNBVLPiWf67bzboAWbIhcFbX7JmDsdA0m4AARDK7ZB3RW-a9INVvnMezaSNkycl3AFr_V4XpEweyURaOaSIPyaLfX5LJSTQ83v3NOPp6f3lev8ebtZb163MQmZUmIBdAMgELGqjLj2piSQa5NlZSVAMgUo1qrgqeaK2q4MLw0jDNQS6MFL2iWzsn9Kdd41_ceKmkwHP8KXmEjGZUHU7KWf6bkwZQ8mRpx_g_vPLZj4fPgwwmEsdyA4GVvEKyBEv3oT5YOz0X8APHvjYQ
CitedBy_id crossref_primary_10_1080_0305215X_2023_2262389
crossref_primary_10_1016_j_ins_2024_121858
crossref_primary_10_1007_s12206_024_0129_6
crossref_primary_10_3390_s23135875
crossref_primary_10_1016_j_ins_2024_121364
crossref_primary_10_3390_app13053355
crossref_primary_10_1016_j_istruc_2025_108389
crossref_primary_10_23919_CJEE_2024_000064
crossref_primary_10_1080_0305215X_2024_2434726
crossref_primary_10_1016_j_engappai_2024_108194
Cites_doi 10.1109/TEVC.2014.2350987
10.1109/5326.704576
10.1109/TEVC.2013.2258025
10.1109/TEVC.2008.925798
10.1109/TEVC.2013.2281533
10.1109/TEVC.2015.2443001
10.1016/j.ins.2014.08.071
10.1109/TCYB.2015.2507366
10.1109/SMC.2019.8914005
10.1109/TEVC.2005.861417
10.1007/978-3-540-70928-2_5
10.1007/s12046-017-0775-9
10.1109/ACCESS.2018.2832181
10.1007/s00500-008-0394-9
10.1109/MCI.2017.2742868
10.1109/TEVC.2013.2239648
10.1109/ICCIAS.2006.294139
10.1109/TEVC.2016.2519378
10.1162/evco_a_00269
10.1162/EVCO_a_00109
10.1109/TEVC.2015.2457616
10.1109/CEC.2002.1007032
10.1109/CEC.2003.1299427
10.1109/TEVC.2016.2521175
10.1109/CEC.2009.4982949
10.1007/3-540-44719-9_11
10.1109/CEC.2018.8477730
10.1016/j.mechmachtheory.2006.10.002
10.1109/TEVC.2014.2373386
10.1145/3205455.3205648
10.1007/978-3-319-54157-0_2
10.1109/4235.996017
10.1214/09-SS051
10.1016/j.engappai.2020.103801
10.1109/TEVC.2007.892759
10.1016/j.swevo.2011.03.001
10.1145/3279996.3280028
10.1109/TEVC.2014.2353672
10.1137/S1052623496307510
10.1109/TCYB.2016.2621008
10.1109/TEVC.2010.2058117
10.1109/TEVC.2002.802873
10.3390/s90503981
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.105889
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_105889
S0952197623000738
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-8e05ee0e51fd56bccd1e7bcf2df8ee5a10bba963b6a0c68c6dc161ea4cb869053
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Thu Apr 24 23:05:52 EDT 2025
Sat Oct 25 05:29:39 EDT 2025
Fri Feb 23 02:37:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive weight vector adjustment
Multi-objective optimization
Decomposition
Mechanical bearing
Evolutionary algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-8e05ee0e51fd56bccd1e7bcf2df8ee5a10bba963b6a0c68c6dc161ea4cb869053
ORCID 0000-0001-7576-0934
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2023_105889
crossref_primary_10_1016_j_engappai_2023_105889
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105889
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Safi, H.H., Ucan, O.N., Bayat, O., 2018. On the real world applications of many-objective evolutionary algorithms. In: The First International Conference. pp. 1–6.
Yuan, Xu, Wang, Zhang, Yao (b45) 2015; 20
Li, Yao (b28) 2020; 28
Wang, Zhang, Zhang (b41) 2016; 20
Zhang, Zhou, Zhao, Suganthan, Tiwari (b48) 2008; 264
Li, Wang, Zhang, Ishibuchi (b27) 2018; 6
Wang, Zhang, Zhou, Gong, Jiao (b42) 2015; 20
Farias, L.R., Araújol, A.F., 2019. Many-objective evolutionary algorithm based on decomposition with random and adaptive weights. In: 2019 IEEE International Conference on Systems, Man and Cybernetics. SMC, pp. 3746–3751.
Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report Gloriastrasse, 103, pp. 1–21.
Adra, Fleming (b1) 2010; 15
Duggirala, Jana, Shesu, Bhattacharjee (b10) 2018; 43
Zhou, Qu, Li, Zhao, Suganthan, Zhang (b50) 2011; 1
Li, Zhang (b29) 2008; 13
He, Yen, Zhang (b17) 2013; 18
Qi, Ma, Liu, Jiao, Sun, Wu (b33) 2014; 22
Wang, Wu, Yuan (b40) 2010; 14
Hou, Aerocraft, University (b18) 2018; 25
Tian, Y., Xiang, X., Zhang, X., Cheng, R., Jin, Y., 2018. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation.
de Farias, L.R., Braga, P.H., Bassani, H.F., Araújo, A.F., 2018. MOEA/D with uniformly randomly adaptive weights. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp. 641–648.
Deb, Pratap, Agarwal, Meyarivan (b7) 2002; 6
Gee, Tan, Shim, Pal (b14) 2014; 19
Gupta, Tiwari, Nair (b16) 2007; 42
Hughes, E.J., 2003. Multiple single objective Pareto sampling. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03. Vol. 4, pp. 2678–2684.
Ye, Ran, Zhang, Jin (b44) 2017; 12
Deb, K., Thiele, L., Laumanns, M., Zitzler, E., 2002b. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). 1, pp. 825–830.
Huband, Hingston, Barone, While (b19) 2006; 10
Jaszkiewicz (b22) 2002; 6
Fay, Proschan (b13) 2010; 4
Bentley, Wakefield (b3) 1998
Kukkonen, Deb (b23) 2006
Zhang, Q., Liu, W., Li, H., 2009. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation. pp. 203–208.
Ishibuchi, Murata (b21) 1998; 28
Cheng, Jin, Olhofer, Sendhoff (b5) 2016; 20
Tian (b37) 2020; 94
Yao, X., 2006. A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In: 2006 International Conference on Computational Intelligence and Security. 1, pp. 286–291.
Li, Deb, Zhang, Kwong (b24) 2014; 19
Das, Dennis (b6) 1998; 8
Drechsler, N., Drechsler, R., Becker, B., 2001. Multi-objective optimisation based on relation favour. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 154–166.
Liu, Gu, Zhang (b32) 2013; 18
Cai, Li, Fan, Zhang (b4) 2014; 19
Wang, Jiao, Yao (b39) 2014; 19
Li, Zhang, Kwong, Li, Wang (b31) 2013; 18
Suresh, Kundu, Ghosh, Das, Abraham, Han (b36) 2009; 9
Giagkiozis, Fleming (b15) 2015; 293
Barba-Gonzaléz, C., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F., 2017. Multi-objective big data optimization with jmetal and spark. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 16–30.
Sato, H., Aguirre, H.E., Tanaka, K., 2007. Controlling dominance area of solutions and its impact on the performance of MOEAs. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 5–20.
Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E., 2006. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE International Conference on Evolutionary Computation. pp. 892–899.
Li, Fialho, Kwong, Zhang (b26) 2013; 18
Li, Deb, Zhang, Zhang (b25) 2016; 47
Zhang, Li (b46) 2007; 11
Li, Zhang, Deng (b30) 2016; 47
Liu (10.1016/j.engappai.2023.105889_b32) 2013; 18
10.1016/j.engappai.2023.105889_b9
10.1016/j.engappai.2023.105889_b8
He (10.1016/j.engappai.2023.105889_b17) 2013; 18
Gupta (10.1016/j.engappai.2023.105889_b16) 2007; 42
Li (10.1016/j.engappai.2023.105889_b25) 2016; 47
10.1016/j.engappai.2023.105889_b2
Giagkiozis (10.1016/j.engappai.2023.105889_b15) 2015; 293
10.1016/j.engappai.2023.105889_b43
10.1016/j.engappai.2023.105889_b49
10.1016/j.engappai.2023.105889_b47
Zhang (10.1016/j.engappai.2023.105889_b46) 2007; 11
Jaszkiewicz (10.1016/j.engappai.2023.105889_b22) 2002; 6
Huband (10.1016/j.engappai.2023.105889_b19) 2006; 10
Li (10.1016/j.engappai.2023.105889_b31) 2013; 18
Kukkonen (10.1016/j.engappai.2023.105889_b23) 2006
Li (10.1016/j.engappai.2023.105889_b27) 2018; 6
Deb (10.1016/j.engappai.2023.105889_b7) 2002; 6
10.1016/j.engappai.2023.105889_b51
10.1016/j.engappai.2023.105889_b12
10.1016/j.engappai.2023.105889_b11
Fay (10.1016/j.engappai.2023.105889_b13) 2010; 4
Li (10.1016/j.engappai.2023.105889_b24) 2014; 19
Cheng (10.1016/j.engappai.2023.105889_b5) 2016; 20
Cai (10.1016/j.engappai.2023.105889_b4) 2014; 19
Ye (10.1016/j.engappai.2023.105889_b44) 2017; 12
Li (10.1016/j.engappai.2023.105889_b30) 2016; 47
Gee (10.1016/j.engappai.2023.105889_b14) 2014; 19
Suresh (10.1016/j.engappai.2023.105889_b36) 2009; 9
Duggirala (10.1016/j.engappai.2023.105889_b10) 2018; 43
Zhou (10.1016/j.engappai.2023.105889_b50) 2011; 1
Wang (10.1016/j.engappai.2023.105889_b39) 2014; 19
Wang (10.1016/j.engappai.2023.105889_b40) 2010; 14
10.1016/j.engappai.2023.105889_b20
Adra (10.1016/j.engappai.2023.105889_b1) 2010; 15
Hou (10.1016/j.engappai.2023.105889_b18) 2018; 25
Tian (10.1016/j.engappai.2023.105889_b37) 2020; 94
Das (10.1016/j.engappai.2023.105889_b6) 1998; 8
Qi (10.1016/j.engappai.2023.105889_b33) 2014; 22
Ishibuchi (10.1016/j.engappai.2023.105889_b21) 1998; 28
Wang (10.1016/j.engappai.2023.105889_b42) 2015; 20
Li (10.1016/j.engappai.2023.105889_b28) 2020; 28
Yuan (10.1016/j.engappai.2023.105889_b45) 2015; 20
Li (10.1016/j.engappai.2023.105889_b29) 2008; 13
10.1016/j.engappai.2023.105889_b34
Li (10.1016/j.engappai.2023.105889_b26) 2013; 18
10.1016/j.engappai.2023.105889_b38
10.1016/j.engappai.2023.105889_b35
Wang (10.1016/j.engappai.2023.105889_b41) 2016; 20
Bentley (10.1016/j.engappai.2023.105889_b3) 1998
Zhang (10.1016/j.engappai.2023.105889_b48) 2008; 264
References_xml – reference: Drechsler, N., Drechsler, R., Becker, B., 2001. Multi-objective optimisation based on relation favour. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 154–166.
– reference: Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E., 2006. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE International Conference on Evolutionary Computation. pp. 892–899.
– volume: 28
  start-page: 392
  year: 1998
  end-page: 403
  ident: b21
  article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 13
  start-page: 284
  year: 2008
  end-page: 302
  ident: b29
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 293
  start-page: 338
  year: 2015
  end-page: 350
  ident: b15
  article-title: Methods for multi-objective optimization: An analysis
  publication-title: Inform. Sci.
– volume: 264
  start-page: 1
  year: 2008
  end-page: 30
  ident: b48
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
  publication-title: Mech. Eng.
– reference: Deb, K., Thiele, L., Laumanns, M., Zitzler, E., 2002b. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). 1, pp. 825–830.
– volume: 20
  start-page: 475
  year: 2015
  end-page: 480
  ident: b42
  article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: b50
  article-title: Multiobjective evolutionary algorithms: A survey of the state of the art
  publication-title: Swarm Evol. Comput.
– reference: Hughes, E.J., 2003. Multiple single objective Pareto sampling. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03. Vol. 4, pp. 2678–2684.
– volume: 18
  start-page: 909
  year: 2013
  end-page: 923
  ident: b31
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Zhang, Q., Liu, W., Li, H., 2009. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation. pp. 203–208.
– volume: 6
  start-page: 26194
  year: 2018
  end-page: 26214
  ident: b27
  article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art
  publication-title: IEEE Access
– volume: 28
  start-page: 227
  year: 2020
  end-page: 253
  ident: b28
  article-title: What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evol. Comput.
– volume: 9
  start-page: 3981
  year: 2009
  end-page: 4004
  ident: b36
  article-title: Multi-objective differential evolution for automatic clustering with application to micro-array data analysis
  publication-title: Sensors
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b46
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: Barba-Gonzaléz, C., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F., 2017. Multi-objective big data optimization with jmetal and spark. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 16–30.
– volume: 25
  start-page: 1044
  year: 2018
  end-page: 1049
  ident: b18
  article-title: Hybrid multi-objective optimization for hydrodynamic bearing design
  publication-title: Control Eng. China
– volume: 47
  start-page: 2838
  year: 2016
  end-page: 2849
  ident: b25
  article-title: Efficient nondomination level update method for steady-state evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 4
  start-page: 1
  year: 2010
  end-page: 39
  ident: b13
  article-title: Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules
  publication-title: Stat. Surv.
– volume: 14
  start-page: 193
  year: 2010
  end-page: 209
  ident: b40
  article-title: Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure
  publication-title: Soft Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b7
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 52
  year: 2016
  end-page: 66
  ident: b30
  article-title: Biased multiobjective optimization and decomposition algorithm
  publication-title: IEEE Trans. Cybern.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b44
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 43
  start-page: 1
  year: 2018
  end-page: 8
  ident: b10
  article-title: Design optimization of deep groove ball bearings using crowding distance particle swarm optimization
  publication-title: Sādhanā
– volume: 19
  start-page: 508
  year: 2014
  end-page: 523
  ident: b4
  article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 114
  year: 2013
  end-page: 130
  ident: b26
  article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: Sato, H., Aguirre, H.E., Tanaka, K., 2007. Controlling dominance area of solutions and its impact on the performance of MOEAs. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 5–20.
– volume: 6
  start-page: 402
  year: 2002
  end-page: 412
  ident: b22
  article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment
  publication-title: IEEE Trans. Evol. Comput.
– reference: Farias, L.R., Araújol, A.F., 2019. Many-objective evolutionary algorithm based on decomposition with random and adaptive weights. In: 2019 IEEE International Conference on Systems, Man and Cybernetics. SMC, pp. 3746–3751.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: b6
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 18
  start-page: 269
  year: 2013
  end-page: 285
  ident: b17
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 553
  year: 2006
  end-page: 562
  ident: b23
  article-title: A fast and effective method for pruning of non-dominated solutions in many-objective problems
  publication-title: Parallel Problem Solving from Nature-PPSN IX
– volume: 19
  start-page: 694
  year: 2014
  end-page: 716
  ident: b24
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: Tian, Y., Xiang, X., Zhang, X., Cheng, R., Jin, Y., 2018. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation.
– volume: 22
  start-page: 231
  year: 2014
  end-page: 264
  ident: b33
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b5
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 542
  year: 2014
  end-page: 559
  ident: b14
  article-title: Online diversity assessment in evolutionary multiobjective optimization: A geometrical perspective
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 231
  year: 1998
  end-page: 240
  ident: b3
  article-title: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms
  publication-title: Soft Computing in Engineering Design and Manufacturing
– reference: de Farias, L.R., Braga, P.H., Bassani, H.F., Araújo, A.F., 2018. MOEA/D with uniformly randomly adaptive weights. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp. 641–648.
– volume: 94
  year: 2020
  ident: b37
  article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications
  publication-title: Eng. Appl. Artif. Intell.
– volume: 15
  start-page: 183
  year: 2010
  end-page: 195
  ident: b1
  article-title: Diversity management in evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 821
  year: 2016
  end-page: 837
  ident: b41
  article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 524
  year: 2014
  end-page: 541
  ident: b39
  article-title: Two Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 180
  year: 2015
  end-page: 198
  ident: b45
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Trans. Evol. Comput.
– reference: Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report Gloriastrasse, 103, pp. 1–21.
– volume: 42
  start-page: 1418
  year: 2007
  end-page: 1443
  ident: b16
  article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms
  publication-title: Mech. Mach. Theory
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b19
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– reference: Safi, H.H., Ucan, O.N., Bayat, O., 2018. On the real world applications of many-objective evolutionary algorithms. In: The First International Conference. pp. 1–6.
– reference: Yao, X., 2006. A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In: 2006 International Conference on Computational Intelligence and Security. 1, pp. 286–291.
– volume: 18
  start-page: 450
  year: 2013
  end-page: 455
  ident: b32
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 524
  issue: 4
  year: 2014
  ident: 10.1016/j.engappai.2023.105889_b39
  article-title: Two Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– volume: 28
  start-page: 392
  issue: 3
  year: 1998
  ident: 10.1016/j.engappai.2023.105889_b21
  article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/5326.704576
– volume: 18
  start-page: 269
  issue: 2
  year: 2013
  ident: 10.1016/j.engappai.2023.105889_b17
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2258025
– volume: 13
  start-page: 284
  issue: 2
  year: 2008
  ident: 10.1016/j.engappai.2023.105889_b29
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 18
  start-page: 450
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2023.105889_b32
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281533
– volume: 20
  start-page: 180
  issue: 2
  year: 2015
  ident: 10.1016/j.engappai.2023.105889_b45
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2443001
– volume: 293
  start-page: 338
  year: 2015
  ident: 10.1016/j.engappai.2023.105889_b15
  article-title: Methods for multi-objective optimization: An analysis
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.08.071
– volume: 47
  start-page: 52
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2023.105889_b30
  article-title: Biased multiobjective optimization and decomposition algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2507366
– ident: 10.1016/j.engappai.2023.105889_b11
  doi: 10.1109/SMC.2019.8914005
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.engappai.2023.105889_b19
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– ident: 10.1016/j.engappai.2023.105889_b35
  doi: 10.1007/978-3-540-70928-2_5
– volume: 43
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2023.105889_b10
  article-title: Design optimization of deep groove ball bearings using crowding distance particle swarm optimization
  publication-title: Sādhanā
  doi: 10.1007/s12046-017-0775-9
– volume: 6
  start-page: 26194
  year: 2018
  ident: 10.1016/j.engappai.2023.105889_b27
  article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2832181
– volume: 14
  start-page: 193
  issue: 3
  year: 2010
  ident: 10.1016/j.engappai.2023.105889_b40
  article-title: Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0394-9
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2023.105889_b44
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 18
  start-page: 114
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2023.105889_b26
  article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2239648
– ident: 10.1016/j.engappai.2023.105889_b43
  doi: 10.1109/ICCIAS.2006.294139
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.engappai.2023.105889_b5
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 28
  start-page: 227
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.105889_b28
  article-title: What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00269
– volume: 22
  start-page: 231
  issue: 2
  year: 2014
  ident: 10.1016/j.engappai.2023.105889_b33
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00109
– start-page: 231
  year: 1998
  ident: 10.1016/j.engappai.2023.105889_b3
  article-title: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms
– volume: 25
  start-page: 1044
  year: 2018
  ident: 10.1016/j.engappai.2023.105889_b18
  article-title: Hybrid multi-objective optimization for hydrodynamic bearing design
  publication-title: Control Eng. China
– volume: 20
  start-page: 475
  issue: 3
  year: 2015
  ident: 10.1016/j.engappai.2023.105889_b42
  article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2457616
– ident: 10.1016/j.engappai.2023.105889_b8
  doi: 10.1109/CEC.2002.1007032
– ident: 10.1016/j.engappai.2023.105889_b20
  doi: 10.1109/CEC.2003.1299427
– volume: 20
  start-page: 821
  issue: 6
  year: 2016
  ident: 10.1016/j.engappai.2023.105889_b41
  article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2521175
– volume: 18
  start-page: 909
  issue: 6
  year: 2013
  ident: 10.1016/j.engappai.2023.105889_b31
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– ident: 10.1016/j.engappai.2023.105889_b47
  doi: 10.1109/CEC.2009.4982949
– ident: 10.1016/j.engappai.2023.105889_b9
  doi: 10.1007/3-540-44719-9_11
– ident: 10.1016/j.engappai.2023.105889_b38
  doi: 10.1109/CEC.2018.8477730
– ident: 10.1016/j.engappai.2023.105889_b51
– volume: 42
  start-page: 1418
  issue: 10
  year: 2007
  ident: 10.1016/j.engappai.2023.105889_b16
  article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2006.10.002
– volume: 19
  start-page: 694
  issue: 5
  year: 2014
  ident: 10.1016/j.engappai.2023.105889_b24
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– ident: 10.1016/j.engappai.2023.105889_b12
  doi: 10.1145/3205455.3205648
– ident: 10.1016/j.engappai.2023.105889_b2
  doi: 10.1007/978-3-319-54157-0_2
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2023.105889_b7
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 4
  start-page: 1
  year: 2010
  ident: 10.1016/j.engappai.2023.105889_b13
  article-title: Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS051
– volume: 94
  year: 2020
  ident: 10.1016/j.engappai.2023.105889_b37
  article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103801
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.engappai.2023.105889_b46
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: 10.1016/j.engappai.2023.105889_b49
– volume: 19
  start-page: 508
  issue: 4
  year: 2014
  ident: 10.1016/j.engappai.2023.105889_b4
  article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2023.105889_b50
  article-title: Multiobjective evolutionary algorithms: A survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– start-page: 553
  year: 2006
  ident: 10.1016/j.engappai.2023.105889_b23
  article-title: A fast and effective method for pruning of non-dominated solutions in many-objective problems
– volume: 264
  start-page: 1
  year: 2008
  ident: 10.1016/j.engappai.2023.105889_b48
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
  publication-title: Mech. Eng.
– ident: 10.1016/j.engappai.2023.105889_b34
  doi: 10.1145/3279996.3280028
– volume: 19
  start-page: 542
  issue: 4
  year: 2014
  ident: 10.1016/j.engappai.2023.105889_b14
  article-title: Online diversity assessment in evolutionary multiobjective optimization: A geometrical perspective
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2353672
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.engappai.2023.105889_b6
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 47
  start-page: 2838
  issue: 9
  year: 2016
  ident: 10.1016/j.engappai.2023.105889_b25
  article-title: Efficient nondomination level update method for steady-state evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2621008
– volume: 15
  start-page: 183
  issue: 2
  year: 2010
  ident: 10.1016/j.engappai.2023.105889_b1
  article-title: Diversity management in evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2058117
– volume: 6
  start-page: 402
  issue: 4
  year: 2002
  ident: 10.1016/j.engappai.2023.105889_b22
  article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.802873
– volume: 9
  start-page: 3981
  issue: 05
  year: 2009
  ident: 10.1016/j.engappai.2023.105889_b36
  article-title: Multi-objective differential evolution for automatic clustering with application to micro-array data analysis
  publication-title: Sensors
  doi: 10.3390/s90503981
SSID ssj0003846
Score 2.4377875
Snippet In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105889
SubjectTerms Adaptive weight vector adjustment
Decomposition
Evolutionary algorithm
Mechanical bearing
Multi-objective optimization
Title Improvement of multi-objective evolutionary algorithm and optimization of mechanical bearing
URI https://dx.doi.org/10.1016/j.engappai.2023.105889
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvHjxbcQH2YPXQku7pT0SIkGJHFQiB5NmdjtFCLQE0cSLv93ZdusjMeHgqelmJ2lmd-abtvPtx9ilPmTfleBZQHBFLyhtYUErTKwgBKDYArRDTU6-Hfr9kXczFuMK65ZcGN1WaXJ_kdPzbG1GmsabzeV02ryn4oDCjYLZzf83acKv57W1ikHj47vNww0Ksg5NtvTsHyzhWQPTCSyXMG1oEXEteRtoufe_AOoH6PT22I6pFnmneKB9VsH0gO2aypGbuHyhoVKcoRw7ZE_F54L86x_PEp53DlqZnBUZjuOb2XSweucwn2Sr6fp5wSGNeUZpZGH4mbkpanqwXk0uKTAI7I7YqHf10O1bRkrBUq7TWlsB2gLRRuEksfClUrGDbamSVpwEiAIcW0qgWJQ-2MoPlB8rKgURPCW1ZJVwj1k1zVI8YZzALGzbELq-aHkEsSDBDiCgTCDQ8VDUmCj9FylzzriWu5hHZUPZLCr9Hmm_R4Xfa6z5ZbcsTtrYaBGWyxP92jMRwcEG29N_2J6xbX1X9O-cs-p69YoXVJqsZT3fe3W21bke9If6Orh7HHwC8lzoHw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4GHODCGzGeOXDt1le69IgQaMDgApN2QKqc1IVNWzuNgcSF347TpjwkJA5c01iKHNufk9r5GDsxj-wHCkIHCK7ogNIRDvhx5sgYgHwL0I1Nc_LNbdTth1cDMWiws7oXxpRV2thfxfQyWtuRttVmezoctu8oOSB3I2cOyv9NcoEthcLvmBNY6_2rziOQVbcOzXbM9G9twqMW5o8wncKwZVjEDeetNHzvvyHUN9S5WGerNl3kp9WKNlgD8022ZlNHbh3zmYZqdoZ6bIs9VPcF5fUfLzJelg46hRpVIY7jq7U6mL1xGD8Ws-H8acIhT3lBcWRiGzRLUTT9wWY7uSLPILTbZv2L8_uzrmO5FBwdeP7ckegKRBeFl6UiUlqnHnaUzvw0k4gCPFcpIGdUEbg6kjpKNeWCCKFWhrNKBDtsMS9y3GWc0CzuuBAHkfBDwlhQ4EqQFAoEeiGKJhO1_hJtHxo3fBfjpK4oGyW13hOj96TSe5O1P-Wm1VMbf0rE9fYkP4wmITz4Q3bvH7LHbLl7f9NLepe31_tsxXypinkO2OJ89oKHlKfM1VFphx8eAOgR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+multi-objective+evolutionary+algorithm+and+optimization+of+mechanical+bearing&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Gao%2C+Shuzhi&rft.au=Ren%2C+Xuepeng&rft.au=Zhang%2C+Yimin&rft.date=2023-04-01&rft.issn=0952-1976&rft.volume=120&rft.spage=105889&rft_id=info:doi/10.1016%2Fj.engappai.2023.105889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_105889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon