Improvement of multi-objective evolutionary algorithm and optimization of mechanical bearing
In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems, it is found that the distribution of congestion degree is not ideal. Sub-problems with relatively high degree of congestion are often distri...
        Saved in:
      
    
          | Published in | Engineering applications of artificial intelligence Vol. 120; p. 105889 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.04.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0952-1976 1873-6769  | 
| DOI | 10.1016/j.engappai.2023.105889 | 
Cover
| Abstract | In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems, it is found that the distribution of congestion degree is not ideal. Sub-problems with relatively high degree of congestion are often distributed in the center of Pareto frontier, while sub-problems with relatively low degree of congestion are distributed at the edges of Pareto frontier, especially the Pareto frontier shape is convex and reference vectors are constructed from the ideal point using Das and Dennis’s method for generation of points on unit simplex. To solve the above problems, an improved multi-objective evolutionary algorithm is proposed, called MOEA/D-ROE, and a weight vector adjustment strategy based on regional online evaluation is proposed by using the modified form of Tchebycheff function. In MOEA/D-ROE, subproblems with different congestion levels are divided into different areas. By setting corresponding parameters for each region and introducing Pareto advantages, the weights are adjusted regularly. Therefore, the weights of subproblems can be redistributed more evenly to obtain more uniform solutions. Finally, the regional online evaluation strategy is embedded into other algorithms to verify the effectiveness and portability of this strategy, and MOEA/D-ROE algorithm is applied to an application example. At the same time, it is proved that the improvement of the algorithm is meaningful for the optimization of practical problems. | 
    
|---|---|
| AbstractList | In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems, it is found that the distribution of congestion degree is not ideal. Sub-problems with relatively high degree of congestion are often distributed in the center of Pareto frontier, while sub-problems with relatively low degree of congestion are distributed at the edges of Pareto frontier, especially the Pareto frontier shape is convex and reference vectors are constructed from the ideal point using Das and Dennis’s method for generation of points on unit simplex. To solve the above problems, an improved multi-objective evolutionary algorithm is proposed, called MOEA/D-ROE, and a weight vector adjustment strategy based on regional online evaluation is proposed by using the modified form of Tchebycheff function. In MOEA/D-ROE, subproblems with different congestion levels are divided into different areas. By setting corresponding parameters for each region and introducing Pareto advantages, the weights are adjusted regularly. Therefore, the weights of subproblems can be redistributed more evenly to obtain more uniform solutions. Finally, the regional online evaluation strategy is embedded into other algorithms to verify the effectiveness and portability of this strategy, and MOEA/D-ROE algorithm is applied to an application example. At the same time, it is proved that the improvement of the algorithm is meaningful for the optimization of practical problems. | 
    
| ArticleNumber | 105889 | 
    
| Author | Ren, Xuepeng Zhang, Yimin Gao, Shuzhi  | 
    
| Author_xml | – sequence: 1 givenname: Shuzhi surname: Gao fullname: Gao, Shuzhi organization: Shenyang University of Chemical Technology, Equipment Reliability Institute, Shenyang 110142, PR China – sequence: 2 givenname: Xuepeng surname: Ren fullname: Ren, Xuepeng organization: Shenyang University of Chemical Technology, College of Information Engineering, Shenyang 110142, PR China – sequence: 3 givenname: Yimin orcidid: 0000-0001-7576-0934 surname: Zhang fullname: Zhang, Yimin email: zhangyimin_126163@126.com organization: Shenyang University of Chemical Technology, Equipment Reliability Institute, Shenyang 110142, PR China  | 
    
| BookMark | eNqFkF1LwzAUhoNMcJv-Bekf6EzaNU3BC2X4MRh4o3dCSNLT7ZQ2KWlW0F9vt-mNN7s6cA7Py3mfGZlYZ4GQW0YXjDJ-Vy_AblXXKVwkNEnHZSZEcUGmTORpzHNeTMiUFlkSsyLnV2TW9zWlNBVLPiWf67bzboAWbIhcFbX7JmDsdA0m4AARDK7ZB3RW-a9INVvnMezaSNkycl3AFr_V4XpEweyURaOaSIPyaLfX5LJSTQ83v3NOPp6f3lev8ebtZb163MQmZUmIBdAMgELGqjLj2piSQa5NlZSVAMgUo1qrgqeaK2q4MLw0jDNQS6MFL2iWzsn9Kdd41_ceKmkwHP8KXmEjGZUHU7KWf6bkwZQ8mRpx_g_vPLZj4fPgwwmEsdyA4GVvEKyBEv3oT5YOz0X8APHvjYQ | 
    
| CitedBy_id | crossref_primary_10_1080_0305215X_2023_2262389 crossref_primary_10_1016_j_ins_2024_121858 crossref_primary_10_1007_s12206_024_0129_6 crossref_primary_10_3390_s23135875 crossref_primary_10_1016_j_ins_2024_121364 crossref_primary_10_3390_app13053355 crossref_primary_10_1016_j_istruc_2025_108389 crossref_primary_10_23919_CJEE_2024_000064 crossref_primary_10_1080_0305215X_2024_2434726 crossref_primary_10_1016_j_engappai_2024_108194  | 
    
| Cites_doi | 10.1109/TEVC.2014.2350987 10.1109/5326.704576 10.1109/TEVC.2013.2258025 10.1109/TEVC.2008.925798 10.1109/TEVC.2013.2281533 10.1109/TEVC.2015.2443001 10.1016/j.ins.2014.08.071 10.1109/TCYB.2015.2507366 10.1109/SMC.2019.8914005 10.1109/TEVC.2005.861417 10.1007/978-3-540-70928-2_5 10.1007/s12046-017-0775-9 10.1109/ACCESS.2018.2832181 10.1007/s00500-008-0394-9 10.1109/MCI.2017.2742868 10.1109/TEVC.2013.2239648 10.1109/ICCIAS.2006.294139 10.1109/TEVC.2016.2519378 10.1162/evco_a_00269 10.1162/EVCO_a_00109 10.1109/TEVC.2015.2457616 10.1109/CEC.2002.1007032 10.1109/CEC.2003.1299427 10.1109/TEVC.2016.2521175 10.1109/CEC.2009.4982949 10.1007/3-540-44719-9_11 10.1109/CEC.2018.8477730 10.1016/j.mechmachtheory.2006.10.002 10.1109/TEVC.2014.2373386 10.1145/3205455.3205648 10.1007/978-3-319-54157-0_2 10.1109/4235.996017 10.1214/09-SS051 10.1016/j.engappai.2020.103801 10.1109/TEVC.2007.892759 10.1016/j.swevo.2011.03.001 10.1145/3279996.3280028 10.1109/TEVC.2014.2353672 10.1137/S1052623496307510 10.1109/TCYB.2016.2621008 10.1109/TEVC.2010.2058117 10.1109/TEVC.2002.802873 10.3390/s90503981  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.engappai.2023.105889 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Computer Science  | 
    
| EISSN | 1873-6769 | 
    
| ExternalDocumentID | 10_1016_j_engappai_2023_105889 S0952197623000738  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c312t-8e05ee0e51fd56bccd1e7bcf2df8ee5a10bba963b6a0c68c6dc161ea4cb869053 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0952-1976 | 
    
| IngestDate | Thu Apr 24 23:05:52 EDT 2025 Sat Oct 25 05:29:39 EDT 2025 Fri Feb 23 02:37:33 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Adaptive weight vector adjustment Multi-objective optimization Decomposition Mechanical bearing Evolutionary algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c312t-8e05ee0e51fd56bccd1e7bcf2df8ee5a10bba963b6a0c68c6dc161ea4cb869053 | 
    
| ORCID | 0000-0001-7576-0934 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2023_105889 crossref_primary_10_1016_j_engappai_2023_105889 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105889  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2023 2023-04-00  | 
    
| PublicationDateYYYYMMDD | 2023-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Engineering applications of artificial intelligence | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Safi, H.H., Ucan, O.N., Bayat, O., 2018. On the real world applications of many-objective evolutionary algorithms. In: The First International Conference. pp. 1–6. Yuan, Xu, Wang, Zhang, Yao (b45) 2015; 20 Li, Yao (b28) 2020; 28 Wang, Zhang, Zhang (b41) 2016; 20 Zhang, Zhou, Zhao, Suganthan, Tiwari (b48) 2008; 264 Li, Wang, Zhang, Ishibuchi (b27) 2018; 6 Wang, Zhang, Zhou, Gong, Jiao (b42) 2015; 20 Farias, L.R., Araújol, A.F., 2019. Many-objective evolutionary algorithm based on decomposition with random and adaptive weights. In: 2019 IEEE International Conference on Systems, Man and Cybernetics. SMC, pp. 3746–3751. Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report Gloriastrasse, 103, pp. 1–21. Adra, Fleming (b1) 2010; 15 Duggirala, Jana, Shesu, Bhattacharjee (b10) 2018; 43 Zhou, Qu, Li, Zhao, Suganthan, Zhang (b50) 2011; 1 Li, Zhang (b29) 2008; 13 He, Yen, Zhang (b17) 2013; 18 Qi, Ma, Liu, Jiao, Sun, Wu (b33) 2014; 22 Wang, Wu, Yuan (b40) 2010; 14 Hou, Aerocraft, University (b18) 2018; 25 Tian, Y., Xiang, X., Zhang, X., Cheng, R., Jin, Y., 2018. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation. de Farias, L.R., Braga, P.H., Bassani, H.F., Araújo, A.F., 2018. MOEA/D with uniformly randomly adaptive weights. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp. 641–648. Deb, Pratap, Agarwal, Meyarivan (b7) 2002; 6 Gee, Tan, Shim, Pal (b14) 2014; 19 Gupta, Tiwari, Nair (b16) 2007; 42 Hughes, E.J., 2003. Multiple single objective Pareto sampling. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03. Vol. 4, pp. 2678–2684. Ye, Ran, Zhang, Jin (b44) 2017; 12 Deb, K., Thiele, L., Laumanns, M., Zitzler, E., 2002b. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). 1, pp. 825–830. Huband, Hingston, Barone, While (b19) 2006; 10 Jaszkiewicz (b22) 2002; 6 Fay, Proschan (b13) 2010; 4 Bentley, Wakefield (b3) 1998 Kukkonen, Deb (b23) 2006 Zhang, Q., Liu, W., Li, H., 2009. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation. pp. 203–208. Ishibuchi, Murata (b21) 1998; 28 Cheng, Jin, Olhofer, Sendhoff (b5) 2016; 20 Tian (b37) 2020; 94 Yao, X., 2006. A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In: 2006 International Conference on Computational Intelligence and Security. 1, pp. 286–291. Li, Deb, Zhang, Kwong (b24) 2014; 19 Das, Dennis (b6) 1998; 8 Drechsler, N., Drechsler, R., Becker, B., 2001. Multi-objective optimisation based on relation favour. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 154–166. Liu, Gu, Zhang (b32) 2013; 18 Cai, Li, Fan, Zhang (b4) 2014; 19 Wang, Jiao, Yao (b39) 2014; 19 Li, Zhang, Kwong, Li, Wang (b31) 2013; 18 Suresh, Kundu, Ghosh, Das, Abraham, Han (b36) 2009; 9 Giagkiozis, Fleming (b15) 2015; 293 Barba-Gonzaléz, C., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F., 2017. Multi-objective big data optimization with jmetal and spark. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 16–30. Sato, H., Aguirre, H.E., Tanaka, K., 2007. Controlling dominance area of solutions and its impact on the performance of MOEAs. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 5–20. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E., 2006. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE International Conference on Evolutionary Computation. pp. 892–899. Li, Fialho, Kwong, Zhang (b26) 2013; 18 Li, Deb, Zhang, Zhang (b25) 2016; 47 Zhang, Li (b46) 2007; 11 Li, Zhang, Deng (b30) 2016; 47 Liu (10.1016/j.engappai.2023.105889_b32) 2013; 18 10.1016/j.engappai.2023.105889_b9 10.1016/j.engappai.2023.105889_b8 He (10.1016/j.engappai.2023.105889_b17) 2013; 18 Gupta (10.1016/j.engappai.2023.105889_b16) 2007; 42 Li (10.1016/j.engappai.2023.105889_b25) 2016; 47 10.1016/j.engappai.2023.105889_b2 Giagkiozis (10.1016/j.engappai.2023.105889_b15) 2015; 293 10.1016/j.engappai.2023.105889_b43 10.1016/j.engappai.2023.105889_b49 10.1016/j.engappai.2023.105889_b47 Zhang (10.1016/j.engappai.2023.105889_b46) 2007; 11 Jaszkiewicz (10.1016/j.engappai.2023.105889_b22) 2002; 6 Huband (10.1016/j.engappai.2023.105889_b19) 2006; 10 Li (10.1016/j.engappai.2023.105889_b31) 2013; 18 Kukkonen (10.1016/j.engappai.2023.105889_b23) 2006 Li (10.1016/j.engappai.2023.105889_b27) 2018; 6 Deb (10.1016/j.engappai.2023.105889_b7) 2002; 6 10.1016/j.engappai.2023.105889_b51 10.1016/j.engappai.2023.105889_b12 10.1016/j.engappai.2023.105889_b11 Fay (10.1016/j.engappai.2023.105889_b13) 2010; 4 Li (10.1016/j.engappai.2023.105889_b24) 2014; 19 Cheng (10.1016/j.engappai.2023.105889_b5) 2016; 20 Cai (10.1016/j.engappai.2023.105889_b4) 2014; 19 Ye (10.1016/j.engappai.2023.105889_b44) 2017; 12 Li (10.1016/j.engappai.2023.105889_b30) 2016; 47 Gee (10.1016/j.engappai.2023.105889_b14) 2014; 19 Suresh (10.1016/j.engappai.2023.105889_b36) 2009; 9 Duggirala (10.1016/j.engappai.2023.105889_b10) 2018; 43 Zhou (10.1016/j.engappai.2023.105889_b50) 2011; 1 Wang (10.1016/j.engappai.2023.105889_b39) 2014; 19 Wang (10.1016/j.engappai.2023.105889_b40) 2010; 14 10.1016/j.engappai.2023.105889_b20 Adra (10.1016/j.engappai.2023.105889_b1) 2010; 15 Hou (10.1016/j.engappai.2023.105889_b18) 2018; 25 Tian (10.1016/j.engappai.2023.105889_b37) 2020; 94 Das (10.1016/j.engappai.2023.105889_b6) 1998; 8 Qi (10.1016/j.engappai.2023.105889_b33) 2014; 22 Ishibuchi (10.1016/j.engappai.2023.105889_b21) 1998; 28 Wang (10.1016/j.engappai.2023.105889_b42) 2015; 20 Li (10.1016/j.engappai.2023.105889_b28) 2020; 28 Yuan (10.1016/j.engappai.2023.105889_b45) 2015; 20 Li (10.1016/j.engappai.2023.105889_b29) 2008; 13 10.1016/j.engappai.2023.105889_b34 Li (10.1016/j.engappai.2023.105889_b26) 2013; 18 10.1016/j.engappai.2023.105889_b38 10.1016/j.engappai.2023.105889_b35 Wang (10.1016/j.engappai.2023.105889_b41) 2016; 20 Bentley (10.1016/j.engappai.2023.105889_b3) 1998 Zhang (10.1016/j.engappai.2023.105889_b48) 2008; 264  | 
    
| References_xml | – reference: Drechsler, N., Drechsler, R., Becker, B., 2001. Multi-objective optimisation based on relation favour. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 154–166. – reference: Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E., 2006. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE International Conference on Evolutionary Computation. pp. 892–899. – volume: 28 start-page: 392 year: 1998 end-page: 403 ident: b21 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling publication-title: IEEE Trans. Syst. Man Cybern. – volume: 13 start-page: 284 year: 2008 end-page: 302 ident: b29 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 293 start-page: 338 year: 2015 end-page: 350 ident: b15 article-title: Methods for multi-objective optimization: An analysis publication-title: Inform. Sci. – volume: 264 start-page: 1 year: 2008 end-page: 30 ident: b48 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition publication-title: Mech. Eng. – reference: Deb, K., Thiele, L., Laumanns, M., Zitzler, E., 2002b. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). 1, pp. 825–830. – volume: 20 start-page: 475 year: 2015 end-page: 480 ident: b42 article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: b50 article-title: Multiobjective evolutionary algorithms: A survey of the state of the art publication-title: Swarm Evol. Comput. – reference: Hughes, E.J., 2003. Multiple single objective Pareto sampling. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03. Vol. 4, pp. 2678–2684. – volume: 18 start-page: 909 year: 2013 end-page: 923 ident: b31 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – reference: Zhang, Q., Liu, W., Li, H., 2009. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation. pp. 203–208. – volume: 6 start-page: 26194 year: 2018 end-page: 26214 ident: b27 article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art publication-title: IEEE Access – volume: 28 start-page: 227 year: 2020 end-page: 253 ident: b28 article-title: What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation publication-title: Evol. Comput. – volume: 9 start-page: 3981 year: 2009 end-page: 4004 ident: b36 article-title: Multi-objective differential evolution for automatic clustering with application to micro-array data analysis publication-title: Sensors – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b46 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – reference: Barba-Gonzaléz, C., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F., 2017. Multi-objective big data optimization with jmetal and spark. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 16–30. – volume: 25 start-page: 1044 year: 2018 end-page: 1049 ident: b18 article-title: Hybrid multi-objective optimization for hydrodynamic bearing design publication-title: Control Eng. China – volume: 47 start-page: 2838 year: 2016 end-page: 2849 ident: b25 article-title: Efficient nondomination level update method for steady-state evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 4 start-page: 1 year: 2010 end-page: 39 ident: b13 article-title: Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules publication-title: Stat. Surv. – volume: 14 start-page: 193 year: 2010 end-page: 209 ident: b40 article-title: Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure publication-title: Soft Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b7 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 47 start-page: 52 year: 2016 end-page: 66 ident: b30 article-title: Biased multiobjective optimization and decomposition algorithm publication-title: IEEE Trans. Cybern. – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b44 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization publication-title: IEEE Comput. Intell. Mag. – volume: 43 start-page: 1 year: 2018 end-page: 8 ident: b10 article-title: Design optimization of deep groove ball bearings using crowding distance particle swarm optimization publication-title: Sādhanā – volume: 19 start-page: 508 year: 2014 end-page: 523 ident: b4 article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 114 year: 2013 end-page: 130 ident: b26 article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – reference: Sato, H., Aguirre, H.E., Tanaka, K., 2007. Controlling dominance area of solutions and its impact on the performance of MOEAs. In: International Conference on Evolutionary Multi-Criterion Optimization. pp. 5–20. – volume: 6 start-page: 402 year: 2002 end-page: 412 ident: b22 article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment publication-title: IEEE Trans. Evol. Comput. – reference: Farias, L.R., Araújol, A.F., 2019. Many-objective evolutionary algorithm based on decomposition with random and adaptive weights. In: 2019 IEEE International Conference on Systems, Man and Cybernetics. SMC, pp. 3746–3751. – volume: 8 start-page: 631 year: 1998 end-page: 657 ident: b6 article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. – volume: 18 start-page: 269 year: 2013 end-page: 285 ident: b17 article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 553 year: 2006 end-page: 562 ident: b23 article-title: A fast and effective method for pruning of non-dominated solutions in many-objective problems publication-title: Parallel Problem Solving from Nature-PPSN IX – volume: 19 start-page: 694 year: 2014 end-page: 716 ident: b24 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – reference: Tian, Y., Xiang, X., Zhang, X., Cheng, R., Jin, Y., 2018. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation. – volume: 22 start-page: 231 year: 2014 end-page: 264 ident: b33 article-title: MOEA/D with adaptive weight adjustment publication-title: Evol. Comput. – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b5 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 542 year: 2014 end-page: 559 ident: b14 article-title: Online diversity assessment in evolutionary multiobjective optimization: A geometrical perspective publication-title: IEEE Trans. Evol. Comput. – start-page: 231 year: 1998 end-page: 240 ident: b3 article-title: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms publication-title: Soft Computing in Engineering Design and Manufacturing – reference: de Farias, L.R., Braga, P.H., Bassani, H.F., Araújo, A.F., 2018. MOEA/D with uniformly randomly adaptive weights. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp. 641–648. – volume: 94 year: 2020 ident: b37 article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications publication-title: Eng. Appl. Artif. Intell. – volume: 15 start-page: 183 year: 2010 end-page: 195 ident: b1 article-title: Diversity management in evolutionary many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 821 year: 2016 end-page: 837 ident: b41 article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 524 year: 2014 end-page: 541 ident: b39 article-title: Two Arch2: An improved two-archive algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 180 year: 2015 end-page: 198 ident: b45 article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers publication-title: IEEE Trans. Evol. Comput. – reference: Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report Gloriastrasse, 103, pp. 1–21. – volume: 42 start-page: 1418 year: 2007 end-page: 1443 ident: b16 article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms publication-title: Mech. Mach. Theory – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: b19 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. – reference: Safi, H.H., Ucan, O.N., Bayat, O., 2018. On the real world applications of many-objective evolutionary algorithms. In: The First International Conference. pp. 1–6. – reference: Yao, X., 2006. A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In: 2006 International Conference on Computational Intelligence and Security. 1, pp. 286–291. – volume: 18 start-page: 450 year: 2013 end-page: 455 ident: b32 article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 524 issue: 4 year: 2014 ident: 10.1016/j.engappai.2023.105889_b39 article-title: Two Arch2: An improved two-archive algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2350987 – volume: 28 start-page: 392 issue: 3 year: 1998 ident: 10.1016/j.engappai.2023.105889_b21 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/5326.704576 – volume: 18 start-page: 269 issue: 2 year: 2013 ident: 10.1016/j.engappai.2023.105889_b17 article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2258025 – volume: 13 start-page: 284 issue: 2 year: 2008 ident: 10.1016/j.engappai.2023.105889_b29 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – volume: 18 start-page: 450 issue: 3 year: 2013 ident: 10.1016/j.engappai.2023.105889_b32 article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281533 – volume: 20 start-page: 180 issue: 2 year: 2015 ident: 10.1016/j.engappai.2023.105889_b45 article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2443001 – volume: 293 start-page: 338 year: 2015 ident: 10.1016/j.engappai.2023.105889_b15 article-title: Methods for multi-objective optimization: An analysis publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.08.071 – volume: 47 start-page: 52 issue: 1 year: 2016 ident: 10.1016/j.engappai.2023.105889_b30 article-title: Biased multiobjective optimization and decomposition algorithm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2507366 – ident: 10.1016/j.engappai.2023.105889_b11 doi: 10.1109/SMC.2019.8914005 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 10.1016/j.engappai.2023.105889_b19 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.861417 – ident: 10.1016/j.engappai.2023.105889_b35 doi: 10.1007/978-3-540-70928-2_5 – volume: 43 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.engappai.2023.105889_b10 article-title: Design optimization of deep groove ball bearings using crowding distance particle swarm optimization publication-title: Sādhanā doi: 10.1007/s12046-017-0775-9 – volume: 6 start-page: 26194 year: 2018 ident: 10.1016/j.engappai.2023.105889_b27 article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2832181 – volume: 14 start-page: 193 issue: 3 year: 2010 ident: 10.1016/j.engappai.2023.105889_b40 article-title: Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure publication-title: Soft Comput. doi: 10.1007/s00500-008-0394-9 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.engappai.2023.105889_b44 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 18 start-page: 114 issue: 1 year: 2013 ident: 10.1016/j.engappai.2023.105889_b26 article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2239648 – ident: 10.1016/j.engappai.2023.105889_b43 doi: 10.1109/ICCIAS.2006.294139 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.engappai.2023.105889_b5 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 28 start-page: 227 issue: 2 year: 2020 ident: 10.1016/j.engappai.2023.105889_b28 article-title: What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation publication-title: Evol. Comput. doi: 10.1162/evco_a_00269 – volume: 22 start-page: 231 issue: 2 year: 2014 ident: 10.1016/j.engappai.2023.105889_b33 article-title: MOEA/D with adaptive weight adjustment publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00109 – start-page: 231 year: 1998 ident: 10.1016/j.engappai.2023.105889_b3 article-title: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms – volume: 25 start-page: 1044 year: 2018 ident: 10.1016/j.engappai.2023.105889_b18 article-title: Hybrid multi-objective optimization for hydrodynamic bearing design publication-title: Control Eng. China – volume: 20 start-page: 475 issue: 3 year: 2015 ident: 10.1016/j.engappai.2023.105889_b42 article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2457616 – ident: 10.1016/j.engappai.2023.105889_b8 doi: 10.1109/CEC.2002.1007032 – ident: 10.1016/j.engappai.2023.105889_b20 doi: 10.1109/CEC.2003.1299427 – volume: 20 start-page: 821 issue: 6 year: 2016 ident: 10.1016/j.engappai.2023.105889_b41 article-title: Decomposition-based algorithms using Pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2521175 – volume: 18 start-page: 909 issue: 6 year: 2013 ident: 10.1016/j.engappai.2023.105889_b31 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – ident: 10.1016/j.engappai.2023.105889_b47 doi: 10.1109/CEC.2009.4982949 – ident: 10.1016/j.engappai.2023.105889_b9 doi: 10.1007/3-540-44719-9_11 – ident: 10.1016/j.engappai.2023.105889_b38 doi: 10.1109/CEC.2018.8477730 – ident: 10.1016/j.engappai.2023.105889_b51 – volume: 42 start-page: 1418 issue: 10 year: 2007 ident: 10.1016/j.engappai.2023.105889_b16 article-title: Multi-objective design optimisation of rolling bearings using genetic algorithms publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2006.10.002 – volume: 19 start-page: 694 issue: 5 year: 2014 ident: 10.1016/j.engappai.2023.105889_b24 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – ident: 10.1016/j.engappai.2023.105889_b12 doi: 10.1145/3205455.3205648 – ident: 10.1016/j.engappai.2023.105889_b2 doi: 10.1007/978-3-319-54157-0_2 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.engappai.2023.105889_b7 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 4 start-page: 1 year: 2010 ident: 10.1016/j.engappai.2023.105889_b13 article-title: Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules publication-title: Stat. Surv. doi: 10.1214/09-SS051 – volume: 94 year: 2020 ident: 10.1016/j.engappai.2023.105889_b37 article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103801 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.engappai.2023.105889_b46 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – ident: 10.1016/j.engappai.2023.105889_b49 – volume: 19 start-page: 508 issue: 4 year: 2014 ident: 10.1016/j.engappai.2023.105889_b4 article-title: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.engappai.2023.105889_b50 article-title: Multiobjective evolutionary algorithms: A survey of the state of the art publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.03.001 – start-page: 553 year: 2006 ident: 10.1016/j.engappai.2023.105889_b23 article-title: A fast and effective method for pruning of non-dominated solutions in many-objective problems – volume: 264 start-page: 1 year: 2008 ident: 10.1016/j.engappai.2023.105889_b48 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition publication-title: Mech. Eng. – ident: 10.1016/j.engappai.2023.105889_b34 doi: 10.1145/3279996.3280028 – volume: 19 start-page: 542 issue: 4 year: 2014 ident: 10.1016/j.engappai.2023.105889_b14 article-title: Online diversity assessment in evolutionary multiobjective optimization: A geometrical perspective publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2353672 – volume: 8 start-page: 631 issue: 3 year: 1998 ident: 10.1016/j.engappai.2023.105889_b6 article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623496307510 – volume: 47 start-page: 2838 issue: 9 year: 2016 ident: 10.1016/j.engappai.2023.105889_b25 article-title: Efficient nondomination level update method for steady-state evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2621008 – volume: 15 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.engappai.2023.105889_b1 article-title: Diversity management in evolutionary many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2058117 – volume: 6 start-page: 402 issue: 4 year: 2002 ident: 10.1016/j.engappai.2023.105889_b22 article-title: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.802873 – volume: 9 start-page: 3981 issue: 05 year: 2009 ident: 10.1016/j.engappai.2023.105889_b36 article-title: Multi-objective differential evolution for automatic clustering with application to micro-array data analysis publication-title: Sensors doi: 10.3390/s90503981  | 
    
| SSID | ssj0003846 | 
    
| Score | 2.4377875 | 
    
| Snippet | In some algorithms, Euclidean distance is used to calculate the crowded distance between subproblems. When Euclidean distance is used to calculate subproblems,... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 105889 | 
    
| SubjectTerms | Adaptive weight vector adjustment Decomposition Evolutionary algorithm Mechanical bearing Multi-objective optimization  | 
    
| Title | Improvement of multi-objective evolutionary algorithm and optimization of mechanical bearing | 
    
| URI | https://dx.doi.org/10.1016/j.engappai.2023.105889 | 
    
| Volume | 120 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvHjxbcQH2YPXQku7pT0SIkGJHFQiB5NmdjtFCLQE0cSLv93ZdusjMeHgqelmJ2lmd-abtvPtx9ilPmTfleBZQHBFLyhtYUErTKwgBKDYArRDTU6-Hfr9kXczFuMK65ZcGN1WaXJ_kdPzbG1GmsabzeV02ryn4oDCjYLZzf83acKv57W1ikHj47vNww0Ksg5NtvTsHyzhWQPTCSyXMG1oEXEteRtoufe_AOoH6PT22I6pFnmneKB9VsH0gO2aypGbuHyhoVKcoRw7ZE_F54L86x_PEp53DlqZnBUZjuOb2XSweucwn2Sr6fp5wSGNeUZpZGH4mbkpanqwXk0uKTAI7I7YqHf10O1bRkrBUq7TWlsB2gLRRuEksfClUrGDbamSVpwEiAIcW0qgWJQ-2MoPlB8rKgURPCW1ZJVwj1k1zVI8YZzALGzbELq-aHkEsSDBDiCgTCDQ8VDUmCj9FylzzriWu5hHZUPZLCr9Hmm_R4Xfa6z5ZbcsTtrYaBGWyxP92jMRwcEG29N_2J6xbX1X9O-cs-p69YoXVJqsZT3fe3W21bke9If6Orh7HHwC8lzoHw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4GHODCGzGeOXDt1le69IgQaMDgApN2QKqc1IVNWzuNgcSF347TpjwkJA5c01iKHNufk9r5GDsxj-wHCkIHCK7ogNIRDvhx5sgYgHwL0I1Nc_LNbdTth1cDMWiws7oXxpRV2thfxfQyWtuRttVmezoctu8oOSB3I2cOyv9NcoEthcLvmBNY6_2rziOQVbcOzXbM9G9twqMW5o8wncKwZVjEDeetNHzvvyHUN9S5WGerNl3kp9WKNlgD8022ZlNHbh3zmYZqdoZ6bIs9VPcF5fUfLzJelg46hRpVIY7jq7U6mL1xGD8Ws-H8acIhT3lBcWRiGzRLUTT9wWY7uSLPILTbZv2L8_uzrmO5FBwdeP7ckegKRBeFl6UiUlqnHnaUzvw0k4gCPFcpIGdUEbg6kjpKNeWCCKFWhrNKBDtsMS9y3GWc0CzuuBAHkfBDwlhQ4EqQFAoEeiGKJhO1_hJtHxo3fBfjpK4oGyW13hOj96TSe5O1P-Wm1VMbf0rE9fYkP4wmITz4Q3bvH7LHbLl7f9NLepe31_tsxXypinkO2OJ89oKHlKfM1VFphx8eAOgR | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+multi-objective+evolutionary+algorithm+and+optimization+of+mechanical+bearing&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Gao%2C+Shuzhi&rft.au=Ren%2C+Xuepeng&rft.au=Zhang%2C+Yimin&rft.date=2023-04-01&rft.issn=0952-1976&rft.volume=120&rft.spage=105889&rft_id=info:doi/10.1016%2Fj.engappai.2023.105889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_105889 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |